Integrable Hamiltonian systems from reductions
of doubles of compact Lie groups II
Generalizations of spin Sutherland models

Yesterday, we derived the spin Sutherland model with ‘collective spin variables’,
[€al?
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from reduction of ‘geodesic motion’ on the cotangent bundle T*G of a compact Lie
group G and discussed its integrability.
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We also mentioned the Gibbons—Hermsen (1984) model
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for which a complex row vector S; := [Sj1,...,Sjd] € C? d > 2, is attached to the
particle with coordinate g;, representing internal degrees of freedom.

In today’'s talk, we focus on generalizations of the first kind of models, utilizing
Heisenberg doubles instead of cotangent bundles.
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Definition I. Let (M, Py) be a finite dimensional, connected, C* Poisson manifold,
and $ an Abelian Poisson subalgebra of C*°(M) subject to the conditions:

1. As a commutative algebra of functions $ has functional dimension ddim($) = £.
2. The Hamiltonian vector fields of the elements of $ are complete and span an /¢
dimensional subspace of the tangent space over a dense open subset of M.

3. The commutant § of § in C>*°(M), which contains the joint constants of motion
of the Hamiltonians H € $, has functional dimension ddim(g) = dim(M) — /.

We refer to the quadruple (M, Py, H,F), or simply $, as a (degenerate) integrable
system of rank ¢. The standard notion of Liouville integrability results if M is a
symplectic manifold and ¢ = dim(M)/2. Liouville integrability on Poisson manifolds
is the case for which ¢ = k, where k is half the dimension of the maximal symplectic
leaves. When ¢ < k, both on Poisson and symplectic manifolds, then one obtains
the case of degenerate integrability, alternatively called superintegrability. A single
Hamiltonian is called (super)integrable if it is a member of $ obeying the definition.



Let G be a (connected and simply connected) compact Lie group with simple Lie
algebra G. Denote G¢ and G the complexifications, and define B = exp(ig) C GC.
Example: G = SU(n), G* = SL(n,C), P ={X € SL(n,C) | X' = X, X positive}.

One has the following 3 ‘classical doubles’ of G-

Cotangent bundle T"G ~G X G"~G x G =: M3
Heisenberg double G~ G x G* ~ G x P =: M>
Internally fused quasi-Poisson double G x G =: M3
The pull-backs of the relevant rings of invariants
CH(&)Y, CX(@)F, (P
give rise to two ‘master integrable systems’ on each double.

The group G acts on these phase spaces by ‘diagonal conjugations’, i.e., by the
diffeomorphisms

Al (y) = (pentmyn ™), V(z,y) € M, (i=1,2,3),n€G.

The G-invariant functions form closed Poisson algebras, and thus the quotient space
Mged = M;/G becomes a (singular) Poisson space, which carries the corresponding
reduced integrable systems.



Plan of the lecture

Integrable ‘master system’ on the Heisenberg double

Poisson reduction of the master system: reduced integrability

Two descriptions of the reduced Poisson brackets

Connection to the spin Sutherland models

The dual system in a nutshell

Conclusion



Preparations. Fix a maximal Abelian subalgebra, Go < §. A choice of positive roots
with respect to the Cartan subalgebra G§ < G leads to the triangular decomposition

G- =G6-+65+4%.
Equip the realification G of G& with bilinear form (X,Y); := $(X,Y), where (—, =) is
the Killing form of G¢. Then one obtains the decomposition (a Manin triple)
Gg =G+ B with B:=iGo+ G% =: Bo+ By.

Let G]% a connected and simply connected Lie group with Lie algebra gﬁ%. We may
write any X € G5 as X = Xg+ Xpor as X = X4+ Xo+ X_oras X =Y; 4+iYs
(Y1,Y> € G). The complex conjugation 6 with respect to G is a Cartan involution and
it lifts to the involution © of G5. We have the anti-automorphisms

Z 7= —-6(2), Kw— Kl :=6(K™1), VZ € G, VK € Gk.

