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Graph C*-algebras with 
applications to quantum spaces



Why C*-algebras?
C*-algebras are a subclass of operator algebras.  

The field of arose from quantum mechanics as a way to take into account the “noncommutative” 
behaviour seen at the quantum level. 

Operator algebras were introduced by Murray and von Neumann in a series of papers by Murray 
and von Neumann titled Rings of Operators.  

There they studied what we now call von Neumann algebras: self-adjoint subalgebras of 
bounded operators on Hilbert space, which are closed in the strong operator topology.  

Later, Gelfand and Naimark studied such algebras that are instead closed in the operator norm 
topology: what we now call C*-algebras.



Why C*-algebras?
C*-algebras have since proven useful for giving models for many physical and mathematical 
structures. 

C*-algebras allow one to study such structures using both algebraic and analytic tools. 

Examples include:

• topological spaces 

• topological groups 

• dynamical systems 

• directed graphs 

• groupoids

• tilings 

• foliations 

• quantum groups 

• quantum spaces 

• …and much more!



C*-algebras
A *-algebra is a -algebra  equipped with a map  satisfying 

• , for every , , 

• ,  for every , and 

• , for every . 

A C*-norm on a *-algebra  is a norm  satisfying 

• , for every  

• , for every , and  

• (C*-equality) , for every .

ℂ A * : A → A

(a + λb)* = a* + λb* a, b ∈ A λ ∈ ℂ

(ab)* = b*a* a, b ∈ A

(a*)* = a a ∈ A

A ∥ ⋅ ∥ : A → ℝ≥0

∥ab∥ ≤ ∥a∥∥b∥ a, b ∈ A,

∥a*∥ = ∥a∥ a ∈ A

∥a*a∥ = ∥a∥2 a ∈ A



C*-algebras
Definition: A C*-algebra is a *-algebra  which is complete with respect  a C*-norm 

. 

First examples: 

• The complex numbers  with  and . 

•  with  and the operator norm 

. 

•  for a Hilbert space , with  given by the adjoint and the operator norm 

.

A
∥ ⋅ ∥ : A → ℝ≥0

ℂ a* = a ∥a∥ = |aa |1/2

Mn(ℂ) (ai,j)*i,j=1,…,n = (aj,i)i,j=1,…,n)

∥a∥ = sup{∥ax∥ℂn ∣ x ∈ ℂn,∥x∥ ≤ 1}

ℬ(H) H *

∥a∥ = sup{∥ax∥H ∣ x ∈ H,∥x∥ ≤ 1}



C*-algebras: Examples
The previous examples are all unital C*-algebras. But C*-algebras need not be unital. 

•  Let  be a Hilbert space. Recall that a bounded operator  is compact if, for every 
bounded subset , the subset  is compact. 

Equivalently, there are finite rank operators  such that  

Let  is compact , equipped with the adjoint and operator norm.  

Then  is a C*-algebra which is unital if and only if , in which case . 

• More generally, any norm-closed subalgebra of  satisfying  is a C*-algebra, which 
may or may not be unital.

H T : H → H
K ⊂ H T(K)

Tn ∈ ℬ(H) lim
n→∞

∥T − Tn∥ = 0.

𝒦(H) = {T ∈ ℬ(H) ∣ T }

𝒦(H) dim H < ∞ 𝒦(H) = ℬ(H)

A ⊂ ℬ(H) A* = A



C*-algebras: Examples
Not all C*-algebras have such a linear algebra flavour: 

Let  be a locally compact Hausdorff space.  

A continuous function  vanishes at infinity if for every  there exists a compact 
subset  such that  for every .  

Let  continuous and vanishing at infinity , and define , 

 and . 

Then  is a commutative C*-algebra. 

 is a unital commutative C*-algebra if and only if  is compact. 

In this case we have  is continuous .

