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Recall from last time: 

A directed graph  consists of a countable set  of vertices, a countable set 
 of edges, and the range and source maps .

E = (E0, E1, r, s) E0

E1 r, s : E1 → E0

Directed graphs



 A graph  is row finite if every vertex receives at most finitely many edges.  

This can also be described via the adjacency matrix of  

The adjacency matrix  of  is defined by 

. 

A graph is row finite if and only if the sum of each row of  is finite.

E = (E0, E1, r, s)

E .

AE = (av,w)v,w∈E0 ∈ ME0×E0(ℤ) E

av,w = |{e ∈ E1 ∣ r(e) = v, s(e) = w} |

AE

Row finiteness and adjacency matrix



Cuntz–Krieger relations
Let  be a row-finite graph. 

A Cuntz–Krieger -family  on a Hilbert space  consists of pairwise orthogonal 
projections  and partial isometries  satisfying 
the Cuntz–Krieger relations: 

(CK1)  for every , and 

(CK2)  for every  that is not a source. 

Cuntz–Krieger -families for which all operators are non-zero always exist.

E

E {S, P} H
{Pv ∈ ℬ(H) ∣ v ∈ E0} {Se ∈ ℬ(H) ∣ e ∈ E1}

S*e Se = Ps(e) e ∈ E1

Pv = ∑
e∈r−1(v)

SeS*e v ∈ E1

E



Let , and consider . 

Two applications of the C*-equality tells us that  

. 

Note that  and . It follows that  if . 

Thus   if , and so  whenever . 

On the other hand, if , we have  so  

   

whenever .

e, f ∈ E1 SeSf ∈ ℬ(H)

∥SeSf∥4 = ∥(S*f S*e )(SeSf)∥2 = ∥(S*f S*e SeSf)(S*f S*e SeSf)∥

S*e Se = Ps(e) Sf S*f ≤ Pr( f ) S*e SeSf S*f = 0 s(e) ≠ r( f )

∥SeSf∥4 = ∥S*f S*e SeSf S*f S*e SeSf∥ = 0 s(e) ≠ r( f ) SeSf = 0 s(e) ≠ r( f )

s(e) = r( f ) S*e SeSf S*f = Sf S*f ,

∥SeSf∥4 = ∥S*f S*e SeSf S*f S*e SeSf∥ = 1

Sf ≠ 0

An implication of the CK relations



Similar calculations give us the following: 

Proposition. Let  be a row-finite graph. Then any Cuntz–Krieger -family  satisfies 
the following: 

• the projections  are mutually orthogonal; 

• if  then ,  

•  if  then , 

• if  then .

E E {S, P}

{SeS*e ∣ e ∈ E1}

S*e Sf ≠ 0 e = f

SeSf ≠ 0 s(e) = r( f )

SeS*f ≠ 0 s(e) = s( f )

A path in  of length  is a sequence  of edges  such that 

 for . The above allows us to define the operator 

.

E n ∈ ℤ>0 μ = μ1μ2…μn μi ∈ E1

s(μi) = r(μi+1) 1 ≤ i ≤ n − 1

Sμ := Sμ1
Sμ2

⋯Sμn



Let  be a path of length . 

Then 

μ = μ1μ2…μn n

= S*μn
⋯S*μ2

Ps(μ1)Sμ2
⋯Sμn

= S*μn
⋯S*μ2

Pr(μ2)Sμ2
⋯Sμn

= S*μn
⋯S*μ2

Sμ2
⋯Sμn

⋮
.= S*μn

Sμn
= Ps(μn)

Similarly . So paths behave like edges.SμS*μ ≤ Sμ1
S*μ1

S*μ Sμ = S*μn
⋯S*μ2

S*μ1
Sμ1

⋯Sμ2
Sμn

μ1

μ2

μ3

μ4
μ5

r(μ1)

s(μ5)



Let  be a path of length . 