By using the subgroups G < Gf‘é and B := exp(B) < GS, every element K € Gf‘é admits
the unique (Iwasawa) decompositions:

K = grbp" =brgp' Wwith gr,gr € G, by,br € B,
which yield the ‘Iwasawa maps’' =.,=g: G5 — G and AL, A : G% — B,

=i(K) :=g1, =r(K):=gr, AL(K):=br, Ar(K):=bg.
We have the diffeomorphic manifolds M = G%, M=GxB and M:=G x*B.
Shall use the diffeomorphisms m1 := (Z,Ag) : M — M, that is, m1(K) = (ggr, br),
and mo : 9 — M, ma(g,b) := (g, bbl).
The map v: B2 bw bbl € B =exp(iG) C G% is a G-equivariant diffeomorphism if G
acts on B by conjugations and on B by ‘dressing’: Dress,(b) := Ar(nb), Vn € G, b € B.
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The group manifold M = Gﬁ% carries the following two Poisson brackets:
{Cbl, CDQ}:{: = <V¢‘1, pV(DQ)]I + <V’CD1, ,OVICIDQ)H, Voi,Ps € COO(M).
Here, p := %(7@ — 7g) with mg and wg denoting the projections from Gt onto G and B,

which correspond to the direct sum Gy = G + B. For any real function ® ¢ C>(M),
the g]%—valued ‘left- and right-derivatives’ are defined by

d !
(X, VO(K)) + (X, VO(K)):= —| d(KeN), VK e M, X, X' cgg.

dt |;=o

The minus bracket makes M into a Poisson—Lie group, of which GG and B are Poisson—
Lie subgroups, i.e., (embedded) Lie subgroups and Poisson submanifolds. Their
inherited Poisson brackets take the form

{x1,x2}c(9) = —(D'x1(9), 9 (Dx2(9))g)1,

{1, 02}B(b) = (D'p1(b), b~ (Dp2(b))b)1.
The derivatives are B-valued for x; € C*°(G) and G-valued for ¢; € C*°(B). The Pois-
son manifolds (M, {—,—}-) and (M, {—,—}4+) are known, respectively, as the Drinfeld
double and the Heisenberg double associated with the standard Poisson structures of
G and B. The Poisson bracket {—, —}1 is non-degenerate, its symplectic form reads

1 _ _ 1 _ _
Q=5 (dbrby " 2 dgrg ')y + 5 (dbrby © dgrgy');
The maps
(/\L,/\R)ZM—>B><B and (EL,ER)IM%GXG

are Poisson maps with respect to (M, {—,—}+) and the direct product Poisson struc-
tures on the targets obtained from (B,{—,—}5) and from (G,{—,—}q), respectively.



‘Master system’ on M. For any real function ¢ € C*(g), define its G%-valued
derivative D¢ as follows:

(Do) 1= | G(@¥ LX), (VDo(L))i= | (e Le™), VX €B, Y €6,

dt t=0 d t=0

Using the diffeomorphism m := moomj : M — M = G x ‘3, we transfer the Heisenberg
double Poisson bracket to M = G x *B. This gives

{F, H}u(g, L) = (D2F, (D2H)g); — (gD1Fg *, DiH), + (D1F, DoH); — (D1H, D2 F )y,
where the derivatives of F,H € C*°(M) are evaluated at (¢g,L) € M; and D1.F € B.

Define the map W : M — P xP by W(g,L) := (¢~ 'Lg, L), which in terms of the model
M reads (vo (AL) L, voAR); remember v(b) = bb'.

Proposition 1. The two subrings of C>*(M) defined by

H =75 (CO(R)Y)  and F:= W (CO(P xP))
engender a degenerate integrable system on the symplectic manifold (M, {—, —}m)-
The rank of this integrable system is equal to the rank r = dim(Gg) of Lie algebra G.

