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Abstract
The main theme of the paper is the detailed discussion of the renormalization of

the quantum field theory comprising two interacting scalar fields. The potential of the
model is the fourth-order homogeneous polynomial of the fields, symmetric with respect
to the transformation ϕi → −ϕi. We determine the Feynman rules for the model and
then we present a detailed discussion of the renormalization of the theory at one loop.
Next, we derive the one loop renormalization group equations for the running masses
and coupling constants. At the level of two loops, we use the FeynArts package of
Mathematica to generate the two loops Feynman diagrams and calculate in detail the
setting sun diagram.

1. Introduction
Renormalization in quantum field theory is an indispensable tool to obtain precise results at
higher orders of perturbation theory. The full process of renormalization is a complex task,
and it is best learned with examples. We will consider here a theory of two real, interacting
scalar fields described by the following Lagrangian density
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The interaction potential density in (1)
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should be positive definite, so we assume that the coupling constans λ1, λ2 and λ3 fulfill the
following conditions

λ1 > 0, λ2 > 0, λ1λ2 − 9λ2
3 > 0. (3)

From the Lagrangian density (1) one obtains the classical equations of motion for the fields
ϕ1 and ϕ2

(❑ +m2
1)ϕ1 + λ1

3! ϕ
3
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2 ϕ1ϕ
2
2 = 0, (4a)

(❑ +m2
2)ϕ2 + λ2

3! ϕ
3
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2 ϕ2
1ϕ2 = 0. (4b)

In our paper, we concentrate on the renormalization of the model described by the
Lagrangian density (1). The contents of the paper are the following: In Section 2, we recall
the notion of the Green’s function and we establish the Feynman rules of the considered
model. In Section 3, we analyze the divergent diagrams for the two and four-point Green’s
functions. We draw the corresponding Feynman diagrams and derive the analytical expres-
sions corresponding to these diagrams. In Section 4, we discuss the mathematical methods
that are used in the calculation of the Feynman diagrams, containing the loop integrals. We
discuss the Feynman prescription, Wick rotation and two methods of regularization of the
divergent integrals: Pauli-Villars regularization and dimensional regularization. Section 5 is
devoted to the discussion of the one loop renormalization of our model. First, we discuss the
regularization of the one loop divergent diagrams and then, we explain how the divergencies
are removed in the one loop diagrams, through the procedure of renormalization. In Section 6,
we derive the one loop renormalization group equations for the masses m1, m2 and the



coupling constants λ1, λ2 and λ3 in our theory. Section 7 is devoted to the discussion of the
two loop renormalization of the model. After Conclusions, we include several appendices,
where some additional details of the calculations are presented. We also give the listings of
the Mathematica programs, that were used in the discussion of the two loop renormalization.

2. Feynman rules
Feynman rules for the Feynman diagrams in the momentum space are determined from
the Lagrangian density and serve to derive the analytical expressions for the amplitudes of
the given processes. The Lagrangian density (1) contains two fields ϕ1 and ϕ2 and three
interaction vertices, so the Feynman diagrams will contain the propagators for the fields
ϕ1 and ϕ2 and the vertices corresponding to the coupling constants λ1, λ2 and λ3. The
graphical representations of the basic elements of the Feynman diagrams stemming from the
Lagrangian density are given in Fig. 1.

The Green’s functions G(n)(x1, x2, . . . , xn) or n point functions are the quantities from
which the S-matrix elements are calculated. They are the vacuum expectation values of the
time ordered product of fields and are equal to

G
(n)
i1···in

(x1, x2, . . . , xn) = ⟨0|T (ϕi1(x1), ϕi2(x2), . . . , ϕin
(xn))|0⟩ . (5)

Here T denotes the time ordered product of the fields.
The Green’s function in the momentum space G(n)

i1···in
(p1, p2, . . . , pn) is the Fourier trans-



form of the Green’s function G
(n)
i1···in

(x1, x2, . . . , xn)

(2π)4δ(p1 + · · · + pn)G(n)
i1···in

(p1, p2, . . . , pn)

=
∫ n∏

k=1
d4xkx

−ipkxkG
(n)
i1···in

(x1, x2, . . . , xn). (6)

The amputated Green’s function is obtained from the momentum space Green’s function by

Figure 1: Elements of the Feynman diagrams, (a) propagators of particles 1 and 2, (b)
vertex with the coupling constant λ1, (c) vertex with the coupling constant λ2, (d) vertex
with the coupling constant λ3.



removing the propagators ∆k(pk) of external fields

ampG
(n)
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(p1, p2, . . . , pn) =
n∏

k=1

[
1
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]
G

(n)
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(p1, p2, . . . , pn). (7)

The S-matrix elements are obtained from the Lehmann-Symanzik-Zimmermann reduction
formula

⟨q1, . . . , qn|S|p1, p2⟩ =
[
i

∫
d4x1e

−ip1x1(❑ +m2
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]
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∫
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)
]

· · ·
[
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∫
d4zne

iqnzn(❑ +M2
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)
]

× ⟨0|T (ϕ1(x1), ϕ2(x2), ϕi1(z1), . . . , ϕin(zn))|0⟩ (8)

and for the Green’s function the following perturbative expansion holds

G
(n)
i1···in

(x1, x2, . . . , xn) =
∞∑

l=0

(−i)l

l!

∫ ∞

−∞
d4z1 · · · d4zl

× ⟨0|T (ϕI
i1

(x1), . . . , ϕI
in

(xn),V(ϕI
1(z1), ϕI

2(z1)), . . . ,V(ϕI
1(zl), ϕI

2(zl))|0⟩c . (9)

The superscript I means that the fields are taken in the interaction picture and the subscript
c denotes the connected part.

The Green’s functions contain the vacuum expectation value of time ordered product
of the fields. In order to calculate this vacuum expectation value the time ordered product



is expanded in terms of the normal products of the fields. The Feynman diagrams are the
graphical representation of terms of this expansion.

The propagators are calculated from the G(2)
i1i2

Green’s functions

⟨0|T (ϕI
i1

(x)ϕI
i2

(y))|0⟩ = i∆i1(x− y)δi1i2 =
∫ d4p

(2π)4 e
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+ iϵ
δi1i2 .

The Green’s function G
(2)
12 vanishes, because the Lagrangian density (1) contains only even

powers of fields and the symmetry ϕi → −ϕi holds.
The vertices are obtained from the G(4) Green’s functions and the non

vanishing functions are G
(4)
1111(x1, x2, x3, x4), G

(4)
2222(x1, x2, x3, x4) and

G
(4)
1122(x1, x2, x3, x4). The vertices of the Feynman diagrams obtained from these functions

with the analytic correspondence are given in Table 1.
The Green’s functions G(4)

1111(x1, x2, x3, x4) and G
(4)
1122(x1, x2, x3, x4) at the lowest order

including interactions are obtained from the equations

G
(4)
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=
∫ ∞

−∞
d4z ⟨0|T (ϕI

1(x1), ϕI
1(x2), ϕI

1(x3), ϕI
1(x4),V(ϕI

1(z), ϕI
2(z)))|0⟩c , (10)

G
(4)
1122(x1, x2,x3, x4)

=
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−∞
d4z ⟨0|T (ϕI

1(x1), ϕI
1(x2), ϕI

2(x3), ϕI
2(x4),V(ϕI

1(z), ϕI
2(z)))|0⟩c . (11)



Table 1: Analytical expressions corresponding to the elements of the Feynman diagrams.
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and G(4)
2222(x1, x2, x3, x4) is obtained from G

(4)
1111(x1, x2, x3, x4) by the change of indices 1 ↔ 2.

The integrand of Eq. (10) contains the term V(ϕI
1(z), ϕI

2(z))) given in Eq. (2), which
contains three terms. The connected diagrams are obtained only from the term (λ1ϕ

4
1)/4!, so

only this term has to be included in the calculation. A similar situation occurs in Eq. (11)
which corresponds to the term (λ3ϕ

2
1ϕ

2
2)/4 in Eq. (2).

The terms in the Lagrangian density (1) corresponding to the vertices contain the factors
1/4! and 1/4. In Appendix A, we present Wick’s theorem, which is used in Appendices B
and C to show that these factors are canceled in Feynman diagrams and the Feynman rules
are such as those given in Table 1. 1

To conclude this section let us list the rules for the construction of the analytical expression
of the transition amplitude in the momentum representation from the Feynman diagram:

• The amplitude contains an overall factor of i.

• Each vertex produces the factor −iλj : j = 1 for four particles of type 1, j = 2 for four
particles of type 2, j = 3 for two particles of type 1 and two particles of type 2.

• For each internal line of a particle of the type j with four-momentum k there corresponds
the propagator i

k2 −m2
j + iϵ

.

• Four momentum is conserved at each vertex.
1In case of diagrams with loops the situation becomes more complicated and it is necessary to introduce

the symmetry factors.



• Integrate over each internal four momentum within a loop (not fixed by the four
momentum conservation) by applying the integral

∫ d4k
(2π)4 .

3. Two and four point divergent diagrams
In this section we will discuss the lowest order divergent diagrams and the analytical
expressions corresponding to them.

3.1. Diagrams for the propagators
In Fig. 2 there are the first order corrections to the propagators of particles 1 and 2. We will
consider in detail only the diagrams for the propagator of particle 1, because the results for
particle 2 are obtained from those of particle 1 by a simple change of indices.

The analytical expression in the coordinate space obtained from Eq. (9) that generates
the diagrams in Fig. 2 (a) and (b) is

(−i)
∫ ∞

−∞
d4z1 ⟨0|T (ϕI

1(x1), ϕI
1(x2),V(ϕI

1(z1), ϕI
2(z1)))|0⟩c . (12)

After inserting the explicit form of the potential V(ϕI
1(z1), ϕI

2(z1)) from Eq. (2) we obtain



separately for diagrams in Fig. 2 (a) and (b)

(−i)λ1

4!

∫ ∞

−∞
d4z1 ⟨0|T (ϕI

1(x1), ϕI
1(x2),

(
ϕI

1(z1)
)4)|0⟩c , (13a)

(−i)λ3

4

∫ ∞

−∞
d4z1 ⟨0|T (ϕI

1(x1), ϕI
1(x2),

(
ϕI

1(z1)
)2
,
(
ϕI

2(z1)
)2)|0⟩c . (13b)

Figure 2: Divergent two point Feynman diagrams; (a) propagator of particle 1 with a
loop containing particle 1, (b) propagator of particle 1 with a loop containing particle 2, (c)
propagator of particle 2 with a loop containing particle 2, (d) propagator of particle 2 with a
loop containing particle 1. The full propagator requires the summation of different diagrams.



From these equations we obtain in Appendix D that the symmetry factors2 for the diagrams
in Fig. 2 are equal 1/2.