Then 

μ = μ1μ2…μn n

= S*μn
⋯S*μ2

Ps(μ1)Sμ2
⋯Sμn

= S*μn
⋯S*μ2

Pr(μ2)Sμ2
⋯Sμn

= S*μn
⋯S*μ2

Sμ2
⋯Sμn

⋮
.= S*μn

Sμn
= Ps(μn)

Similarly . So paths behave like edges.SμS*μ ≤ Sμ1
S*μ1

S*μ Sμ = S*μn
⋯S*μ2

S*μ1
Sμ1

⋯Sμ2
Sμn

μ

r(μ)

s(μ)



Proposition. Let  be a row-finite graph. Then any Cuntz–Krieger -family  satisfies the 
following: 

• the projections  are mutually orthogonal; 

• if  then  or  for some , and  or   

•  if  then , and  

• if  then .

E E {S, P}

{SμS*μ ∣ μ ∈ En}

S*μ Sν ≠ 0 μ = νμ′￼ ν = ν′￼μ μ′￼, ν′￼ ∈ E* S*νμ′￼
Sν = S*μ′￼

S*μ Sν′￼μ = Sν′￼

SμSν ≠ 0 μν ∈ E* SμSν = Sμν

SμS*ν ≠ 0 s(μ) = s(ν)

For , let  denote the paths of length  and let  denote the set of all 
finite paths (we can think of a vertex of a path of length zero)

n ≥ 1 En n E* = ⊔n≥0 En



Proposition. Let  be a row-finite graph. Then any Cuntz–Krieger -family  satisfies the 
following: 

• the projections  are mutually orthogonal; 

• if  then  or  for some , and  or   
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• if  then .
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Sν = S*μ′￼

S*μ Sν′￼μ = Sν′￼

SμSν ≠ 0 μν ∈ E* SμSν = Sμν

SμS*ν ≠ 0 s(μ) = s(ν)

For , let  denote the paths of length  and let  denote the set of all 
finite paths (we can think of a vertex of a path of length zero)

n ≥ 1 En n E* = ⊔n≥0 En



For a Cuntz–Krieger -family  on , we define  to be the C*-algebra 
generated by  in . 

Let paths of length  and let  denote the set of all finite length 

paths. Then  

E {S, P} H C*({S, P})
{Pv ∣ v ∈ E0} ∪ {Se ∣ e ∈ E1} ℬ(H)

En := { n} E* := ∪n∈ℤ≥0
En

C*({S, P}) = span{SμS*ν ∣ μ, ν ∈ E*, s(μ) = s(ν)} .



Let  be a directed graph. 

Let  
. 

Equip  with pointwise addition, multiplication given by

E = (E0, E1, r, s)

VE := {λμ,νdμ,ν ∣ λμ,ν ∈ ℂ, μ, ν ∈ E*}

VE

The graph C*-algebra C*(E)

dμ1,ν1
dμ2,ν2

={  if dμ1α, ν2
∃α ∈ E* : μ2 = ν1α

 if dμ1, ν2β ∃β ∈ E* : ν1 = μ2β

 otherwise,0

and  by . 

Then  is a *-algebra.

* : VE → VE (dμ,ν)* = dν,μ

VE



Any Cuntz–Krieger -family  on  gives rise to a *-representation   by 
defining 

. 

Let  be a partial isometry in a C*-algebra . Then  . So 
. 

In particular, for any Cuntz–Krieger -family , we have .

E {S, P} H πS,P : VE → ℬ(H)

πS,P(dμ,ν) = SμS*ν
v A ∥v∥4 = ∥v*v∥2 = ∥v*v∥ = ∥v∥2

∥v∥ ∈ {0,1}

E {S, P} ∥πS,P(dμ,ν)∥ ≤ 1

The graph C*-algebra C*(E)



It follows that 

 a Cuntz–Krieger -family  

is a well-defined C*-norm on  . (Note that it is indeed a norm since    CK -family 
such that ).

∥a∥ = sup{∥πS,P(a)∥{S,P} ∣ {S, P} E }

VE ∀μ, ν ∃ E
πS,P(dμ,ν) ≠ 0

We define the graph C*-algebra of  to be , the completion of  
with respect to a .

E C*(E) := V(E)∥⋅∥ V(E)
∥ ⋅ ∥

The graph C*-algebra C*(E)



 is the universal C*-algebra for the Cuntz–Krieger relations in the following sense: 

Proposition:  Let  be a row-finite directed graph. Suppose  is a C*-algebra generated by a 
Cuntz-Krieger -family  with the following property: for every Cuntz–Krieger -family 

 in a C*-algebra , there is a *-homomorphism  such that  for 

every  and  for every .   

