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Directed grapns

Recall from last time:

A directed graph £ = (EO, El, r, ) consists of a countable set EV of vertices, a countable set
E! of edges, and the range and source maps r, s E! - E°

r(e) ————sle)



Row finiteness and adjacency matrix

A graph E = (EO, E'.r s) is row finite if every vertex receives at most finitely many edges.
This can also be described via the adjacency matrix of E.
The adjacency matrix Ap = (4, ), wepo € Mpoypo(Z) of E'is defined by

a,,=|le€& E'| rie) =v,s(e) =w)}]|.

A graph is row finite if and only if the sum of each row of A is finite.



Cuntz-Krieger relations

Let £ be a row-finite graph.

A Cuntz-Krieger E-family {S, P} on a Hilbert space H consists of pairwise orthogonal

projections {P, € B(H) | v € E®} and partial isometries S, € BH) | ee E'} satisfying
the Cuntz-Krieger relations:

(CK1) S%S, = P

\)

() forevery e € E! anc

(CK2) P Z 5,87 forevery v € E! that is not a source.

eer~(v)

Cuntz-Krieger E-families for which all operators are non-zero always exist.



An implication of the CK relations

Lete, f € E', and consider AALS B(H).
Two applications of the C*-equality tells us that
15,501 = ISESEISSI = (SES#S,SHSESES S
Note that 7S, = Py, and Sfo* < P,5) It follows that SjSeSfo>X< = 0ifs(e) # r(f).
Thus HSeSfH4 = HSf*SjSeSfo*SjSeSfH = 0if s(e) # r(f) and so S5y = 0 whenever s(e) # r(f).
On the other hand, if s(e) = r(f), we have S;"‘S’eSfo>I< = Sfo*, SO

HSeSf”4 — HSf*SfSeSfo*SfSeSfH =1

whenever Sf + (.



Similar calculations give us the following:

Proposition. Let E be a row-finite graph. Then any Cuntz-Krieger E-family {S, P} satisfies
the following:

. the projections {S,S* | e € E'} are mutually orthogonal:
. iF 8555, # Othene =§,
. 1F5,5¢ # O then s(e) = r(f),

: /'fLS’eSf>I< * 0then s(e) = s(f).

A pathin Eof lengthn € Z_yis a sequence g = pil,... |1, of edges u; € E' such that

s(u;) = r(u; ) for1 <i <n—1.The above allows us to define the operator

S,:=3,S5, S

u P Py,




Let u = u ... 1, e a path of length n.

Then
SjSﬂ = S*...5%§*F*§ ...§5 S

Hy Hy K1~ MU My~ Hy

Q... Qs
o Sﬂn Sﬂzp s(u1) Ho Sﬂn
N I
_ Sﬂn Sﬂzp r(pn)= 1y Sﬂn
H3
— Q*k,..QCkQ ...
o Sﬂn Sﬂzsﬂz Sﬂn
- ok -
_ SﬂnSﬂn — 7 os(uy)

Similarly SMSﬂ < SmSM So paths behave like edges.



Let u = u ... 1, e a path of length n.

Then
SjSﬂ = S*...5%§*F*§ ...§5 S

Hy Hy K1~ MU My~ Hy

_ H
o S/;kn."szpS(l/il) /42“.S/“tn
— S/j;“.S/ZkzPl’(ﬂz) /’12“.S/’tn < ; 0 (1)
— S/;knsjzsﬂzsﬂn
= 35, = Py
s(u)

Similarly SMSﬂ < SmSM So paths behave like edges.



orn > 1, let E” denote the paths of length n and let £* = LI, . E" denote the set of all
finite paths (we can think of a vertex of a path of length zero)

Proposition. Let E be a row-finite graph. Then any Cuntz-Krieger E-family {5, P} satisfies the
following:

. the projections {5,57 | u € E"} are mutually orthogonal;
. IFSES, # Othenp = vp'orv = v'u for some p', v’ € E7,
. 1f5,5, # Othenyv € E7,

. ifS,87 # Othen s(u) = sv).




orn > 1, let E” denote the paths of length n and let £* = LI, . E" denote the set of all
finite paths (we can think of a vertex of a path of length zero)

Proposition. Let E be a row-finite graph. Then any Cuntz-Krieger E-family {5, P} satisfies the
following:

. the projections {5,57 | u € E"} are mutually orthogonal;
. IFSFS, # Othenu = vu'orv =v'y forsome p', v’ € E* and S;’;,Sy = S;, or 8,5, =S5,
. if5,5,# Othenpv € E¥, and 5,5, =5,

. ifS,87 # Othen s(u) = sv).