Proof. One calculates that any Hamiltonian H = 7w4(¢) with a function ¢ € C>®(R)¢
has the integral curves

(g(8), L(t)) = (exp (tDp(L(0))) g(0), L(0)) .

Since the derivative D¢ : ¥ — G is G-equivariant, W is constant along these curves,
and it is a Poisson map for the v-transferred Poisson bracket on B_ xPB. One can
verify that the derivative DW has constant rank, equal to dim(M) — r, at every point
of G x P9, This implies that § has functional dimension dim(M) — ». It is obvious
that $H C §, and its functional dimension is r, which completes the proof.



Reduction. Define the ‘conjugation action’ A: G x M by A,(g,L) := (ngn~t,nLn=1).
All H € $H and their Hamiltonian vector fields are G-invariant, and the invariant
functions, C>*(M)%, form a Poisson subalgebra. Therefore, we may take the Poisson

quotient
M :=M/G, C®(M"™?) :=C®(M)C.
We have H CFC =W (C®(P_ x V)E) c C=(M)C.

For M4 is a not a smooth manifold, we restrict to its dense open subset M4 = M., /G,
where M, C M is the submanifold of principal orbit type:

M. :={(g9,L) e M| G, 1y = Z(G)}. Note: M, is stable w.r.t. the flows of C*°(M)C.

The' space of constants of motion’ ¢ := W(M) C Bx‘P is also not a smooth manifold,
but Creg := {L,L) € €| L € P is a smooth, embedded submanifold of 9 x Pre9.
Here, B9 consists of the points of P whose isotropy group in GG is a maximal torus.

A key technical point is to consider
C.:={(L,L) € Creg | Gz 1y =2Z(G)} and M. =W ().

The restriction of W yields the G-equivariant submersion v : My, — €., and we get
the diagram of smooth Poisson submersions (where M = M,. /G and ¢'*d = ¢, /G):

(o
M** Q:*
P1 p2
wred
M e



The rings $ and F¢ yield the subrings $req and Freq OF C>(M"9), and we denote their
restrictions on M®? and MY by §%.,, 9%, and F'y, §2,, respectively. Moreover, we
define the restricted reduced Poisson manifold by

(CZMED, {— =15 = (C° (M), {—, =)

Theorem 2. Suppose that r := dim(Gg) = 1. Then, the ‘restricted reduced system’
(CoMED), {—, —}ed), 97*,) is a degenerate integrable system of rank r with constants
of motion prowded by the ring of functions

Sred = ¢;ked (Cw(gied)) .
That is, the quadruple (M9 {—, —}red g SEed) satisfies Definition I, with the co-

*k ) **x ) vJred?

dimension of the generic symplectic leaves being equal tor. The reduced Hamiltonian
vector fields associated with $;;, span an r-dimensional subspace of the tangent space

at every point of M'¢4  and the differentials of the elements of&’jed span a co-dimension

k% 7

r subspace of the cotangent space.

The symplectic leaves in M as well as in M are (the connected components of)
the joint level surfaces of the Casimir functlons which are obtained from

A*(C®(B)Y) with the Poisson—Lie moment map A:M — B.

The map A is defined by transferring to M the moment map A := ApAgr : G% — B.
The conjugation action of G is orbit-equivalent to the Poisson—Lie action generated
by the moment map.

Corollary 3. The restriction of the system (M4, {—, —}red o= 3 ) of Theorem 2

to any symplectic leaf of Mred of co-dimension r is a degenerate integrable system of
rank r.