X

f : X → ℂ ϵ > 0
K ⊂ X | f(x) | < ϵ x ∈ X∖K

C0(X) = {f : X → ℂ ∣ f } f*(x) = f(x)
x ∈ X ∥f(x)∥ = sup

x∈X
| f(x) |

C0(X)

C0(X) X

C0(X) = C(X) = {f : X → ℂ ∣ f }



C0(X)
Mn(ℂ)

B(ℋ)

Sea of Linear 
Algebra

Sea of Topology

C*-landia



*-homomorphisms

If  and  are C*-algebras, then by a  *-homomorphism  we mean an algebra 
map which is in addition *-preserving.   

Note that we didn’t ask for  to be continuous: A miracle of the C*-identity is that a *-
homomorphism is automatically continuous! 

By an ideal  in , unless otherwise stated, we always mean a closed, self-adjoint (that is, 
)  two-sided ideal. 

The kernel of a *-homomorphism  is always an ideal in .

A B φ : A → B

φ

I A
I = I*

A → B A



Unitisation of a non-unital C*-algebra
When  is nonunital, it is often convenient to embed it into a unital C*-algebra. 

We say that  is a unitisation of  if  sits in  as an essential ideal: If  is an ideal, then . 

Let  be a nonunital C*-algebra. Its minimal unitisation, denoted ,  is defined as follows.  

Put  

 

with multiplication given by . The addition and adjoint are  
componentwise.   

The norm is given by  . 

Then  is a unital C*-algebra and  is an essential ideal.

A

B A A B I ⊂ B A ∩ I ≠ ∅

A Ã

Ã := {(a, λ) ∈ A ⊕ ℂ},

(a, λ)(b, μ) = (ab + λb + μa, λμ)

∥(a, λ)∥ = sup{∥ab + λb∥A ∣ b ∈ A,∥b∥A ≤ 1}

Ã A ⊂ Ã



Spectrum
Let  be a C*-algebra and . The spectrum of  is 

  is not invertible . 

If  is unital, then  and we mean invertible in . If  is non-unital, then  and we 

mean invertible in . 

We have that . 

An element  is normal if . For normal elements, we have that  

. 

In other words, the norm only depends on spectral data. This means that for a given C*-
algebra , there is a unique C*-norm on .

A a ∈ A a

sp(a) := {λ ∈ ℂ ∣ a − λ1 }

A 1 = 1A A A 1A = 1Ã
Ã

∅ ≠ sp(a) ⊂ B(0,∥a∥)

a ∈ A a*a = aa*

sup{ |λ | ∣ λ ∈ sp(a)} = ∥a∥

A A



Spectrum

As the name suggests, the spectrum of an element in a C*-algebra generalizes the notion of 
the spectrum of a matrix. 

Thus if  and , we have that  

 is an eigenvalue of . 

Moving to the west coast of C*-landia, if  for some compact Hausdorff space  and 
, we have 

A = Mn(ℂ) a ∈ A

sp(a) = {λ ∈ ℂ ∣ λ a}

A = C(X) X
f ∈ C(X)

sp( f ) = {f(x) ∣ x ∈ X} .



Characters
Let  be a unital C*-algebra. 

A character on  is a *-homomorphism . 

Since *-homomorphisms are continuous, we can equip the character space  with the weak-* 
topology.  

If  is a compact Hausdorff space, then for every , the point evaluation  

,  

is a *-homomorphism. Conversely, if  is a *-homomorphism, one can show that there is 
 such that . Thus characters are in 1-1 correspondence with points of .  

In fact,   and  are homeomorphic.  

Conversely, when  is unital and commutative,  is a compact Hausdorff space and .

A

A φ : A → ℂ

Ω(A)

X x ∈ X

evx( f ) = f(x) f ∈ C(X)

φ : C(X) → ℂ
x ∈ X φ( f ) = f(x) X

X Ω(C(X))

A Ω(A) A ≅ C(Ω(A))



The Gelfand Theorem

Theorem (Gelfand–Naimark). For any commutative C*-algebra  there exists a  locally 
compact Hausdorff space  such that .  is unital if and only if  is compact, in 

which case .  

If  are compact Hausdorff spaces, then any continuous map  induces a *-
homomorphism  given by , and vice-versa. 

Thus we have a duality between the category of compact Hausdorff spaces with continuous 
maps and the category of unital commutative C*-algebras with *-homomorphisms.  