For a Cuntz-Krieger E-family {§, P} on H, we define C*({S, P}) to be the C*-algebra
generated by {P, | v € E’} U S, lee E'Y in B(H).

Let E" := {paths of lengthn} and let E* := Unez.., E" denote the set of all finite length
oaths. Then

C*({S, P}) = span{$,S; | u,v € E*, s(u) =s(v)}.



The graph C*-algebra C*(E)

et E = (EY, E', r, 5) be a directed graph.

Let
Vi = {/lﬂ,ydw | /IW e C,u,veE*}

Fquip Vi with pointwise addition, multiplication given by

d fdae E* : u, = v,

H1&,5 Uy
dﬂlal/zﬁ it Hﬁ - E* : UVl = //lzﬁ

O otherwise,

d d =

M1,V Hosln

and *: Vg — Vgby(d, )* =4d,,

Then Vi is a *-algebra.



The graph C*-algebra C*(E)

Any Cuntz-Krieger E-family {S, P} on H gives rise to a *-representation g p : Vi — SB(H) by
defining

ﬂS,P(d//t,I/) — SIMS;k

Let v be a partial isometry in a C*-algebra A. Then ||[v||* = [[v¥v||? = |[v¥v|| = ||v]|%. So
[v]l € {0,1}.

In particular, for any Cuntz-Krieger E-family {S, P}, we have ||zg p(d, )I| < 1.



The graph C*-algebra C*(E)

't Tollows that
|al| = sup{|lzg p(@)l(spy | {S, P} a Cuntz-Krieger E-family }

is a well-defined C*-norm on V. (Note that it is indeed a norm since Vu,v 3 CK E-family
such that zzg p(d,, ) # 0).

We define the graph C*-algebra of £ to be C*(E) := V(E)M, the completion of V(E)

with respect to al| - ||.



C*(E) is universal

C*(£E) is the universal C*-algebra for the Cuntz-Krieger relations in the following sense:

Proposition: Let E be a row-finite directed graph. Suppose A is a C*-algebra generated by a
Cuntz-Krieger E-family { W, R} with the following property: for every Cuntz-Krieger E-family
{1, Q} ina C*algebra B, there is a *-homomorphism pr 5 : A — B such that pr. o(W,) =T, for

every e € E' and pT,Q(RV) = (), forevery v € E°

Then there is an isomorphism ¢ : C*(E) — A satisfying ¢(d, y,)) = W,and ¢(d,,) = R,, for
everye € El,v € EV




Examples

e The Cuntz-Krieger relations for this graph tell us we have one projection p,

and a partial isometry s, satisfying
s¥s, = p,and p, = §,8*.

\ In particular, s, commutes with s and since

s,p, = S, (s¥s,) = (s,8F)s, = p,s, we see that s, commutes with p,..

— ¢ ¢k
Moreover, s,p, = S,S,°S

S58, =s,and p,s, = s, SO p, acts as a unit.

This implies that s, is a unitary. The Geltand Theorem says

C#(u,1) = C(sp(u))



Examples

The spectrum of a unitary is always containedin T={A € C | [A| =1}.

The function f € C(T) given by f(z) = zis a unitary with sp(f) = T.
For any unitary u we can define the inclusion map sp(u#) — 1.

Then we have an induced map C(T) — C*(u,1) which sends f — u.

Thus by the universal property we have

C(D) = C*(f,1) = CH(E)



Examples Vi

Here we have

Se:Se, = Py ands, s; =p, foreveryl <k<n-—1

Defineamap @ : M (C) — C*(E) by l e
2

@(€xy14) = S, Where ;g has 1inthe (k + 1,k) entry and zeros

elsewhere. 0

o

@

The s, satisty the same relations as the matrix units ;. x, SO the map e

s a well-defined surjection. n-4
V.

Since M (C) is simple, we get C*(E) = M, (C).
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the C*-algebra of compact operators on separable Hilbert space. 'L



Simplicity

A C*-algebra is simple if it has no non-trivial proper ideals (=closed, two sided ideals).

When is a row finite graph C*-algelbra simple?
Turns out we determine this directly from the graph.

First, some terminology.

Apath u € E*is acycleif r(u) = s(u) and s(u;) # s(u;) forany i # j.