Remark: The r = 1 case arises for G = SU(2), and in this case we obtain ‘only’
Liouville integrability.
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The integrability statement can be extended to M by using that at each y € M

k3%

the differentials of the elements of §7., C Sﬁed span the same subspace of T,M? as do

the differentials of the elements of Sﬁed. ‘This can be shown utilizing the fact that for
any smooth action of a compact Lie group on a connected manifold the dimension
of the differentials of the smooth invariant functions at a point of principal orbit type
is equal to the co-dimension of the principal orbits. (We apply this to C®(p_ x B)E
and use pull-back.) The point is that the elements of Feq belong to C>*(M™?) and

their restrictions give smooth function on M9,

Theorem 4. Suppose that r = rank(G) > 1 and consider the restriction of the
master system of free motion on the dense, open submanifold M, C M of principal
orbit type with respect to the G-action. Then, this system descends to the degenerate
integrable system (M4 {—, -} §* |, §y) on the Poisson manifold M = M,/G,
where the Poisson subalgebras $*,, and §,, of C>*(M'"®?) = C>(M,)% arise from the

restrictions of $ and Freq >~ W*(C®(P_ x P)F) on M, C M, respectively.
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Restrict to the dense,
open, G-invariant submanifold m; “1(G9) = G'9 x P C M. Every G-orbit in this
submanifold intersects Mg = {(Q L) e M| Q € Gg?}. The intersection happens in
orbits of the normalizer M := Ng(Go), and we obtain the identifications

(G™9 xP)/G ~Mg/M and C®(G™ x P)¢ «—= C>°(M)™.

Let F,H € C°(Mp)™ be the restrictions of F,H € C>®(G"9 x P)E. Then, we define
their ‘reduced Poisson bracket’ by

{F1HE(Q, L) = {F, H}m(Q,L),  V(Q,L) e Mo.
Its explicit form contains the dynamical r-matrix R(Q) € End(Gg):

R(Q)(X) == S(Adg +id) o (Adg — i) H(X1),  ¥Q € GFT, X = (Xo+ X1) € G
where Xo € G§ and X, € GY, in correspondence with G¢ = G§ + G¢.
Theorem 5. For F,H € C*(Mo)”, the definition implies the formula
{F, 7 (Q, L) = (D1.F, DoH)1 — (D1H, D2 F )1 + (R(Q)D2H, D2 F)r,

where the derivatives D1F € By and D> F € G5 are taken at (Q,L). The Hamiltonian
H(Q,L) = ¢(L) with ¢ € C°(PB)C induces the evolution equations

Q = (Dp(L))oQ, L =[R(Q)Ds(L),L] (up to residual gauge transformations).

The formula defines a Poisson algebra structure on C*®(Mg)% as well. For some
purposes, it is advantageous to use, instead of My = G5 x 9, the equivalent model
Mo := Gy ? x B. Then, the reduced Poisson bracket becomes

{F. R}R2(Q,b) = (D1f, Doh)1 — (D1h, Do f)1, +(R(Q) (bDSRb ™), bD% Fb~ 1)1,
Here, the derivatives are evaluated at (Q,b), with D1f € By and Dof, DLf € G.

12



Let Bo and B4 be the sub-
groups of B associated with the subalgebras in B = Bg + B4+. Any b € B is uniquely
decomposed as b = ePby with p € Bg, by € By. Then, we introduce new variables by
means of the map

¢:Mo=Gg° X B— Gy? x By x B4

¢:(Q,eby) = (Q,p, ) with  A:=b'Q7b4Q.
The map (¢ is a diffeomorphism. It is equivariant with respect to the Gp-actions for
which no € Go sends (Q,b) to (Q,nobng') and (Q,p, \) to (Q, p,moIny ). Consequently,
¢ induces an isomorphism: C>(9My)% = C>*(GH? x By x B4)%.