This is why we often refer to the study of C*-algebras as “noncommutative topology” .

A
X A ≅ C0(X) A X

A ≅ C(X)

X, Y φ : Y → X
C(X) → C(Y) f ↦ f ∘ φ



C0(X)

Mn(ℂ)

B(ℋ)

Sea of Linear 
Algebra

Sea of Topology

Com
m

utative Coast

Commutative Coast

C*-landia



The Gelfand–Naimark theorem not only gives us a complete description of commutative C*-
algebras, it also gives us one of our most indispensable tools: the continuous functional calculus. 

An element  is normal if . 

Let  be a unital C*-algebra and  be a normal element. Then the C*-subalgebra 
 is commutative. We have that .  

Thus , and this *-isomorphism sends  to the identity map on 

.  

Let . Then we may define an element  by considering the image 

of  under the *-isomorphism which sends the identity on  to .

a ∈ A a*a = aa*

A a ∈ A
C*(a,1A) ⊂ A sp(a) ≅ Ω(C*(a,1A))

C*(a,1A) ≅ C(sp(a)) a ∈ C*(a,1A)
sp(a)

f ∈ C(sp(a)) f(a) ∈ C*(a,1A) ⊂ A
f C(sp(a)) a ∈ C*(a,1A)

Functional calculus



Functional calculus
Let  be a unital C*-algebra and let  be normal. 

Then we know that, for any , there is an element . 

The element  is again normal and satisfies  

. 

Furthermore,  if   then we have that 

.

A a ∈ A

f ∈ C(sp(a)) f(a) ∈ C*(a,1A)

f(a)

sp( f(a)) = f(sp(a)) = {f(λ) ∣ λ ∈ sp(a)}

g ∈ C(sp( f(a)))

g( f(a)) = g ∘ f(a)



Let  be a C*-algebra. An element  is self-adjoint if . Evidently, any self-adjoint 
element is normal. Every  is of the form  for  

 . 

If  is self-adjoint, then .  

We say that  is positive if a is self-adjoint and .  

An element  is a projection if . Every projection is positive.  

If  is unital, then an element  is unitary if . 

Note that for , all these terms mean what they should!

A a ∈ A a = a*
a ∈ A a = b + ic b, c ∈ Asa :

a = (a + a*)/2 + i [(a − a*)/(2i)]

a sp(a) ⊂ [ −∥a∥,∥a∥] ⊂ ℝ

a sp(a) ⊂ ℝ≥0

p ∈ A p = p* = p2

A u ∈ A u*u = uu* = 1A

Mn(ℂ)

Special elements



Let .  

We write  if .   

This makes  into a partially ordered set.

a, b ∈ Asa

a ≤ b b − a ∈ A+

(Asa, ≤ )

 𝒫(A) = {p ∈ A ∣ p = p2 = p*}

𝒰(A) = {u ∈ A ∣ u*u = uu* = 1}

 

 

Asa = {a ∈ A ∣ a* = a}

A+ = {a ∈ A ∣ a ≥ 0}

Notation:

Special elements



Fun with the functional calculus
Let . Then there exists  such that  and .a ∈ Asa b, c ∈ A+ cb = bc = 0 a = b − c

∥a∥

−∥a∥

−∥a∥

∥a∥

a
∥a∥

−∥a∥

−∥a∥

∥a∥

b
∥a∥

−∥a∥

−∥a∥

∥a∥

c

fa(t) = t fb(t) = {t, t ≥ 0
0, t ≤ 0

fc(t) = {0, t ≥ 0
t, t ≤ 0

b = fb(a) c = fc(a)



Characterizing positive elements
Let . Then there exists a unique  such that . Since  is unique, we 

denote it by .

a ∈ A+ b ∈ A+ b2 = a b
a

Note that any element of the form  is self-adjoint. 

In fact, one can show that  is always positive.

a*a

a*a

Thus we have that .A+ = {a*a ∣ a ∈ A}

∥a∥

∥a∥

a

0 1

1
a



Positive elements and the order structure of the self-adjoint elements, are an important      
part of the structure of a C*-algebra.  