In the momentum space we obtain the following expressions for the diagrams in Fig. 2

(i)(−iλ1)1
2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

= λ1

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

, (14a)

(i)(−iλ3)1
2
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(2π)4
i

k2 −m2
2 + iϵ

= λ3

2

∫ d4k

(2π)4
i

k2 −m2
2 + iϵ

, (14b)

(i)(−iλ2)1
2

∫ d4k

(2π)4
i

k2 −m2
2 + iϵ

= λ2

2

∫ d4k

(2π)4
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k2 −m2
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, (14c)

(i)(−iλ3)1
2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

= λ3

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

. (14d)

The 1/2 in Eqs. (14) is the symmetry factor and the integrals are quadratically divergent.
2Also known as the combinatorial factors.



3.2. Diagrams for the vertices
The analytical expressions in the coordinate space obtained from Eq. (9) that generate the
diagrams in Fig. 3 are

(−i)2

2!

∫ ∞

−∞
d4z1d4z2

× ⟨0|T (ϕI
1(x1), ϕI

1(x2), ϕI
1(x3)ϕI

1(x4),V(ϕI
1(z1), ϕI

2(z1)),V(ϕI
1(z2), ϕI

2(z2)))|0⟩c , (15a)
(−i)2
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∫ ∞
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× ⟨0|T (ϕI
2(x1), ϕI

2(x2), ϕI
2(x3)ϕI

2(x4),V(ϕI
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2(z1)),V(ϕI
1(z2), ϕI

2(z2)))|0⟩c , (15b)
(−i)2
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−∞
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× ⟨0|T (ϕI
1(x1), ϕI

1(x2), ϕI
2(x3)ϕI

2(x4),V(ϕI
1(z1), ϕI

2(z1)),V(ϕI
1(z2), ϕI

2(z2)))|0⟩c . (15c)

After inserting the explicit form of the potential V(ϕI
1(z1), ϕI

2(z1)) we obtain separately for



Figure 3: Patterns for the divergent four point Feynman diagrams; (a), (b) correction to
the vertex with the coupling constant λ1; (c), (d) correction to the vertex with the coupling
constant λ2; (e), (f), (g) correction to the vertex with the coupling constant λ3; (h) this
type of diagram is not included in the propagator correction because it is not one particle
irreducible diagram (it can be divided into two separate diagrams by cutting only one internal
line). To each pattern corresponds more than one Feynman diagram. See Appendix E.



the diagrams in Fig. 3 (a)–(g)
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(
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)2 1
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1(x4),
(
ϕI
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(
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−∞
d4z1d4z2
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2(x2), ϕI
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1(z2)
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2(z2)

)2)|0⟩c, (16d)

(−i)2λ1

4!
λ3

4
2
2!

∫ ∞

−∞
d4z1d4z2

× ⟨0|T (ϕI
1(x1), ϕI

1(x2), ϕI
2(x3), ϕI
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The three Feynman diagrams in the momentum space corresponding to Eq. (16b) are
shown in Fig. 16 and the analytic expressions for these diagrams are

− iλ2
1

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p1 + p2 − k)2 −m2
1 + iϵ

, (17a)

− iλ2
1

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p1 − p3 − k)2 −m2
1 + iϵ

, (17b)

− iλ2
1

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p1 − p4 − k)2 −m2
1 + iϵ

(17c)

and similarly one can obtain the momentum space diagrams for the remaining equations (16).
The integrals in Eqs. (17) are logarithmically divergent.

4. Calculation of the loop integrals
The loop integrals contain the integration over momentum. Those integrals contain the
products of the particle propagators and integration of such a product is complicated. The
Feynman prescription, which we will discuss first, facilitates the integration.

Another convenient scheme that facilitates the integration is the Wick rotation which
allows the conversion of the integral from the Minkowski space to the Euclidean space.

As we have seen in Section 3 the loop diagrams are divergent. None of the physical
quantities are infinite, so the loop diagrams require a special treatment in the field theory.
Ultimately these infinities are removed by the procedure of renormalization, but first these



diagrams are made finite by introducing a cut-off into their analytical expressions. The idea
of the cut-off is to make the integral convergent by adding to the integral a modification,
which depends on an additional parameter with a property that at a certain limit of the
parameter, the integral tends to the original divergent integral. In such a way, we can
identify a type of divergence, which is then removed. A simple cut-off placed as an upper
limit of integration is physically inconvenient, because it breaks the translation invariance
of the theory. We will discuss here two methods of removing the divergence of the loop
integrals: the Pauli-Villars regularization and the dimensional regularization. These methods
of regularization have desirable properties from a physical point of view.

4.1. Feynman prescription
The Feynman prescription converts the product of two fractions into an integral of one
fraction and adds additional integrals to the expression. This facilitates the integration of
the product of the propagators

1
AB

=
∫ 1

0

dξ
(Aξ + (1 − ξ)B)2 =

∫ 1

0

∫ 1

0

dξ1 dξ2 δ(1 − ξ1 − ξ2)
(Aξ1 +Bξ2)2 . (18)

Eq. (18) can be generalized to the product of n terms in the denominator

1
A1 · · ·An

= (n− 1)!
∫ 1

0
· · ·

∫ 1

0

dξ1 · · · dξn δ(1 − ξ1 − · · · − ξn)
(A1ξ1 + · · · +Anξn)n

. (19)



Another generalization is obtained by the differentiation of Eq. (18) with respect to A

1
AnB

=
∫ 1

0

n! dξ
(Aξ + (1 − ξ)B)n+1 =

∫ 1

0

∫ 1

0

n! dξ1 dξ2 δ(1 − ξ1 − ξ2)
(Aξ1 +Bξ2)n+1 . (20)

4.2. Wick rotation
The momentum integrals are performed in the Minkowski space, where the length of a vector
q = (q0, q1, q2, q3) is equal q2 = q2

0 − q2
1 − q2

2 − q2
3 . Let us consider the integral∫ d4q

(2π)4
1

(q2 −m2 + iϵ)n
(21)

in the Minkowski space. The integrated function as the function of complex q0 has poles at
q0 = ±(

√
q2 +m2 − iϵ). This means that the contour integral in the complex q0 plane over

the path shown in Fig. 4 does not include the poles of the integrand, so it vanishes. When
the integration radius goes to infinity the integrals over the circular segments tend to zero
and it means that the following relation holds∫ +∞

−∞
dq0

∫ d3q
(2π)4

1
(q2 −m2 + iϵ)n

=
∫ +i∞

−i∞
dq0

∫ d3q
(2π)4

1
(q2 −m2 + iϵ)n

. (22)

The variable q0 on the right hand side of Eq. (22) is pure imaginary. To convert the
integration over real numbers we make the change of variables

q0 → iq4, dq0 → i dq4 , d4q = dq0 d3q → idq4 d3q = i d4qE

q2 = q2
0 − q2

1 − q2
2 − q2

3 → −q2
1 − q2

2 − q2
3 − q2

4 = −q2
E.



Figure 4: Integration path in the q0 and the poles for Eq. (21)



Then the Minkowski space integral (21) is converted into the Euclidean space integral and∫ d4q

(2π)4
1

(q2 −m2 + iϵ)n
= i(−1)n

∫ d4qE

(2π)4 .
1

(q2
E +m2)n

. (23)

The iϵ term in the denominator on the right hand side is not necessary, because the function
(q2

E +m2) is not singular.
It should be noted that the Wick rotation is valid for any function that has no singularities

in the first and third quadrant of the complex q0 plane.

4.3. Pauli-Villars regularization
The loop diagram contains an integral over the intermediate momentum d4q of a product of
the propagators ∼ 1

q2−m2 . The integral with one propagator is quadratically divergent and the
integral with two propagators is logarithmically divergent. The Pauli-Villars regularization [1]
introduces a cut-off Λ by adding to the propagator terms, which vanish at a limit Λ → ∞.
In such a way the asymptotic behavior of the propagator is modified and the loop integral
becomes finite, but dependent on the cut-off. The prototype of the Pauli-Villars regularization
is illustrated by the equation

i

q2 −m2 + iϵ
→

[
i

q2 −m2 + iϵ

]PV

Λ
= i

q2 −m2 + iϵ
− i

q2 − Λ + iϵ

= i(m2 − Λ)
(q2 −m2 + iϵ)(q2 − Λ + iϵ) . (24)



Here Λ is the cut-off parameter with the dimension of mass squared. One can see that the
modified propagator behaves for large q2 like 1/q4, while the original propagator behaved
like 1/q2. This can improve the convergence of the loop integrals. The general form of the
Pauli-Villars regularization of the propagator is

i

q2 −m2 + iϵ
→

[
i

q2 −m2 + iϵ

]PV

Λ
= i

q2 −m2 + iϵ
−

n∑
j=1

iCj

q2 − Λj + iϵ

= iC

(q2 −m2 + iϵ)
∏n

j=1(q2 − Λj + iϵ) . (25)

Pauli-Villars regularization is physically equivalent to the introduction of scalar particles
obeying the Fermi-Dirac statistics (ghosts) into the theory.

4.4. Dimensional regularization
Dimensional regularization [2, 3] is another method of analyzing the divergent diagrams
in quantum field theory. The method consists in calculating the integral in d dimensional
spacetime. Suppose we need to calculate the integral∫ d4qE

(2π)4
1

(q2
E +m2)2 . (26)

This integral is 4-dimensional and is logarithmically divergent, because for large qE the
numerator behaves, like ∼ q3

E and the denominator like ∼ q4
E. In the 3-dimensional space this



integral is finite. This suggests to calculate this integral in the space with lower dimensionality
d and then, analytically continue the result to d → 4. This will isolate the singularity of the
integral.

In the d-dimensional space, after separating the angular part, the integral (26) becomes∫ ddqE

(2π)d

1
(q2

E +m2)2 = 1
(2π)d

∫
dΩd

∫ ∞

0

qd−1
E dqE

(q2
E +m2)2 . (27)

For the angular part we have

1
(2π)d

∫
dΩd = 2

(2π)d

π
d
2

Γ( d
2 )

(28)

and it is not singular at d = 4. Here Γ(z) is the Euler gamma function. The remaining
integral ∫ ∞

0

qd−1
E dqE

(q2
E +m2)2 =

Γ( d
2 )Γ(2 − d

2 )
2Γ(2)(m2)2− d

2
= (d− 2)π

4 sin
(

dπ
2

)
m4−d

(29)

is finite for d < 4. The right hand side of Eq. (29) can be calculated for continuous values of
the space dimension d. Expanding the right hand side of Eq. (29) around the point d = 4
one obtains

Γ( d
2 )Γ(2 − d

2 )
2Γ(2)m2(2− d

2 )
≈ − 1

d− 4 − 1
2(1 + lnm2) + · · · (30)

and for the integral (27) one gets∫ ddqE

(2π)d

1
(q2

E +m2)2 = − 1
8π2(d− 4) − 1

16π2

(
γ + ln

(
m2

4π

))
+ · · · , (31)



where γ = 0.577216 . . . is the Euler’s constant. From Eq. (31) we see that the integral has a
pole at d = 4 and the divergent part is equal −1/(8π2(d− 4)).

