Graph C*-algebras with applications to quantum spaces II XIV School on Geometry and Physics, Białystok 23-27.06.2025

Karen Strung, Institute of Mathematics of the Czech Academy of Sciences

Directed graphs

Recall from last time:

A directed graph $E = (E^0, E^1, r, s)$ consists of a countable set E^0 of vertices, a countable set E^1 of edges, and the range and source maps $r, s : E^1 \to E^0$.

Row finiteness and adjacency matrix

A graph $E = (E^0, E^1, r, s)$ is row finite if every vertex receives at most finitely many edges.

This can also be described via the adjacency matrix of E.

The adjacency matrix $A_E = (a_{v,w})_{v,w \in E^0} \in M_{E^0 \times E^0}(\mathbb{Z})$ of E is defined by $a_{v,w} = |\{e \in E^1 \mid r(e) = v, s(e) = w\}|.$

A graph is row finite if and only if the sum of each row of A_F is finite.

Cuntz-Krieger relations

Let *E* be a row-finite graph.

A Cuntz-Krieger E-family $\{S, P\}$ on a Hilbert space H consists of pairwise orthogonal the Cuntz-Krieger relations:

(CK1) $S_e^*S_e = P_{s(e)}$ for every $e \in E^1$, and

(CK2) $P_v = \sum_{e} S_e^*$ for every $v \in E^1$ that is not a source. $e \in r^{-1}(v)$

Cuntz-Krieger E-families for which all operators are non-zero always exist.

projections $\{P_v \in \mathscr{B}(H) \mid v \in E^0\}$ and partial isometries $\{S_e \in \mathscr{B}(H) \mid e \in E^1\}$ satisfying

An implication of the CK relations Let $e, f \in E^1$, and consider $S_e S_f \in \mathscr{B}(H)$.

Two applications of the C*-equality tells us that

$$\|S_e S_f\|^4 = \|(S_f^* S_e^*)(S_e S_f)\|^2 = \|(S_f^* S_e^* S_e S_f)(S_f^* S_e^* S_e S_f)\|.$$

Note that $S_e^*S_e = P_{s(e)}$ and $S_f S_f^* \leq P_{r(f)}$. It follows Thus $||S_e S_f||^4 = ||S_f^* S_e^* S_e S_f S_f^* S_e^* S_e S_f|| = 0$ if $s(e) \neq r(f)$, and so $S_e S_f = 0$ whenever $s(e) \neq r(f)$.

On the other hand, if s(e) = r(f), we have $S_e^* S_e S_f S_f$

 $\|S_e S_f\|^4 = \|S_f^*\|$

whenever $S_f \neq 0$.

that
$$S_e^* S_e S_f S_f^* = 0$$
 if $s(e) \neq r(f)$.

$$S_f^* = S_f S_f^*$$
, so

$$S_{e}^{*}S_{e}S_{f}S_{f}^{*}S_{e}^{*}S_{e}S_{f}\| = 1$$

Similar calculations give us the following:

the following:

• the projections $\{S_e S_e^* \mid e \in E^1\}$ are mutually orthogonal;

• if
$$S_e^* S_f \neq 0$$
 then $e = f_r$

• if $S_e S_f \neq 0$ then s(e) = r(f),

• if
$$S_e S_f^* \neq 0$$
 then $s(e) = s(f)$.

A path in E of length $n \in \mathbb{Z}_{>0}$ is a sequence $\mu = \mu_1 \mu_2 \dots \mu_n$ of edges $\mu_i \in E^1$ such that $s(\mu_i) = r(\mu_{i+1})$ for $1 \le i \le n - 1$. The above allows us to define the operator

$$S_{\mu} := S_{\mu_1} S_{\mu_2} \cdots S_{\mu_n}$$

Proposition. Let *E* be a row-finite graph. Then any Cuntz–Krieger *E*-family $\{S, P\}$ satisfies

Let $\mu = \mu_1 \mu_2 \dots \mu_n$ be a path of length n.