Positive elements and the order structure will allow us to define hereditary C*-subalgebras, 
important sub-objects, especially when we are dealing with simple C*-algebras which do not 
have ideals. 

They also allow us to put an order on projections, which will play a role in the K-theory of a 
C*-algebra.



Hereditary C*-subalgebras
Let  be a C*-algebra. The order structure on  also allows us to define so-called hereditary 
subalgebras.  

A C*-subalgebra  of  is hereditary if, whenever  and  such that , then 

. 

Ideals are always hereditary.  

If , then the hereditary C*-subalgebra generated by  is . 

If  is a projection, then  is a unital hereditary C*-subalgebra (with unit ). 

Such a subalgebra is called a corner of . 

A hereditary C*-subalgebra  often inherits many important structural properties from , for 
example, simplicity.

A A+

B A a ∈ B ∩ A+ b ∈ A+ b ≤ a
b ∈ B

a ∈ A+ a aAa

p ∈ 𝒫(A) ⊂ A+ pAp = pAp p
A

B ⊂ A A



Representations
A representation of a C*-algebras  is a pair  consisting of a Hilbert space  and a *-
homomorphism . A representation is faithful if  is injective. 

A state on  is linear functional  satisfying  and . 

Every state  gives rise to a representation via the GNS (Gelfand—Naimark—Segal) 
construction:  

Define an inner product on  by  

,       .  

Let . Then the completion of  with respect to this inner product 

is a Hilbert space .

A (π, H) H
π : A → B(H) π

A φ : A → ℂ φ(A+) ∈ ℝ≥0 ∥φ∥ = 1

φ : A → ℂ

A

⟨a, b⟩ = φ(a*b) a, b ∈ A

Nφ := {a ∈ A ∣ φ(a*a) = 0} A/Nφ

Hφ



For every , left multiplication by  on  defines a bounded linear operator . 

Extending this to  gives us , and the map a  defines a 

representation of  on . 

A C*-algebra  always have a large supply of states. 

In fact, given any , there is a state  satisfying .  

It follows that taking the representation given by the direct sum of all states produces a 
faithful representation of . 

a ∈ A a A/Nφ Ta

Hφ Ta ∈ B(Hφ) πφ : A → B(Hφ), a ↦ Ta

A Hφ

A

a ∈ A∖{0} φ : A → ℂ φ(a) ≠ 0

A

The GNS theorem

Theorem (Gelfand–Naimark–Segal). Every C*-algebra  is *-isomorphic to a closed self-
adjoint subalgebra of  for some Hilbert space .

A
B(ℋ) ℋ



Representations give us a way of constructing C*-algebras from other mathematical 
structures, such as directed graphs and certain “quantum” spaces, which will be our focus.  

Then we can use the tools of C*-algebras to study such objects and the underlying structure 
can also give us information about the C*-algebra. 

First, we turn to graphs: 

Definition: A directed graph is  consists of  

• a countable set , called the vertices of , 

• a countable set , called the edges of ,  

• a range map , and  

• a source map .

E = (E0, E1, r, s)
E0 E
E1 E

r : E1 → E0

s : E1 → E0

Directed graphs



It is often useful to draw our directed graphs: 

For example,  Let  where , , 

• ,  

• ,  and 

•  

Then we draw

E = (E0, E1, r, s) E0 = {v, w} E1 = {e, f}
r(e) = s(e) = v
r( f ) = v
s( f ) = w

Drawing directed graphs



An edge that has the same vertex as its range and source 
is called a loop based at that vertex.  

For example, the edge  is a loop based at . 

A vertex with only outgoing edges is called a source. 

In this graph, the vertex  is a source. 

A vertex that only receives edges is called a sink.  

Here, the vertex  is a sink.

e v

w

u

Loops, sources, and sinks



Of course, any such drawing also determines a directed graph.

For example,

determines the graph  where ,  and 
.

E = (E0, E1, r, s) E0 = {v} E1 = {e, f, g}
r(e) = s(e) = r( f ) = s( f ) = r(g) = s(g) = v

Directed graphs from drawings



Now we will represent our graphs by operators on Hilbert space, so that we can construct 
C*-algebras. 