Eqs. (32) and (33) below are general formulas, which are helpful in the practical calculation
of integrals in the dimensional regularization∫ ddqE

(2π)d

1
(q2

E +m2)r
=

Γ(r − d
2 )

(4π) d
2 Γ(r)

· 1
(m2)r− d

2
(32)

and

Γ(−n+ z) = (−1)n

n!

(1
z

+ ψ(n+ 1) + 1
2z

(π2

3 + ψ2(n+ 1) − ψ′(n+ 1)
))

+ · · · (33)

Here
ψ(z) = d ln Γ(z)

dz , ψ(n+ 1) =
n∑

l=1

1
l

− γ, ψ′(n+ 1) = π2

6 −
n∑

l=1

1
l2

(34)

and again γ is the Euler constant.
From Eq. (32), by a change of variables, one obtains a more general result∫ ddqE

(2π)d

1
(q2

E +m2 + 2qE · p)r
=

Γ(r − d
2 )

(4π) d
2 Γ(r)

1
(m2 − p2)r− d

2
(35)

and by differentiation of Eq. (35) with respect of pµ one can obtain more useful formulas.



4.4.0.1. Dimension of the coupling constant
The action S =

∫
L d4x is dimensionless3 and it has to be dimensionless also in the d dimen-

sional space. The dimension of the fields depends of the dimension of the space-time and
can be determined from the Lagrangian density or from the fields commutation relations.
The dimension of the scalar field ϕ in the 4-dimensional space is L−1 (L is length). In the
d-dimensional space the dimension of the scalar field is L1− d

2 . In order that the part of the
action in d dimensions, obtained from the λϕ4, is dimensionless the coupling constant λ must
have the dimension L4−d. To maintain the coupling constant dimensionless it is rescaled by
a parameter µ with the dimension of mass, which plays the role of the cut-off. The coupling
constant λ then becomes

λ → λµ4−d. (36)

In the considered model the three coupling constants λ1, λ2 and λ3 are all rescaled in such a
way.

5. Renormalization
The Lagrangian density in quantum field theory is a function of the fields and of the masses
and coupling constants. Those masses and coupling constants do not correspond to observable
quantities, e.g., the observable masses are obtained from the poles of the propagators and
are functions of the Lagrangian masses and coupling constants. At the lowest order of

3In natural units the dimension of action is position × momentum which has the same dimension as
Planck’s constant ℏ.



perturbation theory and for the free fields the Lagrangian masses do correspond to the
observable masses, but it is not very interesting for most of practical cases. The fact
that parameters of the Lagrangian have to be adjusted to physical observables is called
renormalization. This means that the renormalization has to be performed in any field theory,
independent of the presence of infinities.

The infinite expressions first appeared in quantum electrodynamics. This caused an
important difficulty, because it ruled out the calculations at higher orders of perturbation
theory. It turned out that in quantum electrodynamics the mathematical structure of the
infinite expressions was identical to the mathematical structure of the Lagrangian density.
This means that the infinite expressions were renormalizing the parameters of the Lagrangian
and were not modifying the theory in any other way. Such a situation does not occur in all
quantum field theories, but only in a small class of renormalizable theories, like quantum
electrodynamics, theories with non-abelian gauge symmetry and theories of scalar fields with
self interaction of type ϕ3 or ϕ4. The theory described by the Lagrangian density in Eq. (1)
is renormalizable.

Most of the practical calculations in quantum field theory are done perturbatively
with respect to the power of the coupling constants. The exception to this rule is the
renormalization, which is discussed with respect to the number of loops present in the
Feynman diagrams. We will discuss the renormalization of our model up to two loops.

5.1. One loop regularization
The process of renormalization starts with the identification of the divergent diagrams. The
one loop diagrams can appear at any order of the perturbative calculations, but the structure



of these diagrams is such that one can extract a simpler one loop divergent sub-diagram
and the rest of the diagram is finite. This is the reason that one has to concentrate on the
renormalization of those simple sub-diagrams4. In our model those simple diagrams at one
loop correspond to the two and four point Green’s functions. The topological structure of
those diagrams is shown in Fig. 5

5.1.1. Regularization of the two point Green’s functions

All the diagrams that correspond to the structure in Fig. 5 (a) are shown in Fig. 2 and the
mathematical expressions corresponding to those diagrams are given in Eqs. (14). For the
diagram in Fig. 2 (a) the mathematical formula in d dimensions obtained from Eq. (14a)
becomes

λ1

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

→ λ1µ
4−d

2

∫ ddk

(2π)d

i

k2 −m2
1 + iϵ

→ λ1µ
4−d

2

∫ ddkE

(2π)d

1
k2

E +m2
1

= λ1µ
4−d

2
Γ(1 − d

2 )
(4π) d

2 Γ(1)
1

(m2
1)1− d

2

→
d=4

λ1m
2
1

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
m2

1
4πµ2

)))
+ O(d− 4). (37)

4It can be shown that there is only a finite number of such diagrams.



Figure 5: The topological structure of the one loop divergent diagrams for: (a) two point
function, and (b) for the four point functions.

Figure 6: The propagator of particle 1 with one loop corrections.



Figure 7: The next iteration for the propagator of particle 1 with one loop corrections.



In the same way we obtain the following result for the diagram in Fig. 2 (b)

λ3

2

∫ d4k

(2π)4
i

k2 −m2
2 + iϵ

→
d=4

λ3m
2
2

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
m2

2
4πµ2

)))
+ O(d− 4). (38)

The space-time dimension d is equal to 4 and the integrals in Eqs. (37) and (38) have poles
for this value of d and are divergent. The important property of Eqs. (37) and (38) is that
the singular part of the integral has been separated from the finite part. The finite part
depends on the cut-off parameter µ2 and the infinite part does not. The µ2 is a new free
parameter of the theory5, so the dependence of the finite part on it, means that the finite
parts of the integrals are not uniquely determined.

Eqs. (37) and (38) are the one loop corrections to the propagator of particle 1, so the full
propagator at one loop order will be the sum of the free propagator and the integrals (37)
and (38). Graphically this sum is shown in Fig. 6.

The one loop corrections can be iterated and the next iteration is shown in Fig. 7. The
iterations can be continued and as a result one obtains the geometric series for the propagator

5When we will discuss the renormalization group we will see that the physical predictions of the theory
do not depend on µ2.



of particle 1

i

p2 −m2
1 + iϵ

+ i

p2 −m2
1 + iϵ

(−iΣ1) i

p2 −m2
1 + iϵ

+ i

p2 −m2
1 + iϵ

(−iΣ1
3) i

p2 −m2
1 + iϵ

+ i

p2 −m2
1 + iϵ

(−iΣ1) i

p2 −m2
1 + iϵ

(−iΣ1) i

p2 −m2
1 + iϵ

+ i

p2 −m2
1 + iϵ

(−iΣ1
3) i

p2 −m2
1 + iϵ

(−iΣ1
3) i

p2 −m2
1 + iϵ

+ i

p2 −m2
1 + iϵ

(−iΣ1) i

p2 −m2
1 + iϵ

(−iΣ1
3) i

p2 −m2
1 + iϵ

+ i

p2 −m2
1 + iϵ

(−iΣ1
3) i

p2 −m2
1 + iϵ

(−iΣ1
1) i

p2 −m2
1 + iϵ

+ · · ·

= i

p2 −m2
1 + iϵ

· 1

1 − (−i(Σ1 + Σ1
3))i

p2 −m2
1 + iϵ

= i

p2 −m2
1 − Σ1 − Σ1

3 + iϵ
. (39)



In Eq. (39) we used the shorthand notation for the results of Eqs. (37) and (38)

Σ1 = λ1m
2
1

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
m2

1
4πµ2

)))
, (40a)

Σ2 = λ2m
2
2

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
m2

2
4πµ2

)))
, (40b)

Σ1
3 = λ3m

2
2

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
m2

2
4πµ2

)))
, (40c)

Σ2
3 = λ3m

2
1

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
m2

1
4πµ2

)))
. (40d)

Σ2 and Σ2
3 are necessary for the propagator of particle 2 and they are obtained from the Σ1

and Σ1
3 by changing the indices 1 ↔ 2.

From Eq. (39) we see that after the one loop corrections for the propagator the value of
the mass m2

1 was shifted
m2

1 → m2
1 + Σ1 + Σ1

3. (41)

It means that the mass m1 becomes renormalized as the result of the interactions.
The shift of the mass m2

2 is

m2
2 → m2

2 + Σ2 + Σ2
3. (42)



5.1.2. Regularization of the four point Green’s functions

All the diagrams that correspond to the structure in Fig. 5 (b), with all external particles
of type 1, are shown in Fig. 16 and the mathematical expressions corresponding to those
diagrams are given in Eqs. (17). For the diagram in Fig. 16 (a) the mathematical formula in
d dimensions obtained from Eq. (17a) is obtained by the following steps (here we use the



substitution: p1 + p2 = p)

− iλ2
1

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p− k)2 −m2
1 + iϵ

(43a)

= iλ2
1

2

∫ 1

0
dz

∫ d4k

(2π)4
1

(z(k2 −m2
1 + iϵ) + (1 − z)((p− k)2 −m2

1 + iϵ))2 (43b)

= iλ2
1

2

∫ 1

0
dz

∫ d4k

(2π)4
1

(zk2 + (1 − z)(p2 + k2 − 2pk) −m2
1 + iϵ)2 (43c)

= iλ2
1

2

∫ 1

0
dz

∫ d4k

(2π)4
1

((k − (1 − z)p)2 + z(1 − z)p2 −m2
1 + iϵ)2 (43d)

→ iλ2
1

2

∫ 1

0
dz

∫ d4k

(2π)4
1

(k2 + z(1 − z)p2 −m2
1 + iϵ)2 (43e)

→ −λ2
1

2

∫ 1

0
dz

∫ d4kE

(2π)4
1

(k2
E − z(1 − z)p2 +m2

1)2 (43f)

→ −λ2
1µ

2(4−d)

2

∫ 1

0
dz

∫ ddkE

(2π)d

1
(k2

E − z(1 − z)p2 +m2
1)2 (43g)

= −λ2
1µ

2(4−d)

2

∫ 1

0
dz

Γ(2 − d
2 )

(4π) d
2 Γ(2)(m2

1 − z(1 − z)p2)2− d
2

(43h)

→
d=4

λ2
1µ

4−d

16π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|z(1 − z)p2 −m2

1|
4πµ2

)
)
)
. (43i)



Let us explain each step in Eqs. (43)

Eq. (43a)→ (43b) Feynman prescription.

Eq. (43b)→ (43c) Transformation of the denominator with propagators.

Eq. (43c)→ (43d) Transformation of the denominator with propagators.

Eq. (43d)→ (43e) Change of the integration variable k → (k − (1 − z)p).

Eq. (43e)→ (43f) Wick rotation.