Any two functions F, H € C*(G{9 x By x B4+)% are related to unique f,h € C>®(Mg)%°
by Fo(=f, Ho(=h. Thus, we can define {F, H}4 € C>*(G}° x By x B4+)% by
{F, H}§" o ¢ 1= {, R},

Theorem 6. In terms of the new variables introduced via the map (, the reduced
Poisson bracket acquires the following ‘decoupled form’:

(F, HY9(Q, p,\) = (DoF,dyH); — (DoH, dyF); + (A\DYFA™Y, DyH)yp,
where the derivatives of F, H € C*(G{°® x Bo x By)% are taken at (Q,p, \).
Using the identification (B4)* ~ G, the derivatives Dy\F, D\F € G, are defined by

d ,
<X+7D>\F(Q7p7 >\)>]I + <X£|—7DS\F(Q7P7 >‘)>H — E F(Qapa etX+>\€tX+)7 \V/X-F)Xil— € B+'
t=0
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Comparison with the reduction of 7"¢. The ‘linear analogue’ of the Poisson
algebra (C®(Gg° x By x By)%, {—, —}Fd),

{(F, H}FUQ,p,\) = (DgF,d,H); — (DoH,d,F)1 + (AD\F\~1, D\H)y,
is given by (C*(Gg? x By x B4)%, {—, —}in) with

{f7 h}lin(Q7p7 X) L= <DQfa dph>ﬂ — <DQh7 dpf>]1 + <X7 [de7 dXh]>I[7

where the derivatives are taken at (Q,p,X), and dxf € G, ~ (By)* denotes the
differential of f with respect to its third variable. An interpretation of these brackets
comes by observing that B ~ G* and B ~ G*, and the reductions of (B,{—,—}5) and

(G*,{—,—}g) with respect to the Hamiltonian actions of Gp, at the zero value of
the Gj-valued moment map, give precisely the third term of the respective Poisson

brackets, i.e., they represent G*//Go and G*//Go, respectively. [Beware, in Lecture 1 we
used the alternative model G* ~ G. Thus, £ € G, used before is now replaced by X € B4 .]

The Poisson algebra (C™(Gg® x Bo x B4)%,{—, —}in) arises from the Poisson reduction of the cotan-
gent bundle T*G by the obvious conjugation action, whereby the kinetic energy of the bi-invariant
Riemannian metric of G reduces to the spin Sutherland Hamiltonian:

[ Xal?
*(a(9)/2)

. 1 1 1 : z :
HSpin—Suth(elq7an) = _<p7p> + = § > . with X = Xaolio € B—l—
2 8 ~ |a|? sin
ae

acRt

Proposition 7. For any real e > 0, let us define the Gg-equivariant diffeomorphism
pe : GG9 x Bo x By — G52 X Bo X By, pe: (Q,p, X) — (Q,ep, exp(eX)).

Then, {—,—}in is the ‘scaling limit’ of {—, —}ged according to the formula

{# Py = lime{f ot hou T} o pe
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Interpretation as spin RS model: Consider the new variable A = bjrlQ—lerQ using

A= e, b_|_=eﬁ, JZZJQEQ, 5225QEQ, Qzeiq.

a>0 a>0
The Baker-Campbell-Hausdorff formula gives

exp(—8 + Q180 + %[Q‘lﬁQ, Bl 4 ) = exp(o).

As a consequence, (B, can be expressed in terms of ¢ and e¢:

— Ta i
Poo = e—ia(e) — 1 + Z Z foroi(€9)0g, .. 0y,

k>2 01,

where o = p1+- -+, and f,, .., depends rationally on elY. This gives a construction
of the inverse of the map ¢ : (Q,ePby) — (Q,p, A).

Take any finite dimensional irreducible representation p : G® — SL(V). Introduce an
inner product on V so that the dagger, KT = ©(K 1), becomes the usual adjoint.
Then, the (normalized) character ¢°(L) = tr,(L) := c,trp(L) gives an element of
C®(PB)C. (Here, ¢, is a constant, so that tr,(XY) 1= c,tr(p(X)p(Y)) = (X,Y), VX,Y € GC.)

Using the ‘decoupled variables’ (Q,p,o0), HP = trp(epb+bz_ep) can be expanded as

O« 2 o —a
H?(e%,p, o) = eptr (er <1p + Z; | S’m’;((i()q’;(/f) ) 4 0(o. o*>>> .