Then

$$S_{\mu}^{*}S_{\mu} = S_{\mu_{n}}^{*} \cdots S_{\mu_{2}}^{*}S_{\mu_{1}}^{*}S_{\mu_{1}} \cdots S_{\mu_{2}}S_{\mu_{n}}$$

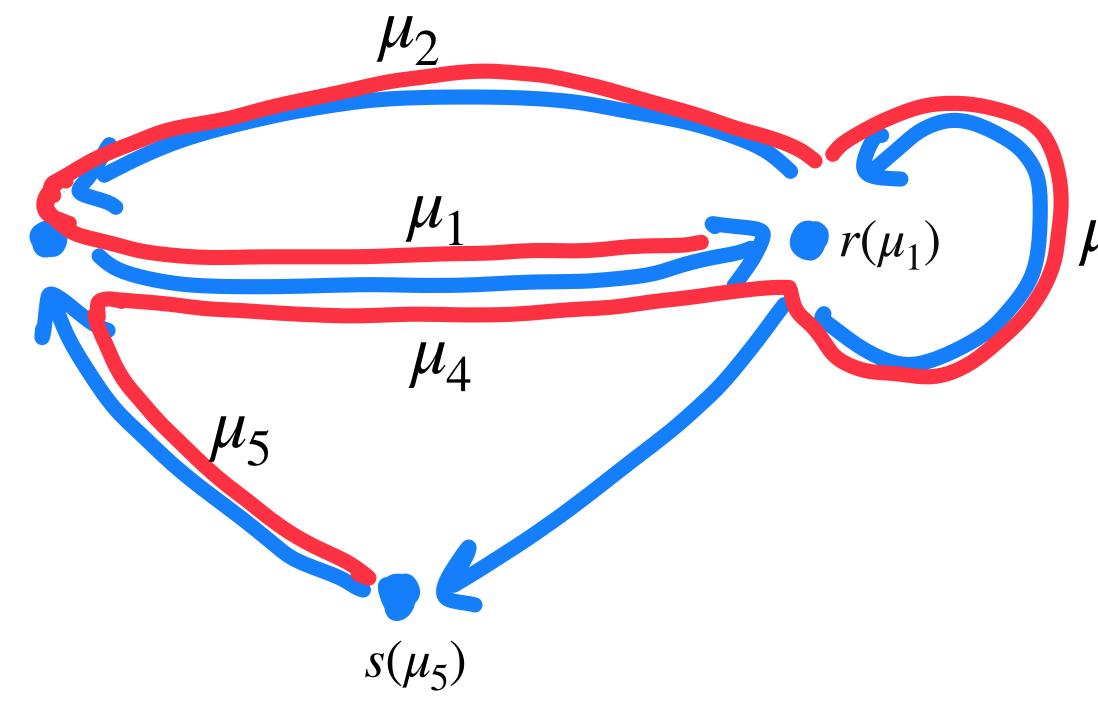
$$= S_{\mu_{n}}^{*} \cdots S_{\mu_{2}}^{*}P_{s(\mu_{1})}S_{\mu_{2}} \cdots S_{\mu_{n}}$$

$$= S_{\mu_{n}}^{*} \cdots S_{\mu_{2}}^{*}P_{r(\mu_{2})}S_{\mu_{2}} \cdots S_{\mu_{n}}$$

$$\vdots$$

$$= S_{\mu_{n}}^{*}S_{\mu_{n}} = P_{s(\mu_{n})}.$$

Similarly $S_{\mu}S_{\mu}^* \leq S_{\mu_1}S_{\mu_1}^*$. So paths behave like edges.



Let $\mu = \mu_1 \mu_2 \dots \mu_n$ be a path of length n.

Then

$$S_{\mu}^{*}S_{\mu} = S_{\mu_{n}}^{*} \cdots S_{\mu_{2}}^{*}S_{\mu_{1}}^{*}S_{\mu_{1}} \cdots S_{\mu_{2}}S_{\mu_{n}}$$