Eq. (43f)→ (43g) Transition to the d-dimensional integration.

Eq. (43g)→ (43h) Calculation of the d-dimensional integral, using Eq. (32).

Eq. (43h)→ (43i) Calculation of the limit d → 4. Note, that the factor µ4−d has not been
included into the integral, because the dimension of the diagram is µ4−d.

The last integral in Eq. (43i) is elementary and can be calculated, but an explicit integration
does not introduce important information.

To continue, we define the functions F (r1, r2, r3) and FΣ(s, t, u, r1, r2)

F (r1, r2, r3) =
∫ 1

0
dz ln

(
|z(1 − z)r1 − r2|

4πr3

)
, (44)

FΣ(s, t, u, r1, r2) = F (s, r1, r2) + F (t, r1, r2) + F (u, r1, r2). (45)



And with the help of the function (44), using Eq. (43i), we can write the analytical expressions
corresponding to the diagrams in Fig. 16

λ2
1µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (s,m2
1, µ

2))
)
, (46a)

λ2
1µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (t,m2
1, µ

2))
)
, (46b)

λ2
1µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (u,m2
1, µ

2))
)
. (46c)

Here, s, t, and u denote the Mandelstam variables

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2.

Next we will calculate the diagrams of the type shown in Fig. 3 (b). There are three
diagrams of this type which are shown in Fig. 8. The procedure of the derivation of the
analytic expressions corresponding to these diagrams is the same as in the previous case and
the result is

λ2
3µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (s,m2
2, µ

2))
)
, (47a)

λ2
3µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (t,m2
2, µ

2))
)
, (47b)

λ2
3µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (u,m2
2, µ

2))
)
. (47c)



Table 2: Analytical expressions corresponding to the elements of the Feynman diagrams for
the Lagrangian density in Eq. (54).

Pr
op

ag
at

or
s −→ i

p2 −M2
1 + iϵ

−→ −iδM1

−→ i

p2 −M2
2 + iϵ

−→ −iδM2

Ve
rt

ic
es

−→ −iΛ1 −→ −iδΛ1

−→ −iΛ2, −→ −iδΛ2 ,

−→ −iΛ3 −→ −iδΛ3 .



Figure 8: Three Feynman diagrams with four external particles of the type 1 and the vertices
of the type 3.

Figure 9: Feynman diagrams corresponding to the patterns in Fig. 3 (e) and (f).



Figure 10: Two Feynman diagrams corresponding to the pattern in Fig. 3 (g).

Figure 11: The setting sun diagram in the ϕ4 theory, which is divergent and requires the
introduction of a correction, related with the normalization of the scalar field.



The four body vertex with one loop contribution for four external particles of the type 1
is thus equal

λ1µ
4−d + λ2

1µ
4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(s, t, u,m2

1, µ
2)

))
+ λ2

3µ
4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(s, t, u,m2

2, µ
2)

))
. (48)

By changing the indices 1 ↔ 2 we obtain from Eq. (48) the four body vertex with one loop
contribution for four external particles of the type 2

λ2µ
4−d + λ2

2µ
4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(s, t, u,m2

2, µ
2)

))
+ λ2

3µ
4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(s, t, u,m2

1, µ
2)

))
. (49)

For the patterns in Fig. 3 (e) and (f) there is only one Feynman diagram, each in the
momentum space shown in Fig. 9 and the analytical expressions are:
For the pattern in Fig. 3 (e)

− iλ1λ3

2

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p1 + p2 − k)2 −m2
1 + iϵ

→
d=4

λ1λ3µ
4−d

16π2

( 1
d− 4 + 1

2(γ + F (s,m2
1, µ

2))
)

(50)



and for the pattern in Fig. 3 (f)

− iλ2λ3

2

∫ d4k

(2π)4
i

k2 −m2
2 + iϵ

· i

(p1 + p2 − k)2 −m2
2 + iϵ

→
d=4

λ2λ3µ
4−d

16π2

( 1
d− 4 + 1

2(γ + F (s,m2
2, µ

2))
)
. (51)

The last diagram that we consider is with pattern in Fig. 3 (g) for which we have two
diagrams in momentum space shown in Fig. 10 and the analytic expressions corresponding
to these diagrams are

−iλ2
3

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p1 + p2 − k)2 −m2
2 + iϵ

→
d=4

λ2
3µ

4−d

8π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|z(1 − z)s− zm2

1 − (1 − z)m2
2|

4πµ2

)
)
)

(52)

and

−iλ2
3

∫ d4k

(2π)4
i

k2 −m2
1 + iϵ

· i

(p1 − p4 − k)2 −m2
2 + iϵ

→
d=4

λ2
3µ

4−d

8π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|z(1 − z)u− zm2

1 − (1 − z)m2
2|

4πµ2

)
)
)
. (53)



5.2. One loop renormalization
5.2.1. Lagrangian density with counterterms and new Feynman rules

The first step in the renormalization program is to rewrite the original Lagrangian density (1)
by splitting it into two parts with identical structure

L = 1
2∂µϕ1∂

µϕ1 + 1
2∂µϕ2∂

µϕ2

− 1
2m

2
1ϕ

2
1 − 1

2m
2
2ϕ

2
2 − λ1

4! ϕ
4
1 − λ2

4! ϕ
4
2 − λ3

4 ϕ2
1ϕ

2
2

= 1
2∂µφ1∂

µφ1 + 1
2∂µφ2∂

µφ2 + δZ1

2 ∂µφ1∂
µφ1 + δZ2

2 ∂µφ2∂
µφ2

− 1
2M

2
1φ

2
1 − 1

2M
2
2φ

2
2 − Λ1

4! φ
4
1 − Λ2

4! φ
4
2 − Λ3

4 φ2
1φ

2
2

− δM1

2 φ2
1 − δM2

2 φ2
2 − δΛ1

4! φ
4
1 − δΛ2

4! φ
4
2 − δΛ3

4 φ2
1φ

2
2.

(54)

Here M1, M2, Λ1, Λ2 and Λ3 are new parameters of the Lagrangian density and the terms
containing δZ1 , δZ2 , δm1, δm2, δλ1, δλ2 and δλ3 are called counterterms. The fields φ1 and
φ2 have different normalization than the fields ϕ1 and ϕ2. The parameters m1, m2, λ1, λ2
and λ3 of the original Lagrangian density (1) are called bare parameters and the following



relations hold

ϕ1 =
√
Zφ1φ1, ϕ2 =

√
Zφ2φ2, Zϕ1 = 1 + δZ1 , Zϕ2 = 1 + δZ2 ,

m2
1 = M2

1 + δM1

Zφ1

, m2
2 = M2

2 + δM2

Zφ2

,

λ1 = Λ1 + δΛ1

Z2
φ1

, λ2 = Λ2 + δΛ2

Z2
φ2

, λ3 = Λ3 + δΛ3

Zφ1Zφ2

.

(55)

Splitting of the Lagrangian density, Eq. (54) introduces new rules for the Feynman
diagrams, which are shown in Table 2, which have to be used in calculation of the diagrams.

Before proceeding we have to specify, what we mean by the physical coupling constant.
From Subsection 5.1.2, we know that at the order of one loop the coupling constants do
depend on the Mandelstam variables s, t and u, so the definition of the physical coupling
constant has to be taken at certain values of these variables. In a determination of the
physical coupling constant we must use the Feynman rules from Table 2. A possible choice
of the Mandelstam variables is

for Λ1: s = 4M2
1 , t = 0, u = 0,

for Λ2: s = 4M2
2 , t = 0, u = 0,

for Λ3: s = 4M1M2, t = 0, u = 0.
(56)

We will consider other choices when we discuss the renormalization group equations.



5.2.2. Renormalization of the coupling constants

Using Eq. (48), prescription (56) and the Feynman rules from Table 2 we get for the Λ1 four
point Green’s function, which should be finite at the one loop level

Λ1µ
4−d + Λ2

1µ
4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

1 , 0, 0,M2
1 , µ

2)
))

+ Λ2
3µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

1 , 0, 0,M2
2 , µ

2)
))

+ δΛ1 , (57)

so in order to cancel the infinite terms in Eq. (57) we choose δΛ1 to be equal

δΛ1 = −Λ2
1µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

1 , 0, 0,M2
1 , µ

2)
))

− Λ2
3µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

1 , 0, 0,M2
2 , µ

2)
))
. (58)

Analogously we obtain

δΛ2 = −Λ2
2µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

2 , 0, 0,M2
2 , µ

2)
))

− Λ2
3µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

2 , 0, 0,M2
1 , µ

2)
))
. (59)



For Λ3 four point Green’s function we have

Λ3µ
4−d + Λ1Λ3µ

4−d

16π2

( 1
d− 4 + 1

2(γ + F (4M1M2,M
2
1 , µ

2))
)

+ Λ2Λ3µ
4−d

16π2

( 1
d− 4 + 1

2(γ + F (4M1M2,M
2
2 , µ

2))
)

+ Λ2
3µ

4−d

8π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|z(1 − z)4M1M2 − zM2

1 − (1 − z)M2
2 |

4πµ2

)
)
)

+ Λ2
3µ

4−d

8π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|zM2

1 + (1 − z)M2
2 |

4πµ2

)
)
)

(60)

and δΛ3 is equal

δΛ3 = −Λ1Λ3µ
4−d

16π2

( 1
d− 4 + 1

2(γ + F (4M1M2,M
2
1 , µ

2))
)

− Λ2Λ3µ
4−d

16π2

( 1
d− 4 + 1

2(γ + F (4M1M2,M
2
2 , µ

2))
)

− Λ2
3µ

4−d

8π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|z(1 − z)4M1M2 − zM2

1 − (1 − z)M2
2 |

4πµ2

)
)
)

− Λ2
3µ

4−d

8π2

( 1
d− 4 + 1

2(γ +
∫ 1

0
dz ln

(
|zM2

1 + (1 − z)M2
2 |

4πµ2

)
)
)
. (61)

Putting all previous results together and taking the limit d → 4 we obtain the following
result for the one loop amplitude of the process of elastic scattering of two particles of the



type 1

Λ1 + Λ2
1

32π2

(
FΣ(s, t, u,M2

1 , µ
2) − FΣ(4M2

1 , 0, 0,M2
1 , µ

2)
)

+ Λ2
3

32π2

(
FΣ(s, t, u,M2

2 , µ
2) − FΣ(4M2

1 , 0, 0,M2
2 , µ

2)
)
. (62)

The coupling constants Λ1, Λ2 and Λ3 are chosen to be finite. From Eqs. (55) it then
follows that the bare coupling constants λ1, λ2 and λ3 must have a pole at d = 4.