Then there is an isomorphism  satisfying  and , for 

every .

C*(E)

E A
E {W, R} E

{T, Q} B ρT,Q : A → B ρT,Q(We) = Te

e ∈ E1 ρT,Q(Rv) = Qv v ∈ E0

φ : C*(E) → A φ(de,s(e)) = We φ(dv,v) = Rv

e ∈ E1, v ∈ E0

 is universalC*(E)



Examples
The Cuntz–Krieger relations for this graph tell us we have one projection  

and a partial isometry  satisfying 

 and . 

In particular,  commutes with  and since 

 we see that  commutes with . 

Moreover,  and , so  acts as a unit.  

This implies that  is a unitary. The Gelfand Theorem says 

.

pv
se

s*e se = pv pv = ses*e

se s*e
sepv = se(s*e se) = (ses*e )se = pvse se pv

sepv = ses*e se = se pvse = se pv

se

C*(u,1) ≅ C(sp(u))



The spectrum of a unitary is always contained in . 

The function  given by  is a unitary with . 

For any unitary  we can define the inclusion map .  

Then we have an induced map  which sends .  

Thus by the universal property we have  

𝕋 = {λ ∈ ℂ ∣ |λ | = 1}

f ∈ C(𝕋) f(z) = z sp( f ) = 𝕋

u sp(u) → 𝕋

C(𝕋) → C*(u,1) f → u

C(𝕋) = C*( f,1) ≅ C*(E)

Examples



Examples
Here we have 

 and  for every . 

Define a map  by 

 where  has  in the  entry and zeros 
elsewhere. 

The  satisfy the same relations as the matrix units , so the map 
is a well-defined surjection. 

Since  is simple, we get .

s*ek
sek

= pvk
sek

s*ek
= pvk+1

1 ≤ k ≤ n − 1

φ : Mn(ℂ) → C*(E)

φ(ek+1,k) = sek
ek+1,k 1 (k + 1,k)

sek
ek+1,k

Mn(ℂ) C*(E) ≅ Mn(ℂ)



Examples
Both the previous examples were unital. In general, we will have a 
unital C*-algebra whenever there are finitely many vertices. Then  

. 

Generalising the previous example to infinitely vertices, it is not hard to 
check that we get a non-unital C*-algebra, 

, 

the C*-algebra of compact operators on separable Hilbert space.

1C*(E) = ∑
v∈E0

pv

C*(E) ≅ 𝒦



Simplicity
A C*-algebra is simple if it has no non-trivial proper ideals (=closed, two sided ideals). 

When is a row finite graph C*-algebra simple? 

Turns out we determine this directly from the graph. 

First, some terminology. 

A path  is a cycle if  and  for any .  μ ∈ E* r(μ) = s(μ) s(μi) ≠ s(μj) i ≠ j

μ1
μ2

μ1 μ2

μ3

μ2

μ3

μ4
μ5

μ6

μ1

not a cycle:  r(μ) ≠ s(μ) not a cycle: ,  
but eg.  

r(μ) = s(μ)
s(μ1) = s(μ4)

cycle



Let  be a cycle. An entry to  is an edge  such that  for some , but 

. For example, the cycle  has no entry, but  is an entry to the cycle .

μ μ e ∈ E1 r(e) = r(μi) i
e ≠ μi e f g

We put a partial order on the vertices as follows: Write  if there exists  such 
that . 

Let  and  is a source . 

A graph is cofinal if for every  and  there exists  such that .

v ≤ w μ ∈ E*
s(μ) = v, r(μ) = w

E∞ = {μ = μ1μ2⋯ ∣ s(μi) = s(μi+1)} E≤∞ = E∞ ∪ {μ ∈ E* ∣ μ1 }

μ ∈ E≤∞ v ∈ E0 w ∈ μ v ≤ w

cofinal not cofinal



Simplicity
Theorem: Let  be a row finite graph. Then  is simple if and only if every cycle has an 
entry and  is cofinal.

E C*(E)
E

 is not simple. 

Indeed for any closed subset , 
 for every  is an ideal in 

C*(E) ≅ C(𝕋)
X ⊂ 𝕋

IX = {f ∈ C(𝕋) ∣ f(x) = 0 x ∈ X} C(𝕋)

 is isomorphic to the Cuntz algebra . Cuntz showed that for any 

nonzero  there are  such that .