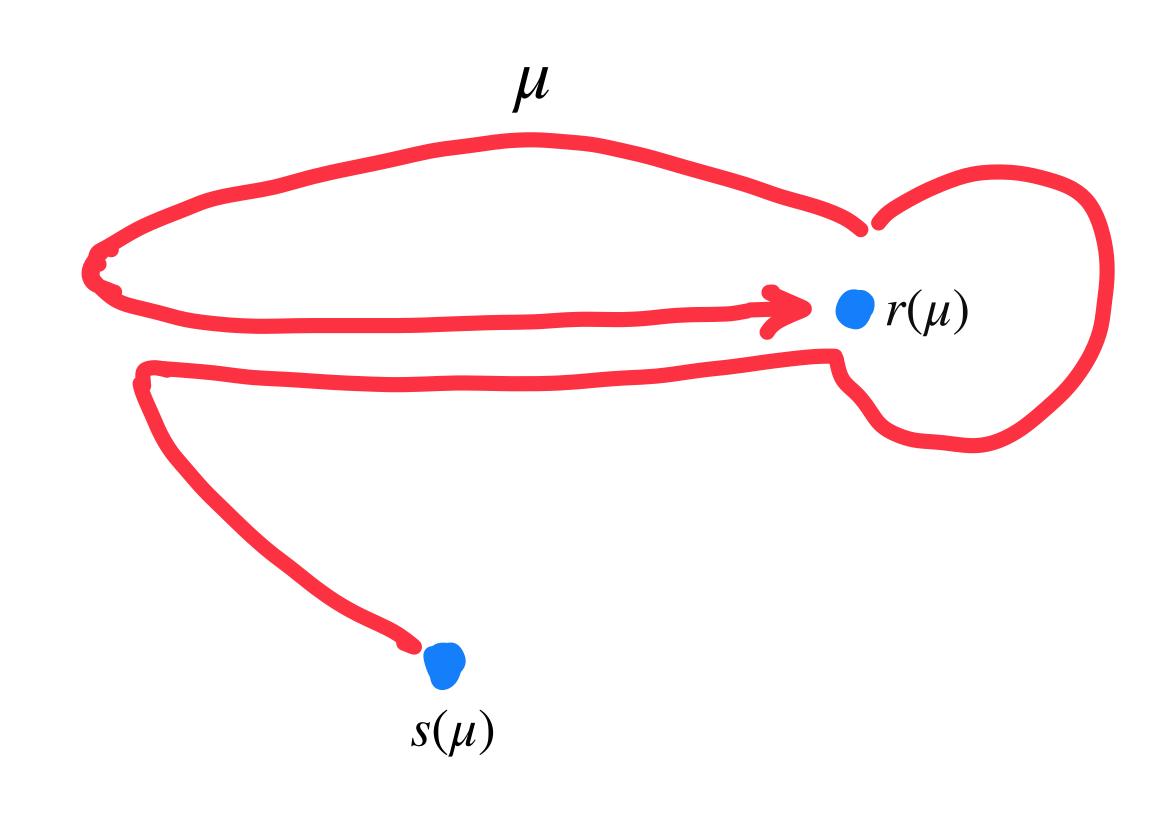
$$= S_{\mu_{n}}^{*} \cdots S_{\mu_{2}}^{*}P_{s(\mu_{1})}S_{\mu_{2}} \cdots S_{\mu_{n}}$$

$$= S_{\mu_{n}}^{*} \cdots S_{\mu_{2}}^{*}P_{r(\mu_{2})}S_{\mu_{2}} \cdots S_{\mu_{n}}$$

$$\vdots$$

$$= S_{\mu_{n}}^{*}S_{\mu_{n}} = P_{s(\mu_{n})}.$$

Similarly $S_{\mu}S_{\mu}^* \leq S_{\mu_1}S_{\mu_1}^*$. So paths behave like edges.

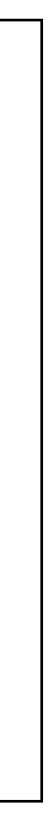


finite paths (we can think of a vertex of a path of length zero)

Proposition. Let *E* be a row-finite graph. Then any Cuntz–Krieger *E*-family $\{S, P\}$ satisfies the following:

- the projections $\{S_{\mu}S_{\mu}^* \mid \mu \in E^n\}$ are mutually orthogonal;
- . if $S^*_{\mu}S_{\nu} \neq 0$ then $\mu = \nu \mu'$ or $\nu = \nu' \mu$ for some $\mu', \nu' \in E^*$,
- if $S_{\mu}S_{\nu} \neq 0$ then $\mu\nu \in E^{*}$,
- if $S_{\mu}S_{\nu}^* \neq 0$ then $s(\mu) = s(\nu)$.