The one loop amplitude for the process of elastic scattering of two particles of the type 2
is equal

Λ2 + Λ2
2

32π2

(
FΣ(s, t, u,M2

2 , µ
2) − FΣ(4M2

2 , 0, 0,M2
2 , µ

2)
)

+ Λ2
3

32π2

(
FΣ(s, t, u,M2

1 , µ
2) − FΣ(4M2

2 , 0, 0,M2
1 , µ

2)
)

(63)

and the one loop amplitude for the process of elastic scattering of two particles, one of type



1 and the other of type 2 is equal

Λ3 + Λ1Λ3

16π2 (F (s,M2
1 , µ

2) − F (4M1M2,M
2
1 , µ

2))

+ Λ2Λ3

16π2 (F (s,M2
2 , µ

2) − F (4M1M2,M
2
2 , µ

2))

+ Λ2
3

16π2

( ∫ 1

0
dz ln

(
|z(1 − z)s− zM2

1 − (1 − z)M2
2 |

|z(1 − z)4M1M2 − zM2
1 − (1 − z)M2

2 |

))
+ Λ2

3
16π2

( ∫ 1

0
dz ln

(
|z(1 − z)u− zM2

1 − (1 − z)M2
2 |

|zM2
1 + (1 − z)M2

2 |

))
. (64)

5.2.3. Renormalization of the masses

The propagator of particle 1 is equal (at one loop δZ1 = 0 and δZ2 = 0)

i

p2 −M2
1 − δM1 − Σ1 − Σ1

3
. (65)

Here we were using the Feynman rules given in Table 2 and Σ1 an Σ1
3 are equal

Σ1 = Λ1M
2
1

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
M2

1
4πµ2

)))
, (66a)

Σ1
3 = Λ3M

2
2

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
M2

2
4πµ2

)))
. (66b)



The propagator has a pole at the value of the physical mass, which is equal to M1, so from
Eq. (65) we obtain the value of δM1

δM1 = −Σ1 − Σ1
3 (67)

and also for δM2 , after the interchange of the indices 1 ↔ 2

δM2 = −Σ2 − Σ2
3, (68)

where Σ2 and Σ2
3 are equal

Σ2 = Λ2M
2
2

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
M2

2
4πµ2

)))
, (69a)

Σ2
3 = Λ3M

2
1

16π2

( 1
d− 4 + 1

2
(
γ − 1 + ln

(
M2

1
4πµ2

)))
. (69b)

The corrections δM1 and δM2 have poles at d = 4, so from Eq. (55) it follows that the bare
masses m2

1 and m2
2 must also have poles at d = 4.

One should mention here that at the next order of the perturbation theory and also at
two loops, there is an additional type of the divergent diagram of the type shown in Fig. 11.
This divergence is removed by the parameters δZ1 ̸= 0 and δZ2 ̸= 0 and the normalization of
the fields ϕ1 and ϕ2 is modified. It will be discussed in Sec. 7.



6. One loop renormalization group equations
6.1. Derivation of equations
Renormalization group equations (RGE) in field theory [4,5] provide a method for the study
of the asymptotic behavior of the Green’s functions. The first step in the derivation of
the RGEs is the demonstration that the Green’s functions do not depend on the cut-off
parameter µ and the determination of the equations for the Green’s functions. From the split
form of the Lagrangian density (54) it follows that we have two sets of the Green’s functions:
one set for the original Lagrangian density, dependent on the parameters m1, m2, λ1, λ2, λ3
and the other set of Green’s functions obtained from the Lagrangian density after splitting,
dependent on M1, M2, Λ1, Λ2, Λ3 and µ. These two sets of Green’s functions describe the
same theory, so they have to be equal and we have the following relations between these
Green’s functions in the space-time dimension d

G
(n)
i1...in

(p1, . . . pn, λ1, λ2, λ3,m1,m2, d)

= Z
−n1/2
ϕ1

Z
−n2/2
ϕ2

G(n)
i1...in

(p1, . . . , pn,Λ1,Λ2,Λ3,M1,M2, d, µ). (70)

Here the function G
(n)
i1...in

is the Green’s function before the splitting of the Lagrangian
density and G(n)

i1...in
is the Green’s function after the splitting, which is finite. The n1 and

n2 denote the number of fields in the Green’s function of type 1 and type 2, respectively,
(n1 + n2 = n).

The left-hand side of Eq. (70) does not depend on µ, so the right-hand side cannot depend



on µ either. If we differentiate Eq. (70) with respect to µ then we obtain[
µ
∂

∂µ
+ µ

∂Λ1

∂µ

∂

∂Λ1
+ µ

∂Λ2

∂µ

∂

∂Λ2
+ µ

∂Λ3

∂µ

∂

∂Λ3

+ µ
∂M1

∂µ

∂

∂M1
+ µ

∂M2

∂µ

∂

∂M2
− µ

n1

2
∂ lnZφ1

∂µ

− µ
n2

2
∂ lnZφ2

∂µ

]
G(n)

i1...in
(p1, . . . , pn,Λ1,Λ2,Λ3,M1,M2, d, µ) = 0. (71)

Eq. (71) is the condition that the Green’s functions have to fulfill that the physical predictions
of the theory do not depend on the choice of the renormalization point µ. Conventionally
one introduces the notation

βΛi
(Λ1,Λ2,Λ3,

M1

µ
,
M2

µ
, d) = µ

∂Λi

∂µ
, i = 1, 2, 3,

γdi(Λ1,Λ2,Λ3,
M1

µ
,
M2

µ
, d) = µ

2
∂ lnZφi

∂µ
, i = 1, 2,

γMi
(Λ1,Λ2,Λ3,

M1

µ
,
M2

µ
, d) = µ

2
∂ lnM2

i

∂µ
, i = 1, 2.

(72)

Next, one considers the Green’s function with the momenta scaled by the factor t:
G(n)

i1...in
(tp1, . . . , tpn,Λ1,Λ2,Λ3,M1,M2, d, µ), which has the dimension 4 − n + (4−d)(n−2)

2



and fulfills the following scaling equation[
µ
∂

∂µ
+ t

∂

∂t
+M1

∂

∂M1
+M2

∂

∂M2
−

(
4 − n+ (4 − d)(n− 2)

2

)]
G(n)

i1...in
(tp1, . . . , tpn,Λ1,Λ2,Λ3,M1,M2, d, µ) = 0. (73)

After subtracting Eq. (73) from Eq. (71) and taking the limit d → 4 we obtain an equation
that describes the scaling properties of the Green’s functions[

− t
∂

∂t
+ βΛ1

∂

∂Λ1
+ βΛ2

∂

∂Λ2
+ βΛ3

∂

∂Λ3
+

(
γM1 − 1

)
M1

∂

∂M1

+
(
γM2 − 1

)
M2

∂

∂M2
− n1γd1 − n2γd2 + 4 − n

]
G(n)

i1...in
(tp1, . . . , tpn,Λ1,Λ2,Λ3,M1,M2, 4, µ) = 0. (74)

The solution of Eq. (74) can be expressed in the following way

G(n)
i1...in

(tp1, . . . , tpn,Λ1,Λ2,Λ3,M1,M2, 4, µ)

= t4−n exp
[

− n1

∫ t

1

γM1(τ)dτ
τ

]
exp

[
− n2

∫ t

1

γM2(τ)dτ
τ

]
× G(n)

i1...in
(p1, . . . , pn,Λ1(t),Λ2(t),Λ3(t),M1(t),M2(t), 4, µ). (75)



Here Λ1(t), Λ2(t), Λ3(t), M1(t), M2(t) are the running coupling constants and masses that
fulfill the following equations and initial conditions

t
dΛi(t)

dt = βΛi
(Λ1(t),Λ2(t),Λ3(t),M1(t),M2(t)), i = 1, 2, 3, (76a)

t
dMi(t)

dt = Mi(t)(γMi
(Λ1(t),Λ2(t),Λ3(t),M1(t),M2(t)) − 1), i = 1, 2. (76b)

Λ1(0)= Λ1, Λ2(0) = Λ2, Λ3(0) = Λ3, M1(0) = M1, M2(0) = M2. (76c)

Eq. (75) is the key relation of the renormalization group method: it relates the Green’s
functions at scaled momenta and unscaled coupling constants with Green’s functions at
unscaled momenta and scaled coupling constants. Eqs. (76) are called the renormalization
group equations for the running coupling constants and masses. The solutions of these
equations, with the help of Eq. (75), give the information about the asymptotic behavior of the
theory. The right-hand side of Eqs. (76), the functions βΛi

(Λ1(t),Λ2(t),Λ3(t),M1(t),M2(t))
and γMi(Λ1(t),Λ2(t),Λ3(t),M1(t),M2(t)), can only be determined perturbatively and we
will find now their form at order of one loop.

6.2. Calculation of the β functions
The definition of the β and γ functions is given in Eqs. (72), which show that in general
they depend on the coupling constants Λi and the masses Mi. The βΛi

functions contain the
derivatives of Λi with respect to µ, the mass parameter in the dimensional renormalization.
The calculation of this derivative is not a straightforward matter, because we do not know



the dependence of Λi on µ, but we know the dependence of the bare coupling constants λi

as functions of the renormalized coupling constants Λi.
Let us start with the determination of the β functions, which are analytic at d = 4. It

means that the expansion around point d = 4 has the form

βΛi
(Λ1,Λ2,Λ3, d, µ) =

∞∑
l=0

bΛi

l (Λ1,Λ2,Λ3, µ)(d− 4)l (77)

and at d = 4

µ
∂Λi

∂µ

∣∣∣∣∣
d=4

= βΛi
(Λ1,Λ2,Λ3, 4, µ) = bΛi

0 , (78)

so we have to calculate bΛi
0 .