C*(E) 𝒪2
x ∈ 𝒪2 a, b ∈ 𝒪2 axb = 1

More generally, we can describe the entire ideal structure of a graph C*-algebra. But I’ll return 
to this later.



Short introduction to K-theory
Loosely speaking, the K-theory of a compact Hausdorff space is an invariant built from 
isomorphism classes of vector bundles over that space ( in the case of ) or a related space. 

By the Serre–Swan theorem, vector bundles over  can be replaced by finitely generated 
projective -modules. 

In the spirit of noncommutative topology, for a C*-algebra , we can construct  from finitely 

generated projective -modules. 

Any finitely-generated  module is of the form  for a projection . Thus we can 

equivalently construct  from projections in .

K0

X
C(X)

A K0
A

A pA⊕n p ∈ Mn(A)
K0 ∪n∈ℤ>0

Mn(A)



Let  be a C*-algebra and let  be projections. We say that  and  are Murray–von 
Neumann equivalent, , if there exists a partial isometry  such that  and 

.

A p, q ∈ A p q
p ∼ q v ∈ A v*v = p

vv* = q

Let , where we have identified  by mapping  

Denote  , and extend Murray–Neumann equivalences to 

. Define addition by 

. 

 is then defined to be the Grothendieck group of the resulting abelian monoid, 

.

M∞(A) = ⋃
n∈ℕ

Mn(A) Mn(A) ⊂ Mn+1(A) a ↦ (a 0
0 0) .

𝒫∞(A) := {p ∈ M∞(A) ∣ p = p2 = p*}
𝒫∞(A)

[a] + [b] = [(a 0
0 b)]

K0(A)

K0(A) = {[p] − [q] ∣ p, q ∈ 𝒫∞(A)}

-groupK0



, where . 

We can also realize  via unitaries: Let  where we identify the 

unitary  with (Replace  with  if  is nonunital). 

Then  becomes an abelian monoid with respect to 

, 

and  is the Grothendieck group of this monoid.  

One could then define , but it turns out that 

K1(A) := K0(SA) SA = {f ∈ C([0,1], A) ∣ f(0) = f(1) = 0}

K1 𝒰(M∞(A)) = ∪n∈ℤ>0
𝒰(Mn(A))

u ∈ Mn(A) (u 0
0 1) ∈ Mn+1(A) . A Ã A

𝒰(M∞(A))/ ∼h

[a] + [b] = [(a 0
0 b)]

K1(A)

K2(A) = K1(SA) = K0(S(SA)) K2(A) ≅ K0(A) .

-groupK1



The adjacency matrix of a graph  allows us to calculate the -theory of the corresponding 
graph C*-algebra  

Recall that the adjacency matrix  of  is defined by  

. 

In the following, we consider  as a map : 

Theorem. Let  be a row-finite graph with no sources, and let  be its adjacency matrix. Then 

 and .

E K
C*(E)

AE = (av,w)v,w∈E0 ∈ ME0×E0(ℤ) E

av,w = |{e ∈ E1 ∣ r(e) = v, s(e) = w} |

1 − At
E ℤE0 → ℤE0

E AE

K0(C*(E)) ≅ coker(1 − At
E) K1(C*(E)) ≅ ker(1 − At

E)

K-theory of a graph C*-algebra



Theorem. Suppose that  and  are simple graph C*-algebras. Then 

 if and only if .

A := C*(E) B := C*(F)

A ≅ B (K0(A), K1(A)) ≅ (K0(B), K1(B))

In fact, this theorem can be greatly generalized. There is an invariant of arbitrary graph C*-
algebras which consists of the K-theory of the graph, its ideals, and various compatibility maps. 
Any two unital graph C*-algebra are isomorphic if and only if their invariants are isomorphic! 
(Eilers, Restorff, Ruiz, Sørensen) 

Note that both these theorems require one to know in advance that a given C*-algebra is a 
graph C*-algebra. We’ll see that sometimes it is possible to deduce exactly when a given C*-
algebra is isomorphic to a graph C*-algebra, and apply this to the C*-algebras of quantum flag 
manifolds.