For $n \ge 1$, let E^n denote the paths of length n and let $E^* = \bigsqcup_{n \ge 0} E^n$ denote the set of all



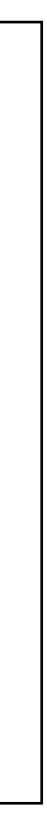
finite paths (we can think of a vertex of a path of length zero)

Proposition. Let E be a row-finite graph. Then any Cuntz-Krieger E-family $\{S, P\}$ satisfies the following:

- the projections $\{S_{\mu}S_{\mu}^* \mid \mu \in E^n\}$ are mutually orthogonal;
- if $S_{\mu}S_{\nu} \neq 0$ then $\mu\nu \in E^*$, and $S_{\mu}S_{\nu} = S_{\mu\nu}$
- if $S_{\mu}S_{\nu}^{*} \neq 0$ then $s(\mu) = s(\nu)$.

For $n \ge 1$, let E^n denote the paths of length n and let $E^* = \bigsqcup_{n \ge 0} E^n$ denote the set of all

. if $S^*_{\mu}S_{\nu} \neq 0$ then $\mu = \nu\mu'$ or $\nu = \nu'\mu$ for some $\mu', \nu' \in E^*$, and $S^*_{\nu\mu'}S_{\nu} = S^*_{\mu'}$ or $S^*_{\mu}S_{\nu'\mu} = S_{\nu'}$



For a Cuntz-Krieger E-family $\{S, P\}$ on H, we define $C^*(\{S, P\})$ to be the C*-algebra generated by $\{P_v \mid v \in E^0\} \cup \{S_e \mid e \in E^1\}$ in $\mathscr{B}(H)$.

paths. Then

 $C^*(\{S,P\}) = \overline{\operatorname{span}}\{S_{\mu}S_{\nu}^* \mid \mu, \nu \in E^*, s(\mu) = s(\nu)\}.$

Let $E^n := \{ \text{paths of length } n \}$ and let $E^* := \bigcup_{n \in \mathbb{Z}_{>0}} E^n$ denote the set of all finite length

The graph C*-algebra $C^*(E)$ Let $E = (E^0, E^1, r, s)$ be a directed graph. Let

Equip V_E with pointwise addition, multiplication given by

 $d_{\mu_1,\nu_2}\mu_1 d_{\mu_2,\nu_2} = \begin{cases} d_{\mu_1\alpha,\nu_2} \text{ if } \exists \alpha \in E^* : \mu_2 = \nu_1 \alpha \\ d_{\mu_1,\nu_2\beta} \text{ if } \exists \beta \in E^* : \nu_1 = \mu_2\beta \end{cases}$

and $*: V_E \to V_E$ by $(d_{\mu,\nu})^* = d_{\nu,\mu}$.

Then V_E is a *-algebra.

- $V_E := \{\lambda_{\mu,\nu} d_{\mu,\nu} \mid \lambda_{\mu,\nu} \in \mathbb{C}, \mu, \nu \in E^*\}.$

The graph C*-algebra $C^*(E)$

Any Cuntz-Krieger E-family $\{S, P\}$ on H gives rise to a *-representation $\pi_{S,P}: V_E \to \mathscr{B}(H)$ by defining

 $\pi_{S,P}(d_{\mu,\nu}) = S_{\mu}S_{\nu}^{*}$ Let v be a partial isometry in a C*-algebra A. Then $||v||^4 = ||v^*v||^2 = ||v^*v|| = ||v||^2$. So $||v|| \in \{0,1\}.$

In particular, for any Cuntz-Krieger E-family $\{S, P\}$, we have $\|\pi_{S, P}(d_{\mu, \nu})\| \leq 1$.

The graph C*-algebra $C^*(E)$

It follows that

such that $\pi_{S,P}(d_{\mu,\nu}) \neq 0$).

with respect to $a \| \cdot \|$.