The unrenormalized coupling constant λ1 which is independent of the cut off µ has a
Laurent expansion around point d = 4

λ1 = Λ1 + δλ1

Z2
φ1

= µ4−d

[
Λ1 +

∞∑
l=1

aΛ1
l (Λ1,Λ2,Λ3)

(d− 4)l

]
. (79)

The right hand side of Eq. (79) depends on µ explicitly through the factor µ4−d and implicitly



through the coupling constants Λi. If we differentiate Eq. (79) with respect to µ we obtain

0 = µ
∂λ1

∂µ
= (4 − d)µ4−d

[
Λ1 +

∞∑
l=1

aΛ1
l

(d− 4)l

]

+ µ4−dµ
∂Λ1

∂µ

[
1 +

∞∑
l=1

∂aΛ1
l

∂Λ1

1
(d− 4)l

]
+ µ4−dµ

∂Λ2

∂µ

∞∑
l=1

∂aΛ1
l

∂Λ2

1
(d− 4)l

+ µ4−dµ
∂Λ3

∂µ

∞∑
l=1

∂aΛ1
l

∂Λ3

1
(d− 4)l

= (4 − d)µ4−d

[
Λ1 +

∞∑
l=1

aΛ1
l

(d− 4)l

]

+ µ4−dβΛ1

[
1 +

∞∑
l=1

∂aΛ1
l

∂Λ1

1
(d− 4)l

]
+ µ4−dβΛ2

∞∑
l=1

∂aΛ1
l

∂Λ2

1
(d− 4)l

+ µ4−dβΛ3

∞∑
l=1

∂aΛ1
l

∂Λ3

1
(d− 4)l

. (80)



The coefficients at various powers of (d− 4) in Eq. (80) are equal

−aΛ1
1 + bΛ1

0 +
∞∑

l=1

(
bΛ1

l

∂aΛ1
l

∂Λ1
+ bΛ2

l

∂aΛ1
l

∂Λ2
+ bΛ3

l

∂aΛ1
l

∂Λ3

)
= 0 at (d− 4)0 (81a)

−Λ1 + bΛ1
1 +

∞∑
l=1

(
bΛ1

l+1
∂aΛ1

l

∂Λ1
+ bΛ2

l+1
∂aΛ1

l

∂Λ2
+ bΛ3

l+1
∂aΛ1

l

∂Λ3

)
= 0 at (d− 4)1 (81b)

bΛ1
k +

∞∑
l=1

(
bΛ1

l+k

∂aΛ1
l

∂Λ1
+ bΛ2

l+k

∂aΛ1
l

∂Λ2
+ bΛ3

l+k

∂aΛ1
l

∂Λ3

)
= 0 at (d− 4)k, k ≥ 2 (81c)

−ak+1 +
∞∑

l=1

(
bΛ1

l

∂aΛ1
l+k

∂Λ1
+ bΛ2

l

∂aΛ1
l+k

∂Λ2
+ bΛ3

l

∂aΛ1
l+k

∂Λ3

)
= 0 at (d− 4)−k, k ≥ 1. (81d)

Similar equations hold for µ∂λ2
∂µ and µ∂λ3

∂µ . Eqs. (81) are the recursive equations for the
coefficients bΛ1

k of expansion of the beta functions in terms of the coefficients aΛi

k that are
calculated in the renormalization process. From Eqs. (81c), which are linear homogeneous
equations it follows that

bΛi

k = 0 for k ≥ 2 and i = 1, 2, 3. (82)

It means that we have the following equations for the coefficients bΛi
0 and bΛi

1

−aΛi
1 + bΛi

0 +
(
bΛ1

1
∂aΛi

1
∂Λ1

+ bΛ2
1
∂aΛi

1
∂Λ2

+ bΛ3
1
∂aΛi

1
∂Λ3

)
= 0

−Λi + bΛi
1 = 0

 i = 1, 2, 3, (83)



which immediately give

βΛi
= bΛi

0 = aΛi
1 −

(
Λ1
∂aΛi

1
∂Λ1

+ Λ2
∂aΛi

1
∂Λ2

+ Λ3
∂aΛi

1
∂Λ3

)
. (84)

Let us calculate now the functions βΛi
at one loop. From Eqs. (55) and (58) we have

(Zϕi
= 1 at one loop)

λ1 = Λ1 + δλ1 = Λ1 − Λ2
1µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

1 , 0, 0,M2
1 , µ

2)
))

− Λ2
3µ

4−d

16π2

( 3
d− 4 + 3

2γ + 1
2

(
FΣ(4M2

1 , 0, 0,M2
2 , µ

2)
))

(85)

and we see that aΛ1
1 is equal

aΛ1
1 = −3(Λ2

1 + Λ2
3)

16π2 , (86)

so βΛ1 is equal

βΛ1 = 3(Λ2
1 + Λ2

3)
16π2 . (87)

βΛ2 is obtained by the exchange of the indices

βΛ2 = 3(Λ2
2 + Λ2

3)
16π2 . (88)



From Eq. (61) we obtain the value of aΛ3
1

aΛ3
1 = − (Λ1 + Λ2)Λ3

16π2 − Λ2
3

4π2 (89)

and βΛ3

βΛ3 = (Λ1 + Λ2)Λ3

16π2 + Λ2
3

4π2 . (90)

The one loop renormalization group equations have thus the form

t
∂Λ1

∂t
= 3(Λ2

1 + Λ2
3)

16π2 , (91a)

t
∂Λ2

∂t
= 3(Λ2

2 + Λ2
3)

16π2 , (91b)

t
∂Λ3

∂t
= (Λ1 + Λ2)Λ3

16π2 + Λ2
3

4π2 . (91c)

We will now find the renormalization group equations for the masses Mi. The procedure
is similar to the derivation of the renormalization group equations for the coupling constant.
The functions γMi

from Eq. (72) are analytic at d = 4 and have the expansion

γMi
(Λ1,Λ2,Λ3, d, µ) =

∞∑
l=0

gMi

l (Λ1,Λ2,Λ3, µ)(d− 4)l (92)



and at d = 4
µ

2
∂M2

i

∂µ

∣∣∣∣∣
d=4

= γMi(Λ1,Λ2,Λ3, 4, µ) = gMi
0 . (93)

We also have the relation between m2
i and M2

i

m2
i = M2

1

∞∑
l=0

bMi

l (Λ1,Λ2,Λ3)
(d− 4)l

+M2
2

∞∑
l=0

cMi

l (Λ1,Λ2,Λ3)
(d− 4)l

, (94)

bM1
0 = 1, bM2

0 = 0, cM1
0 = 0, cM2

0 = 1.

At one loop Eq. (94) for m2
1 reads

m2
1 = M2

1 = M2
1 + δm1

Zϕ1

= M2
1 − Λ1M

2
1 + Λ3M

2
2

16π2(d− 4) . (95)

The bare masses mi do not depend on µ, so differentiating Eq. (94) with respect to µ we
obtain

0 = µ
∂m2

1
∂µ

= µ
∂M2

1
∂µ

− 1
16π2(d− 4)

(
M2

1µ
∂Λ1

∂µ
+M2

2µ
∂Λ3

∂µ

)
. (96)

The derivatives µ(∂Λi)/(∂µ) at order (d− 4) are equal

µ
∂Λi

∂µ
= (d− 4)Λi, (97)



so we obtain
µ
∂M2

1
∂µ

= Λ1M
2
1 + Λ3M

2
2

16π2 . (98)

The functions γMi
are thus equal

γM1 = Λ1M
2
1 + Λ3M

2
2

32π2M2
1

, γM2 = Λ2M
2
2 + Λ3M

2
1

32π2M2
2

(99)

and the one loop renormalization group equations for the masses are equal

t
∂M2

1
∂t

= Λ1M
2
1 + Λ3M

2
2

32π2 (100a)

t
∂M2

2
∂t

= Λ2M
2
2 + Λ3M

2
1

32π2 . (100b)

7. Renormalization at two loops
The complexity of calculations in field theory is rapidly increasing with the order of the
perturbation theory and the number of loops. The reason is that the number of the Feynman
diagrams grows very fast at each order and its structure becomes more involved. To overcome
these difficulties there have been developed various methods to generate the diagrams and
the corresponding analytical expressions together with the explicit calculation of the integrals.
In this paper we will consider the FeynArts [6, 7], which is the Mathematica package for
the determination of the Feynman diagrams of the QED and Standard Model and some of



Figure 12: Listing of the Mathematica program for generation of the driver files for the
FeynArts package.



Figure 13: Command to generate and draw the two loop topology diagrams, using the
FeynArts package of Mathematica. The full program is given in Appendix ??.



Figure 14: Feynman diagrams at two loops for the propagator of the particle 1. The
full program is given in Appendix ??. The labels (a)–(f) were added after evaluation by
Mathematica.



Figure 15: Counter term Feynman diagrams at two loops for the propagator of the particle 1.
The labels (a)–(d) were added after evaluation by Mathematica. The full program is given in
Appendix ??.



its extensions. For each of the considered models there is a special driver file (with the
extension “.mod”), which contains the information about the Feynman rules. The package
also contains a generic file, with the information about the kinematic (Lorentz) structure of
the fields and of the vertices. The model of two interacting scalar fields is not included in
the FeynArts, so we have prepared the corresponding driver file, using the FeynRules [8–10],
which is another Mathematica package dedicated to the generation of such driver files directly
from the Lagrangian density. The prepared FeynRules file, called scalar2.fr is given in
Appendix ??. The listing of the Mathematica program to generate the files scalars.gen and
scalars.mod is given in Fig. 12 and the listings of the files scalars2.gen and scalars2.mod
thus obtained are given in Appendix ??.

With the help of the driver files for our model we can generate the Feynman diagrams.
For this purpose we use the Mathematica program which is given in Appendix ??. First,
we execute the command, which generates the topology diagrams for two loop propagator,
which are shown in the listing shown in Fig. 13. The next step is to attach particles and
vertices to the topology diagrams. This is shown in Fig. 14. We see that at two loops we
have 6 diagrams for the propagator of particle 1.



The analytical expressions for the two loop diagrams (a)–(f) are

i(−iΛ1)2 1
4

∫ d4k1

(2π)4
i

k2
1 −M2

1 + iϵ

∫ d4k2

(2π)4
(i)2

(k2
2 −M2

1 + iϵ)2 , (101a)

i(−iΛ1)(−iΛ3)1
4

∫ d4k1

(2π)4
i

k2
1 −M2

2 + iϵ

∫ d4k2

(2π)4
(i)2

(k2
2 −M2

1 + iϵ)2 , (101b)

i(−iΛ3)2 1
4

∫ d4k1

(2π)4
i

k2
1 −M2

1 + iϵ

∫ d4k2

(2π)4
(i)2

(k2
2 −M2

2 + iϵ)2 , (101c)

i(−iΛ2)(−iΛ3)1
4

∫ d4k1

(2π)4
i

k2
1 −M2

2 + iϵ

∫ d4k2

(2π)4
(i)2

(k2
2 −M2

2 + iϵ)2 , (101d)

i(−iΛ1)2 1
6

∫ d4k1

(2π)4

∫ d4k2

(2π)4
i

k2
1 −M2

1 + iϵ

i

k2
2 −M2

1 + iϵ

× i

(p− k1 + k2)2 −M2
1 + iϵ

, (101e)

i(−iΛ3)2 1
4

∫ d4k1

(2π)4

∫ d4k2

(2π)4
i

k2
1 −M2

2 + iϵ

i

k2
2 −M2

2 + iϵ

× i

(p− k1 + k2)2 −M2
1 + iϵ

. (101f)

The integrals in Eqs. (101) are divergent, so their singularities have to be removed by
regularization and renormalization.