I call this a spin Ruijsenaars—Schneider (RS) type Hamiltonian.
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By expanding e??,
|oal?

sin®(a(q)/2)

Leading term of %(Hp—cpdimp) matches the Hamiltonian Hgpin_suth(€'9, p, X). In other
words, with the ‘scaling map’' u., we have

. | 1 1 ,
H?(e",p,0) = c,dim, + 2tr,(p?) + 2 ) + 02(0, 0%, p).
2 a>0 |O{|

1
. = |im P — im

The Poisson brackets of the functions of the ‘spin variables’ X and o follow from
{X', X7} (X) =([Y", Y], X)1, {o',0"}p(e”) = ([Y",Y],0)1 + 0(0),

where X! = (X,Y?%); for a basis {Y'} of G, € G = Go + G,, and similarly for o.
Proposition 7 is a consequence of the latter expansion.

The elements of C®(P) yield G-invariant functions of ‘Lax matrix’ L(e'9, p,o) =

epb+blep, where by = by (€'Y, 0) expresses the inverse of our map ¢. In any represen-
tation,

L(e'q,p,U)—l—l-Qp—l-Z( a‘FWEa) ~+ o(o, 0%, p).

Ia(q)

This matches the standard, g-valued, spin Sutherland Lax matrix.

In conclusion, our models are ‘deformations’ of the spin Sutherland models, which
can be recovered in the ‘scaling limit’.
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Explicit formulas for ¢“ = SL(n,C): Now parametrize by € B by its
matrix elements. We have b = epb_|_, and can find by from the relation
Q 04Q = by,

where Q = diag(Q1,...,Qn) € G52, X € By is the constrained ‘spin’
variable and b4 is an upper tnangular matrix with unit diagonal.

Introducing 7, 44, 1= o +-clg—1—1' we have (by)ga+1 = Zoa+1raa+1>
at+j%a
and, for k =2,...,n —a, the matrix element (by), .+ €quals
Lo,a+kAa,a+k T > 1 Zoatiy+Fiadatip+atig_1,a4iq++ia-
m=2,...k a=1
(7:17 Zm)ENm
il‘l‘ +im=k
Then H = tr(bb") gives
2 1'& 3 2 ~ |>‘aa—|—k|2 t
H(e%p,A) = > ePa4 = Pa ’ + 02(A, AT).
Z Z Zl Sin®((qa4k — 9a)/2)

Next, we explain that restricting A to a minimal dressing orbit of SU(n) results in the

standard (spinless) real, trigonometric Ruijsenaars—Schneider model.
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Taking G = SU(n), let us go back to
{F, H}5Q,p,\) = (DgF,d,H)1 — (DoH,d,F)1 + (AD\FX~', D\H)y,
and restrict A to a minimal dressing orbit. This is the orbit O(y) C B(n) through
A(y) ;= exp (diag((n — 1)y/2,—y/2,--- ,—y/2)), for some y & R".
It turns out that
O() NBn)y = {Tv(y)T | T € Go},

with the matrix v(y) € B(n)4+ given by v(y)xr = (1 —e¥)exp((k — j)y/2), Vj < k.
Therefore the Ggo-reduced orbit now consist of a single point, and the reduced Poisson
(symplectic) structure is encoded by

{Fa H}(r)ed(Q,p) — <DQF7 de>H - <DQH7 dpF>]1-
For fixed A = v(y) and Q, the equation bjrlQ—lerQ = v(y) determines by. We find

-k v = y =
= ean - Q_EQk+m_]_ = -1 i
(b—l—)kl:QleH = — , 1<k<i<n, Qr=Q, =e '
o Q= Qkgm