$||a|| = \sup\{||\pi_{S,P}(a)||_{\{S,P\}} | \{S,P\} \text{ a Cuntz-Krieger } E\text{-family}\}$

is a well-defined C*-norm on V_E . (Note that it is indeed a norm since $\forall \mu, \nu \exists$ CK E-family

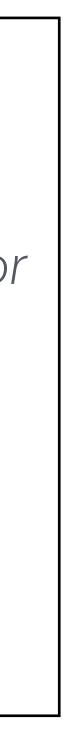
We define the graph C*-algebra of E to be $C^*(E) := \overline{V(E)}^{\|\cdot\|}$, the completion of V(E)

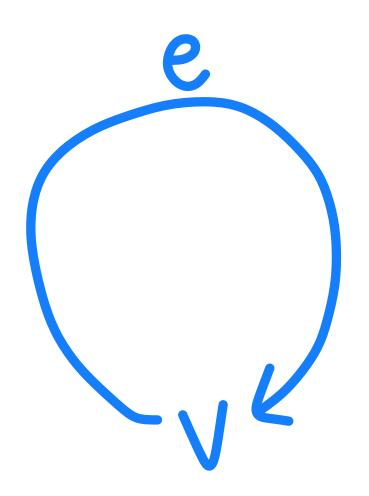
$C^*(E)$ is universal

 $C^*(E)$ is the universal C^{*}-algebra for the Cuntz-Krieger relations in the following sense:

Proposition: Let E be a row-finite directed graph. Suppose A is a C*-algebra generated by a Cuntz-Krieger E-family $\{W, R\}$ with the following property: for every Cuntz-Krieger E-family $\{T,Q\}$ in a C*-algebra B, there is a *-homomorphism $\rho_{T,Q}: A \to B$ such that $\rho_{T,Q}(W_e) = T_e$ for every $e \in E^1$ and $\rho_{T,O}(R_v) = Q_v$ for every $v \in E^0$.

Then there is an isomorphism $\varphi: C^*(E) \to A$ satisfying $\varphi(d_{e,s(e)}) = W_e$ and $\varphi(d_{v,v}) = R_v$ for every $e \in E^1$, $v \in E^0$.





and a partial isometry S_{e} satisfying

$$s_e^*s_e = p_v$$
 and $p_v = s_e s_e^*$

In particular, s_{ρ} commutes with s_{ρ}^{*} and since

The Cuntz-Krieger relations for this graph tell us we have one projection p_{v}

- $s_e p_v = s_e (s_e^* s_e) = (s_e s_e^*) s_e = p_v s_e$ we see that s_e commutes with p_v .
- Moreover, $s_e p_v = s_e s_e^* s_e = s_e$ and $p_v s_e = s_{e'}$, so p_v acts as a unit.
- This implies that S_{ρ} is a unitary. The Gelfand Theorem says
 - $C^*(u,1) \cong C(\operatorname{sp}(u)).$

The spectrum of a unitary is always contained in $\mathbb{T} = \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$.

The function $f \in C(\mathbb{T})$ given by f(z) = z is a unitary with $\operatorname{sp}(f) = \mathbb{T}$.

For any unitary u we can define the inclusion map $sp(u) \to \mathbb{T}$.

Then we have an induced map $C(\mathbb{T}) \to C^*(u,1)$ which sends $f \to u$.