For a complete renormalization program we also need the Feynman diagrams with counter
terms, which are shown in Fig. 15. The analytical expressions corresponding to the diagrams
in Fig. 15 are the following

i(−iδΛ1)1
2

∫ d4k

(2π)4
i

k2 −M2
1 + iϵ

, (102a)

i(−iδΛ3)1
2

∫ d4k

(2π)4
i

k2 −M2
2 + iϵ

, (102b)

i(−iΛ1)(−iδM1)1
2

∫ d4k2

(2π)4
(i)2

(k2
2 −M2

1 + iϵ)2 , (102c)

i(−iΛ3)(−iδM2)1
2

∫ d4k

(2π)4
(i)2

(k2 −M2
2 + iϵ)2 . (102d)

In our analysis we will limit ourselves only to the discussion of the divergent terms. The
evaluation of the diagrams displayed in Fig. 14 (a)-(d) with the corresponding formulas given



in Eqs. (101) (a)-(d) is simple and the result is the following

i(−iΛ1µ
4−d)2 1

4 i(−i)i
Γ(1 − d

2 )
(4π) d

2 Γ(1)
1

(M2
1 )1− d

2

Γ(2 − d
2 )

(4π) d
2 Γ(2)

1
(M2

1 )2− d
2
, (103a)

i(−iΛ1µ
4−d)(−iΛ3µ

4−d)1
4 i(−i)i

Γ(1 − d
2 )

(4π) d
2 Γ(1)

1
(M2

2 )1− d
2

Γ(1 − d
2 )

(4π) d
2 Γ(1)

1
(M2

1 )1− d
2
, (103b)

i(−iΛ3µ
4−d)2 1

4 i(−i)i
Γ(1 − d

2 )
(4π) d

2 Γ(1)
1

(M2
1 )1− d

2

Γ(2 − d
2 )

(4π) d
2 Γ(2)

1
(M2

2 )2− d
2
, (103c)

i(−iΛ2µ
4−d)(−iΛ3µ

4−d)1
4 i(−i)i

Γ(1 − d
2 )

(4π) d
2 Γ(1)

1
(M2

2 )1− d
2

Γ(1 − d
2 )

(4π) d
2 Γ(1)

1
(M2

2 )1− d
2
. (103d)

Next we calculate the diagrams corresponding to the couterterms given in Fig. 15 (a)-(d).



Using the formulas from Eqs. (102) we get

i(−δΛ1)i(−i)1
2

Γ(1 − d
2 )

(4π) d
2 Γ(1)

1
(M2

1 )1− d
2
, (104a)

i(−δΛ2)i(−i)1
2

Γ(1 − d
2 )

(4π) d
2 Γ(1)

1
(M2

2 )1− d
2
, (104b)

i(−iΛ1)(−iδM1)
Γ(2 − d

2 )
(4π) d

2 Γ(2)
1

(M2
1 )2− d

2
, (104c)

i(−iΛ3)(−iδM2)
Γ(2 − d

2 )
(4π) d

2 Γ(2)
1

(M2
2 )2− d

2
. (104d)

The following step is to find the sum of all diagrams from Figs. 14 (a)-(d) and 15 and
calculate the divergent contributions for the spacetime dimension d = 4. It turns out that
all divergent contributions cancel at this order 6.

We will now consider the remaining two setting sun diagrams in Figs. 14 (e) and (f). These
diagrams are an example of the overlapping divergencies and such diagrams are more difficult
to calculate [11, 12]. From Eqs. (101e) and (101f) one can see that they are quadratically
divergent. The analytic structure of both equations is identical, but Eq. (101f) is more
general, because it contains two different masses. Such a diagram is not present for the case
of one scalar field. Another important property of these diagrams is their dependence on the
external momentum p of the particle. The integral in Eq. (101f) converted to the Euclidean

6It should be noticed that such a cancellation does not occur for the case of only one scalar field



space in d dimensions has the form

I(p2) =
∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
k2

1 +M2
2

1
k2

2 +M2
2

1
(p− k1 + k2)2 +M2

1
(105)

and it is the function of p2, so its Taylor expansion in powers of p2 is

I(p2) = I(0) + p2
(pµ

p2
∂I(p2)
∂pµ

)∣∣∣
p2=0

+ 1
2! p

4
(pµpν

p4
∂2I(p2)
∂pµ∂pν

)
|p2=0 + · · · (106)

The first term I(0) is quadratically divergent and the next term, linear in p2 is logarithmically
divergent. The third term and all higher terms are convergent. The fact that the second term
is divergent is important, because it has to be included in the renormalization procedure
and it gives contribution to the term δZ1 in Eq. (54).

The integral for the first term in Eq. (106) is equal

I(0) =
∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
k2

1 +M2
2

1
k2

2 +M2
2

1
(k1 − k2)2 +M2

1
. (107)

The first step in the calculation of this integral is to apply the scheme of t’Hooft and
Veltman [3] which consists in inserting the following expression into the integral

1 = 1
2d

(∂(k1)µ

∂(k1)µ
+ ∂(k2)µ

∂(k2)µ

)



and then integrating by parts. After such an operation one obtains

I(0) = − 1
2d

(
− 6I(0)

+ 2M2
1

∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
k2

1 +M2
2

1
k2

2 +M2
2

1
((k1 − k2)2 +M2

1 )2

+ 4M2
2

∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
(k2

1 +M2
2 )2

1
k2

2 +M2
2

1
(k1 − k2)2 +M2

1

)
(108)

so I(0) becomes

I(0) = − 1
d− 3

×
(
M2

1

∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
k2

1 +M2
2

1
k2

2 +M2
2

1
((k1 − k2)2 +M2

1 )2

+ 2M2
2

∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
(k2

1 +M2
2 )2

1
k2

2 +M2
2

1
(k1 − k2)2 +M2

1

)
. (109)

The second integral in Eq. (109) is calculated as follows
∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
(k2

1 +M2
2 )2

1
k2

2 +M2
2

1
(k1 − k2)2 +M2

1
(110a)

=
∫ ddk1

(2π)d

∫ ddk2

(2π)d

∫ 1

0
dx 1

(k2
1 +M2

2 )2
1

(x(k2
2 +M2

2 ) + (1 − x)((k1 − k2)2 +M2
1 ))2 (110b)



=
∫ ddk1

(2π)d

∫ ddk2

(2π)d

∫ 1

0
dx 1

(k2
1 +M2

2 )2

× 1
(k2

2 − 2(1 − x)k1k2 + (1 − x)k2
1 + xM2

2 + (1 − x)M2
1 )2 (110c)

=
∫ ddk1

(2π)d

∫ Γ(2 − d
2 )

(4π) d
2

∫ 1

0
dx 1

(k2
1 +M2

2 )2
1

(x(1 − x)k2
1 + xM2

2 + (1 − x)M2
1 )2− d

2
(110d)

=
∫ ddk1

(2π)d

∫ Γ(2 − d
2 )

(4π) d
2

∫ 1

0
dx 1

(k2
1 +M2

2 )2
(x(1 − x)) d

2 −2(
k2

1 + xM2
2 +(1−x)M2

1
x(1−x)

)2− d
2

(110e)

=
∫ ddk1

(2π)d

Γ(4 − 2
d )

(4π) d
2

∫ 1

0
dx

∫ 1

0
dy (x(1 − x)) d

2 −2y1− d
2 (1 − y)(

(1 − y)(k2
1 +M2

2 ) + y
(
k2

1 + xM2
2 +(1−x)M2

1
x(1−x)

))4− d
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(110f)

= Γ(4 − d)
(4π)d

∫ 1

0
dx

∫ 1

0
dy (x(1 − x)) d

2 −2y1− d
2 (1 − y)(

(1 − y)M2
2 + y

( xM2
2 +(1−x)M2

1
x(1−x)

))4−d
(110g)

= − Γ(4 − d)
(4π)d(2 − d

2 )

∫ 1

0
dx

∫ 1

0
dy(x(1 − x)) d

2 −2y2− d
2

× d
dy

 (1 − y)(
(1 − y)M2

2 + y
( xM2

2 +(1−x)M2
1

x(1−x)
))4−d

. (110h)

Let us explain each step in Eqs. (110)

Eq. (110a)→ (110b) Feynman prescription.

Eq. (110b)→ (110c) Transformation of the denominator under the integral.

Eq. (110c)→ (110d) Integration over k2.



Eq. (110d)→ (110e) Transformation of the fraction under the integral.

Eq. (110e)→ (110f) Feynman prescription.

Eq. (110f)→ (110g) Integration over k1.

Eq. (110g)→ (110h) Integration by parts, using the identity

y1− d
2 = 1

2 − d
2

dy2− d
2

dy .

The integrated function in Eq. (110h) has no singularity at d = 4 and it can be expanded in
the Taylor series at d = 4. The first two terms of this expansion can be explicitly integrated
and the final result for the integral (110h) at this order is∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
(k2

1 +M2
2 )2

1
k2

2 +M2
2

1
(k1 − k2)2 +M2

1

= Γ(4 − d)
(4π)d(2 − d

2 )
(
1 + (d− 4)

(
− 1

2 + lnM2
2
))
. (111)

In analogy with the first integral in Eq. (109) we obtain∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
k2

1 +M2
2

1
k2

2 +M2
2

1
((k1 − k2)2 +M2

1 )2

= Γ(4 − d)
(4π)d(2 − d

2 )
(
1 + (d− 4)

(
− 1

2 + lnM2
1
))
. (112)



We will now calculate the second term in Eq. (106). It is equal

pµ

p2
∂

∂pµ

∫ ddk1

(2π)d

∫ ddk2

(2π)d

1
k2

1 +M2
2

1
k2

2 +M2
2

1
(p− k1 + k2)2 +M2

1

∣∣∣
p2=0

. (113)

Let us calculate the integral in Eq. (113). After making the same transformations as in the
previous integral we obtain

− pµ

2p2
Γ(3 − d)

(4π)d

∂

∂pµ

∫ 1

0
d(x(1 − x))

d
2 −2

×
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2
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2 + y

( xM2
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1
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))3−d
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(114a)

= (3 − d)Γ(3 − d)
(4π)d
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0
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(114b)
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(4π)d
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∫ 1

0
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2 + y
( xM2
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x(1−x)
))4−d

. (114c)



The singular term at d = 4 of the integral in Eq. (114c) is equal

Γ(4 − d)
2(4π)d

. (115)

The contribution of the same type of the integral in Fig. 14 (f) is the same as for the diagram
in Fig. 14 (e) and the sum of the all divergent contributions to the diagrams in Figs. 14
and 15 is equal

3M2
1 (Λ1µ

4−d)2

6(d− 3)
Γ(4 − d)

(4π)d(2 − d
2 )

(
1 + (d− 4)

(
− 1

2 + lnM2
1
))

+(Λ3µ
4−d)2
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(4π)d(2 − d
2 )

×
(
M2

1
(
1 + (d− 4)

(
− 1

2 + lnM2
1
))

+2M2
2
(
1 + (d− 4)

(
− 1

2 + lnM2
2
)))

− p2 Γ(4 − d)
2(4π)d

( (Λ1µ
4−d)2

6 + (Λ3µ
4−d)2

4

)
. (116)

To obtain the counterterms one has to expand the formula in Eq. (116) around the point



d = 4 and keep only the divergent terms. The result of this procedure is

1
2(d− 4)2 (2M2

1 Λ̂2
1 + (M2

1 + 2M2
2 )Λ̂2

3)

+ 1
4(d− 4)(M2

1 (2Λ̂2
1 + Λ̂2

3)(−3 + 2γ + 2 ln
(
M2

1
4πµ2

)
))

+ 1
4(d− 4)(2M2

2 (2Λ̂2
3 + Λ̂2

3)(−3 + 2γ + 2 ln
(
M2

2
4πµ2

)
))

+ p2

24(d− 4)(2Λ̂2
1 + 3Λ̂2

3). (117)

Here we introduced the notation
Λ̂i = Λi

(4π)2 .