Then, after the canonical transformation (q,p) — (g,0) with

1 sinh?(y/2 1 sinh?(y/2
ek:pk__zln[H_Q (/2) ]+—Z'n[1+-z w2 |
N sin?((gr — qm)/2)| * 4 sin®((gx — 4m)/2)
we obtain the trigonometric Ruijsenaars—Schneider Hamiltonian from b = ePb,:
- sinh?(y/2)
Hrs(q,6) '= 3 cosh(26,) [1+ |
2. 1L " S 0

The symplectic leaf is T*G9/S, and (g, 6) parametrizes T*G, which motivated the transformation.

r = %tr(bb*) + (b6 D).
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The dual system in a nutshell

We have the following 3 models of the Heisenberg double
GS ~Gx B~G x.

To study the ‘dual master system’, the first model, M = G%, iS convenient.

Recall that K € G% admits the Iwasawa decompositions
K = grbp' =brgy" Wwith gr,g9r € G, by, br € B,
which yield the ‘Iwasawa maps' =, =g : G5 — G and AL, Agr : GS — B,
=(K) =g, Z=r(K):=gr, AL(K):=0by, Ag(K):=bg.

The Abelian Poisson algebra of the ‘dual system’ is § := =%(C>~(G)%). To describe
the integral curve of =}(x) € $ through K(0) € GS, we need the decomposition

exp(itVx(gr(0))) = B(t) *v(t) with  B(t) € B, v(t) =G.
For the class function y € (C>*(G)%), we use the G-valued derivative Vy defined by
(X, Vx(9) = 4|, _,x(e™g), Vge G, X eg. Then, the integral curve is
K(t) = K(0)B() ' «— br(t) = B(t)br(0), br(t) =b(0)B() ", gr(t) = g2(0),

and gr(t) = v(t)gr(0)~(t)~t. Since L(t) = br(t)br(t)! = B(t)L(0)B(t)T, we also have
the integral curve in terms of the model G x ‘L.
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In this case, we have the map of constants of motion
UGy — Gy defined by W(K) :=brbrg;' = brgrb; .

This is equivariant with respect to the conjugation action of G on the target space
G% and the action of G on the Heisenberg double that is induced by the Poisson-Lie

moment map A = ArAr. The W-pullback of the ring of invariants
C=(GR)° '={F € C*(GR) | F(nKn ') vn € G, K € Gg}

yield constants of motion that descend to the reduced phase space. These guarantee
the degenerate integrability of the dual master system and its Poisson reduction.

Let me finish by mentioning the example of dual Ruijsenaars—Schneider system,
given by the ‘main Hamiltonian’

) n ) sinh?(y/2) :
= 0 N .
e 1;1 ostE) ngk [1 sinh?((Gx — Gm)/2)

To interpret this, we consider G = SU(n) and pick the same symplectic leaf as
before, which belongs to the specific moment map value v(y).

In fact, [LF-Klimcik 2011], Hgrs descends from the class function x(g) := sR(tr(g)).

The ‘dual position variables g; arise from the eigenvalues of L = bRbTR. This formula of
the reduced Hamiltonian is valid on a dense open subset. It was shown by Ruijsenaars
in 1995 that Hrs is Liouville integrable on its complete(d) phase space, and this result
received a natural interpretation in the reduction approach.

This exemplifies the so-called Ruijsenaars duality (or action-position duality) between
two integrable many-body systems.
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Conclusion and open questions
1. I constructed ‘Poisson—Lie deformations’ of trigonometric spin Sutherland models.

2. I proved their degenerate integrability after restriction on the honest Poisson
manifold Mfked C M'4 as well as on the maximal symplectic leaves of the open dense
subset Med c Med,

3. For lack of time, I did not present it, but recently I also proved integrability on
arbitrary symplectic leaves of M (by a different method). This new method will be

*kk

reported in my talk at the workshop.
4. Quantization by quantum Hamiltonian reduction?

5. An old open question: Can one derive the spinless (real, repulsive) hyperbolic RS
model by Hamiltonian reduction of a real master integrable system?
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