Thus by the universal property we have

 $C(\mathbb{T}) = C^*(f,1) \cong C^*(E)$

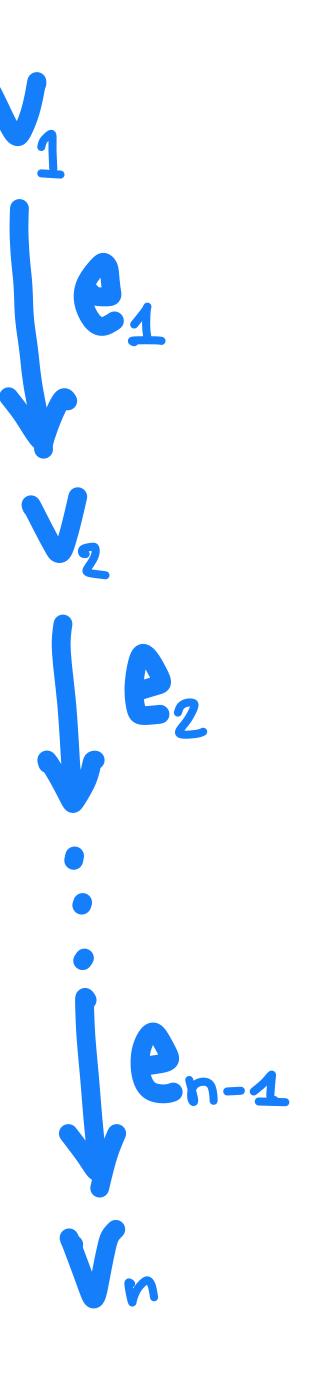
Here we have

 $s_{e_k}^* s_{e_k} = p_{v_k}$ and $s_{e_k} s_{e_k}^* = p_{v_{k+1}}$ for every $1 \le k \le n-1$. Define a map $\varphi: M_n(\mathbb{C}) \to C^*(E)$ by

 $\varphi(e_{k+1,k}) = s_{e_k}$ where $e_{k+1,k}$ has 1 in the (k + 1,k) entry and zeros elsewhere.

The s_{e_k} satisfy the same relations as the matrix units $e_{k+1,k'}$ so the map is a well-defined surjection.

Since $M_n(\mathbb{C})$ is simple, we get $C^*(E) \cong M_n(\mathbb{C})$.



Both the previous examples were unital. In general, we will have a unital C*-algebra whenever there are finitely many vertices. Then

$$1_{C^*(E)} = \sum_{v \in E^0} p_v.$$

Generalising the previous example to infinitely vertices, it is not hard to check that we get a non-unital C*-algebra,

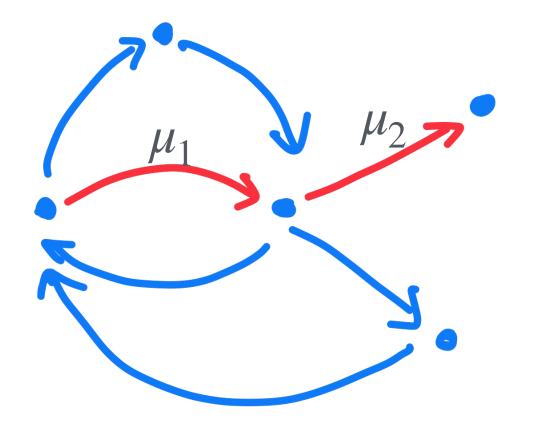
$C^*(E) \cong \mathscr{K}$

the C*-algebra of compact operators on separable Hilbert space.

Simplicity

A C*-algebra is **simple** if it has no non-trivial proper ideals (=closed, two sided ideals). When is a row finite graph C*-algebra simple? Turns out we determine this directly from the graph. First, some terminology.

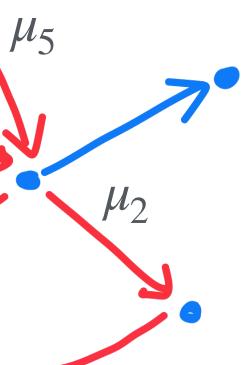
A path $\mu \in E^*$ is a cycle if $r(\mu) = s(\mu)$ and $s(\mu_i) \neq s(\mu_j)$ for any $i \neq j$.

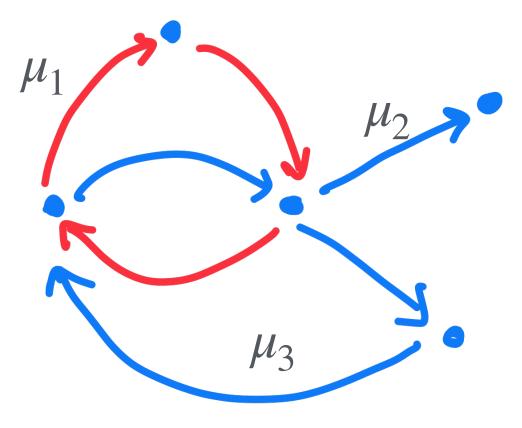


not a cycle: $r(\mu) \neq s(\mu)$

 μ_4 μ_3

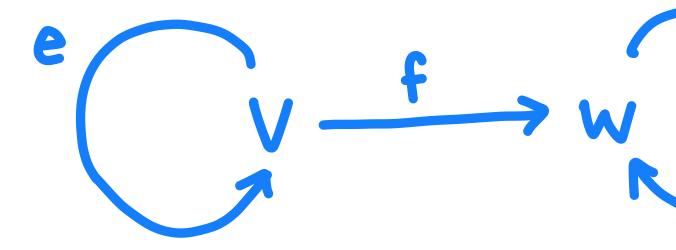
not a cycle: $r(\mu) = s(\mu)$, but eg. $s(\mu_1) = s(\mu_4)$