Equation (117) defines the two loop counterterms for the propagator of the particle 1. It
consists of two different types of terms. The first type does not depend on the external
momentum p2 and it gives the two loop contribution to δM1 . The term proportional to p2

cannot be included in the counterterm δM1 and it is included in the counterterm δZ1 . The
results for the propagator of the particle 2 are obtained from those for the particle 1 by a
simple exchange of the indices for the masses and coupling constants.

To complete the renormalization program at two loops one has to consider the renormaliza-
tion of the coupling constants. The necessary diagrams generated by the FeynArts program are



given in the figure below.



Technically, the diagrams shown in this figure do not present any new difficulties and they
can be calculated using the methods described above. For this reason we will not calculate
these diagrams here.

8. Conclusions
We have presented here a detailed description of the renormalization of the quantum field
theory of two interacting scalar fields with an interaction described by the 4-th order
homogeneous polynomial. Such a theory is an extension of the quantum field theory of
one scalar field with a potential equal to ϕ4. The theory with one scalar field is discussed
in many textbooks (see for example [11,13–16]), but the most complete discussion can be
found in the book by Hagen Kleinert and Verena Schulte-Frohlinde [12]. The theory with
two scalar fields shows many similarities with one scalar field model, but there are some
differences. The most important one is the cancellation of the divergencies in Figs. 14 (a)-(d)
and 15. Such cancellation does not occur for one scalar field. Another important feature of
the theory with two scalar fields is the fact that it is a step forward in the path to study
possible symmetries under the finite symmetry group transformations of systems of several
scalar fields. Such symmetries may introduce some new and unexpected properties of these
systems.
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Appendices

A. Wick’s theorem
The calculation of the matrix elements of the time ordered products of the fields is done with
the help of the Wick’s theorem that transforms the time ordered product into the normal
product of the fields denoted by : · · · :. Let us consider for simplicity that we have only one
scalar field ϕ(x). For the product of n such scalar fields the Wick’s theorem states:

T (ϕ(x1)ϕ(x2) · · ·ϕ(xn)) =: ϕ(x1)ϕ(x2) · · ·ϕ(xn) : + : ϕ(x1)ϕ(x2) · · ·ϕ(xn) :

+ : ϕ(x1)ϕ(x2)ϕ(x3) · · ·ϕ(xn) : + · · · + : ϕ(x1)ϕ(x2) · · ·ϕ(xn) :

+ : ϕ(x1)ϕ(x2)ϕ(x3) · · ·ϕ(xn) : + · · · + : ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) · · ·ϕ(xn) :

+ · · · + : ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) · · ·ϕ(xn) : + · · · (A-1)



Here the symbol of contraction ϕ(xi)ϕ(xj) means that the contracted pair of the fields has
to be substituted by

ϕ(xi)ϕ(xj) → ⟨0|T (ϕ(xi)ϕ(xj))|0⟩ = i∆(xi − xj) (A-2)

and the contractions have to be taken over all possible pairs of fields. If there are more kinds
of fields then the contractions have to be taken only for those pairs of fields that do not
commute. The remaining diagrams obtained from Fig. 3 are also logarithmically divergent.

B. Calculation of G
(4)
1111

Let us introduce the shorthand notation

ϕI
i(xk) → ϕk

i and ϕI
i(z) → ϕz

i .

Using this notation and the explicit form of V(ϕI
1(z), ϕI

2(z)) we have to calculate three types
of the terms

T (ϕ1
1, ϕ

2
1, ϕ

3
1, ϕ

4
1, ϕ

z
1, ϕ

z
1, ϕ

z
1, ϕ

z
1) (B-1a)

T (ϕ1
1, ϕ

2
1, ϕ

3
1, ϕ

4
1, ϕ

z
2, ϕ

z
2, ϕ

z
2, ϕ

z
2) (B-1b)

T (ϕ1
1, ϕ

2
1, ϕ

3
1, ϕ

4
1, ϕ

z
1, ϕ

z
1, ϕ

z
2, ϕ

z
2). (B-1c)

All of the Wick’s contractions for Eq. (B-1a) giving connected diagrams are shown in Table 3
and each term in this equation gives the same contribution which is equal

T (ϕI
1(x1), ϕI

1(z))T (ϕI
1(x2), ϕI

1(z))T (ϕI
1(x3), ϕI

1(z))T (ϕI
1(x4), ϕI

1(z)). (B-2)



Table 3: All the Wick’s contractions for Eq. (B-1a) giving connected diagrams.
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The time ordered products in Eqs. (B-1b) and (B-1c) lead to the disconnected diagrams
and do not contribute.

Concluding, there are 24 equal terms in Eq. (B-1a) so we see that the factor 1/4! in
V(ϕI

1(z), ϕI
2(z)) is canceled and the final result is

T (ϕI
1(x1), ϕI

1(x2), ϕI
1(x3), ϕI

1(x4),V(ϕI
1(z), ϕI

2(z)))
= λ1T (ϕI

1(x1)ϕI
1(z))T (ϕI

1(x2)ϕI
1(z))T (ϕI

1(x3)ϕI
1(z))T (ϕI

1(x4)ϕI
1(z)). (B-3)

Similarly we obtain

T (ϕI
2(x1), ϕI

2(x2), ϕI
2(x3), ϕI

2(x4),V(ϕI
1(z), ϕI

2(z)))
= λ2T (ϕI

2(x1), ϕI
2(z))T (ϕI

2(x2), ϕI
2(z))T (ϕI

2(x3), ϕI
2(z))T (ϕI

2(x4), ϕI
2(z)) (B-4)

and this demonstrates that there is no factor 1/4! in the Feynman diagrams with coupling
constants λ1 and λ2 in Table 1.

C. Calculation of G
(4)
1122

This time we have to calculate three types of terms

T (ϕ1
1, ϕ

2
1, ϕ

3
2, ϕ

4
2, ϕ

z
1, ϕ

z
1, ϕ

z
1, ϕ

z
1) (C-1a)

T (ϕ1
1, ϕ

2
1, ϕ

3
2, ϕ

4
2, ϕ

z
2, ϕ

z
2, ϕ

z
2, ϕ

z
2) (C-1b)

T (ϕ1
1, ϕ

2
1, ϕ

3
2, ϕ

4
2, ϕ

z
1, ϕ

z
1, ϕ

z
2, ϕ

z
2). (C-1c)



The time ordered products in Eqs. (C-1a) and (C-1b) lead to disconnected diagrams so they
do not contribute to the G(4)

1122.
All the Wick’s contractions for Eq. (C-1c) giving connected diagrams are shown in Table 4

and each term in this equation gives the same contribution which is equal

T (ϕI
1(x1), ϕI

1(z))T (ϕI
1(x2), ϕI

1(z))T (ϕI
1(x3), ϕI

1(z))T (ϕI
1(x4), ϕI

1(z)). (C-2)

The final result is thus

T (ϕI
1(x1), ϕI

1(x2), ϕI
2(x3), ϕI

2(x4),V(ϕI
1(z), ϕI

2(z)))
= λ3T (ϕI

1(x1), ϕI
1(z))T (ϕI

1(x2), ϕI
1(z))T (ϕI

2(x3), ϕI
2(z))T (ϕI

2(x4), ϕI
2(z)) (C-3)

and this demonstrates that there is no factor 1/4 in the Feynman diagrams with coupling
constants λ3 in Table 1.

D. The symmetry factors for the diagrams in Fig. 2
The time ordered product in Eq. (13a) is

λ1

4! ⟨0|T (ϕI
1(x1), ϕI

1(x2), ϕI
1(z1)ϕI

1(z1)ϕI
1(z1)ϕI

1(z1))|0⟩ . (D-1)

The Wick’s contractions in Eq. (D-1) are given in Table 5



Table 4: All the Wick’s contractions for Eq. (C-1c) giving connected diagrams.
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Table 5: All Wick’s contractions for Eq. (D-1) giving connected diagrams.
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Every contraction in Table 5 gives the same contribution and there are 12 such terms, so
1/4! gets multiplied by 12 and there remains overall factor 1/2. The symmetry factor is the
inverse of this overall factor and for the diagram (a) in Fig. 2 it is equal S = 2.

The time ordered product in Eq. (13b) is

λ3

4 ⟨0|T (ϕI
1(x1), ϕI

1(x2), ϕI
1(z1)ϕI

1(z1)ϕI
2(z1)ϕI

2(z1))|0⟩ . (D-2)

The Wick’s contractions in Eq. (D-2) are given in Table 6.
Both contractions in Table 6 give the same contribution and there are 2 such terms, so

1/4 gets multiplied by 2 and there remains overall factor 1/2. The symmetry factor is the
inverse of this overall factor and for the diagram (b) in Fig. 2 we get S = 2.

E. The symmetry factors for the diagrams in Fig. 3
From Eq. (16a) we obtain three Feynman diagrams in Fig. 16. To calculate the symmetry
factor of the Feynman diagram in Fig. 3 (a) we have to calculate all contractions in the
following expression
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1ϕ
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1 ϕ
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1 ϕ
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1 ϕ
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1 ϕ
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1 ϕ
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1
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1 , ϕz1
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1, ϕ4
1 and ϕz2
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1 , ϕz1
1 and ϕz2

1 , ϕz2
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Table 6: All Wick’s contractions for Eq. (D-2) giving connected diagrams.
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Figure 16: Three Feynman diagrams obtained from Eq. (16a). p1, . . . p4 are external momenta
and k is the loop momentum. The momentum is conserved at each vertex. All three diagrams
have the same symmetry factor.

Table 7: symmetry factors for the Feynman diagram patterns in Fig. 3.

Pattern in Fig. 3 symmetry factor S
(a)–(f) 2
(g) 1



then it has to be multiplied by 2, because the vertices can be permuted. This gives

S−1 =
(

1
4!

)2 1
2!︸ ︷︷ ︸

factor in Eq. (16a)

· (4 · 3)︸ ︷︷ ︸
ϕ1

1, ϕ2
1 and ϕ

z1
1 , ϕ

z1
1

contractions

· (4 · 3)︸ ︷︷ ︸
ϕ3

1, ϕ4
1 and ϕ

z2
1 , ϕ

z2
1

contractions

· 2︸︷︷︸
ϕ

z1
1 , ϕ

z1
1 and ϕ

z2
1 , ϕ

z2
1

contractions

· 2︸︷︷︸
permutations of vertices

= 1
2 . (E-1)

The symmetry factor is thus 2 and this means that the factor in front of this diagram is 1/2.
The symmetry factors for the remaining patterns in Fig. 3 are given in Table 7.
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