First we need the notion of a partial isometry. Let  be a C*-algebra. A partial isometry is 
an element  satisfying . 

The C*-equality implies that the following are equivalent: 

•  is a partial isometry, 

• , 

•  is a projection, 

•  is a projection.

A
s ∈ S ss*s = s

s
s*ss* = s*
s*s
ss*

Operators from graphs



For now, we will restrict to row-finite graphs. A graph  is row finite if every 
vertex receives at most finitely many edges.  

Let  be a directed graph. A Cuntz–Krieger -family  on a Hilbert 
space  consists of pairwise orthogonal projections  on  (so  

or equivalently  and  have orthogonal ranges in  whenever ) and partial 

isometries  on  satisfying 

(CK1)  for every , and 

(CK2)   for every  that is not a source.

E = (E0, E1, r, s)

E = (E0, E1, r, s) E {S, P}
H {Pv ∣ v ∈ E0} H PvPw = δv,wPv,

Pv Pw H v ≠ w
{Se ∣ e ∈ E1} H

S*e Se = Ps(e) e ∈ E1

Pv = ∑
{e∈E1∣r(e)=v}

SeS*e v ∈ E0

Cuntz–Krieger -familiesE



Indeed, for , let  be a separable infinite-dimensional Hilbert space and set  

. 

Let  to be the projection . Since  is infinite-dimensional, we can decompose it 
into direct sum  

 

where each  is infinite-dimensional. Then let  :   to be a unitary which is 

a partial isometry when viewed as an element in .

v ∈ E0 Hv

H = ⨁
v∈E0

Hv

Pv H → Hv Hv

Hv = ⨁
r(e)=v

Hv,e

Hv,e Se Hs(e) → Hr(e),e

ℬ(H)

One can always find Cuntz–Krieger -families such that  for every  and 

.

E Pv, Se ≠ 0 v ∈ E0

e ∈ E1



Proposition. Let  be a row-finite graph. Then any Cuntz–Krieger -family  satisfies 
the following: 

• the projections  are mutually orthogonal; 

• if  then ,  

•  if  then , 

• if  then .

E E {S, P}

{SeS*e ∣ e ∈ E1}

S*e Sf ≠ 0 e = f

SeSf ≠ 0 s(e) = r( f )

SeS*f ≠ 0 s(e) = s( f )

The following are straight forward implications of the CK1 and CK2 and the fact that if 
 for projections  in a C*-algebra, then p = ∑

i=1

pi p, p1, …, pn pipj = δijp1



Paths
The proposition allows us to define partial isometries associated to paths in the graph. 

A path in  of length  is a sequence  of edges  such that 

 for . 

Since 

• the projections  are mutually orthogonal; 

• if  then ,  

•  if  then , 

• if  then , 

we can define . Then , so we set . 

Similarly, we set .

E n ∈ ℤ>0 μ = μ1μ2…μn μi ∈ E1

s(μi) = r(μi+1) 1 ≤ i ≤ n − 1

{SeS*e ∣ e ∈ E1}
S*e Sf ≠ 0 e = f

SeSf ≠ 0 s(e) = r( f )

SeS*f ≠ 0 s(e) = s( f )

Sμ := Sμ1
Sμ2

⋯Sμn
S*μ Sμ = S*μn

Sμn = Ps(μn) s(μ) := s(μn)

r(μ) := r(μ1)



From CK -families to C*-algebrasE

For a Cuntz–Krieger -family  on , we define  to be the C*-algebra 
generated by  in . 

Let paths of length  and let  denote the set of all finite length 

paths. Then  

 

Next time, we’ll see more about how the combinatorics of the graph can tell us about 
properties of its associated C*-algebra(s).

E {S, P} H C*({S, P})
{Pv ∣ v ∈ E0} ∪ {Se ∣ e ∈ E1} ℬ(H)

En := { n} E* := ∪n∈ℤ≥0
En

C*({S, P}) = span{SμS*ν ∣ μ, ν ∈ E*, s(μ) = s(ν)} .