cycle

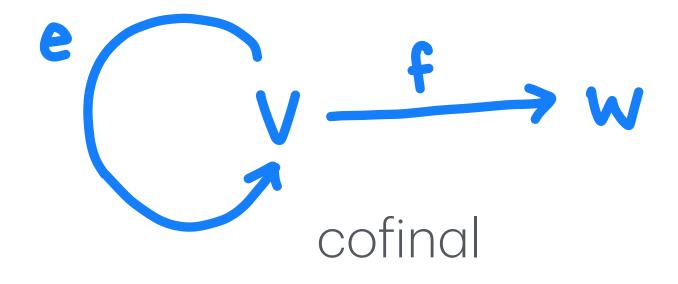
Let μ be a cycle. An entry to μ is an edge $e \in E^1$ such that $r(e) = r(\mu_i)$ for some i, but $e \neq \mu_i$. For example, the cycle e has no entry, but f is an entry to the cycle g.



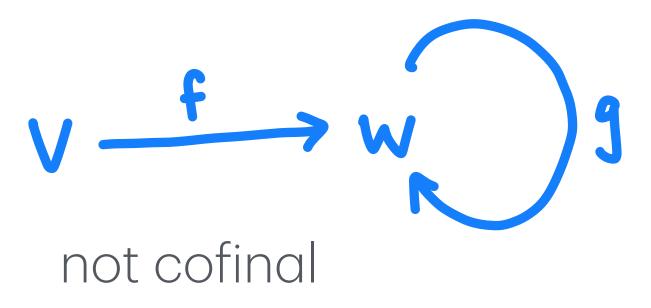
We put a partial order on the vertices as follows: Write $v \le w$ if there exists $\mu \in E^*$ such that $s(\mu) = v, r(\mu) = w$.

Let
$$E^{\infty} = \{\mu = \mu_1 \mu_2 \cdots \mid s(\mu_i) = s(\mu_{i+1})\}$$

A graph is cofinal if for every $\mu \in E^{\leq \infty}$ and $v \in E^0$ there exists $w \in \mu$ such that $v \leq w$.

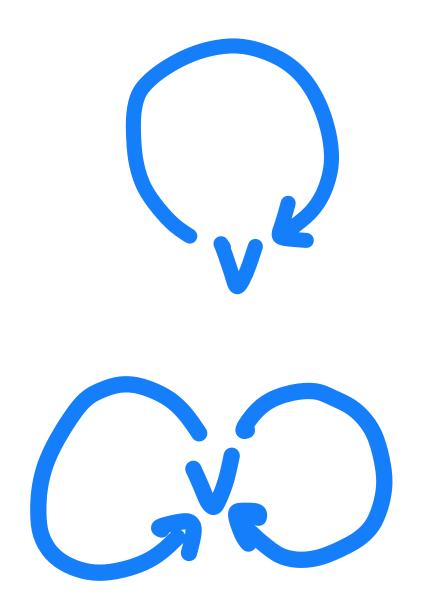


and $E^{\leq \infty} = E^{\infty} \cup \{ \mu \in E^* \mid \mu_1 \text{ is a source} \}.$



Simplicity

Theorem: Let *E* be a row finite graph. Then $C^*(E)$ is simple if and only if every cycle has an entry and E is cofinal.



 $C^*(E) \cong C(\mathbb{T})$ is not simple. Indeed for any closed subset $X \subset \mathbb{T}$,

More generally, we can describe the entire ideal structure of a graph C*-algebra. But I'll return to this later.

- $I_X = \{f \in C(\mathbb{T}) \mid f(x) = 0 \text{ for every } x \in X\}$ is an ideal in $C(\mathbb{T})$

 $C^*(E)$ is isomorphic to the Cuntz algebra \mathcal{O}_2 . Cuntz showed that for any nonzero $x \in \mathcal{O}_2$ there are $a, b \in \mathcal{O}_2$ such that axb = 1.