//J\)\/ / \/ / /’

® e
~——
O ’ \/ ° \>
H3
not a cycle: r(u) # s(u) not a cycle: r(u) = s(u), cycle

but eg. s(uy) = s(py)



Let 4 be a cycle. An entry to u is an edge e € E' such that r(e) = r(u.) for some i, but
M M Hi

e # p.. For example, the cycle e has no entry, but fis an entry to the cycle g.

€ ¢
V—w ]

We put a partial order on the vertices as follows: Write v < w if there exists 4 € E* such
that s(u) = v, r(u) = w.

Let E® = {p = uypr | s(u) = s(u;, 1)} and E=*° = E® U {u € E* | u, is a source}.
A graph is cofinal if for every u € E=® and v € E there exists w € u suchthatv < w.

€ £ £

cofinal not cofingl



Simplicity

Theorem: Let E be a row finite graph. Then C*(E) is simple if and only if every cycle has an

entry and E is cofinal

C*(E) = C(T) is not simple.
Indeed for any closed subset X C T,
Vv I,y ={fe C() | f(x) =0foreveryx € X} isanidealin C(T)

&

More generally, we can describe the entire ideal structure of a graph C*-algebra. But I'll return
to this later.

C*(E) is isomorphic to the Cuntz algebra ©,. Cuntz showed that for any
nonzero x € O, therearea, b € O, such thataxb = 1.




Short introduction to K-theory

Loosely speaking, the K-theory of a compact Hausdorff space is an invariant built fromr

iIsomorphism classes of vector bundles over that space (in the case of KO) or a related space.

By the Serre-Swan theorem, vector bundles over X can be replaced by finitely generated

projective C(X)-modules.

In the spirit of noncommutative topology, for a C*-algebra A, we can construct K, from finitely

generated projective A-modules.

Any finitely-generated A module is of the form pA@” for a projection p € M,(A). Thus we can

equivalently construct K, from projections in Unez., M, (A).



Ky-group

Let A be a C*-algebra and let p, g € A be projections. We say that p and g are Murray-von
Neumann equivalent, p ~ g, if there exists a partial isometry v € A such that v*y = p and

VW =gq.

letM_(A) = M (A), where we have identified M,(A) C M . (A) by mapping a — a 0 .
o0 n n n+1 O O

neN

Denote P_(A) :={p € M_(A) | p = p* = p*}, and extend Murray-Neumnann equivalences to

P (A). Define addition by
~|f{a O

Ky(A) is then defined to be the Grothendieck group of the resulting abelian monoid,

KyA) ={[pl—-1Iql | p.qg € P (A}



K{-group

K,(A) := K,(SA), where SA = {f € C([0,1],A) | f(0) = f(1) = 0}

We can also realize K via unitaries: Let 4 (M_,(A)) = Unez., U (M (A)) where we identify the

unitary u € M, (A) with (u 0

0 1) e M, . (A).(Replace A with A if A is nonunital).

Then 4(M_(A))/ ~, becomes an abelian monoid with respect to

~|fa O
owr-[(5 )

and K;(A) is the Grothendieck group of this monoid.

One could then define K5(A) = K{(SA) = Ky(5(SA)), but it turns out that K5(A) = Ky(A).



K-theory of a graph C*-algepra

The adjacency matrix of a graph E allows us to calculate the K-theory of the corresponding
graph C*-algebra C*(E)

Recall that the adjacency matrix Ag = (a,, ,,), ,wepo € Mpoggo(£) of E is defined by
a,,=|le€& E'| rie) =v,s(e) =w)}]|.

0 0
In the following, we consider 1 — Aé asamap ZF — 7%

Theorem. Let E be a row-finite graph with no sources, and let A be its adjacency matrix. Then

Ky(C*(E)) = coker(1 — AL) and K,(C*(E)) = ker(1 — A%).



Theorem. Suppose that A := C*(E) and B := C*(F) are simple graph C*-algebras. Then

A = Bifandonly if (Ky(A), K{(A)) = (Ky(B), K,(B)).

IN fact, this theorem can be greatly generalized. There is an invariant of arbitrary graph C*-
gebras which consists of the K-theory of the graph, its ideals, and various compatibility maps.

Ny two unital graph C*-algebra are isomorphic it and only if their invariants are isomorphic!
Filers, Restorff, Ruiz, Sgrensen)

> O

N\

Note that both these theorems require one to know in advance that a given C*-algebra is o
graph C*-algebra. We'll see that sometimes it is possible to deduce exactly when a given C*-

algebra is isomorphic to a graph C*-algebra, and apply this to the C*-algebras of guantum flag
manifolds.