Short introduction to K-theory

Loosely speaking, the K-theory of a compact Hausdorff space is an invariant built from isomorphism classes of vector bundles over that space (in the case of K^0) or a related space.

By the Serre–Swan theorem, vector bundles over X can be replaced by finitely generated projective C(X)-modules.

In the spirit of noncommutative topology, for a C*-algebra A, we can construct K_0 from finitely generated projective A-modules.

Any finitely-generated A module is of the form $pA^{\oplus n}$ for a projection $p \in M_n(A)$. Thus we can equivalently construct K_0 from projections in $\bigcup_{n \in \mathbb{Z}_{>0}} M_n(A)$.

Let A be a C^{*}-algebra and let $p, q \in A$ be projections. We say that p and q are Murray-von **Neumann equivalent**, $p \sim q$, if there exists a partial isometry $v \in A$ such that $v^*v = p$ and $vv^* = q$.

Let $M_{\infty}(A) = \bigcup M_n(A)$, where we have identified $M_n(A) \subset M_{n+1}(A)$ by mapping $a \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. $n \in \mathbb{N}$

 $\mathscr{P}_{\sim}(A)$. Define addition by

[a] +

 $K_0(A)$ is then defined to be the Grothendieck group of the resulting abelian monoid,

 $K_0(A) = \{ [p] - [q] \mid p, q \in \mathscr{P}_{\infty}(A) \}.$

Denote $\mathscr{P}_{\infty}(A) := \{ p \in M_{\infty}(A) \mid p = p^2 = p^* \}$, and extend Murray-Neumann equivalences to

$$[b] = \left[\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right].$$

K₁-group

 $K_1(A) := K_0(SA)$, where $SA = \{f \in C([0,1],A) \mid f(0) = f(1) = 0\}$.

unitary $u \in M_n(A)$ with $\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \in M_{n+1}(A)$. (Replace A with \tilde{A} if A is nonunital).

Then $\mathcal{U}(M_{\infty}(A))/\sim_{h}$ becomes an abelian monoid with respect to

[a] + [b]

and $K_1(A)$ is the Grothendieck group of this monoid.

- We can also realize K_1 via unitaries: Let $\mathscr{U}(M_{\infty}(A)) = \bigcup_{n \in \mathbb{Z}_{>0}} \mathscr{U}(M_n(A))$ where we identify the

$$= \left[\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right]'$$

- One could then define $K_2(A) = K_1(SA) = K_0(S(SA))$, but it turns out that $K_2(A) \cong K_0(A)$.

K-theory of a graph C*-algebra

The adjacency matrix of a graph E allows us to calculate the K-theory of the corresponding graph C*-algebra $C^*(E)$

Recall that the adjacency matrix $A_E = (a_{v,w})$

$$a_{v,w} = |\{e \in E^1 \mid r(e) = v, s(e) = w\}|.$$

In the following, we consider $1 - A_F^t$ as a ma

Theorem. Let E be a row-finite graph with no sources, and let A_E be its adjacency matrix. Then $K_0(C^*(E)) \cong \operatorname{coker}(1 - A_E^t) \text{ and } K_1(C^*(E)) \cong \ker(1 - A_E^t).$

$$W_{v,w\in E^0}\in M_{E^0 imes E^0}(\mathbb{Z})$$
 of E is defined by

$$\operatorname{ap} \mathbb{Z}^{E^0} \to \mathbb{Z}^{E^0}$$

Theorem. Suppose that $A := C^*(E)$ and $B := C^*(F)$ are simple graph C*-algebras. Then $A \cong B$ if and only if $(K_0(A), K_1(A)) \cong (K_0(B), K_1(B))$.

In fact, this theorem can be greatly generalized. There is an invariant of arbitrary graph C*algebras which consists of the K-theory of the graph, its ideals, and various compatibility maps. Any two unital graph C*-algebra are isomorphic if and only if their invariants are isomorphic! (Eilers, Restorff, Ruiz, Sørensen)

Note that both these theorems require one to know in advance that a given C*-algebra is a graph C^{*}-algebra. We'll see that sometimes it is possible to deduce exactly when a given C^* algebra is isomorphic to a graph C*-algebra, and apply this to the C*-algebras of quantum flag manifolds.

