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I. Motivation



Thermodynamic Consistency (TC)– Examples

Navier-Stokes is inconsistent:

∂tv = −v · ∇v −
1

ρ0
∇p+ ν∇2v , ∇ · v = 0 ⇒ p[v]

H =
∫

Ω
ρ0 |v|2/2 and Ḣ ≤ 0 , ∄ any thermodynamics!

Navier-Stokes-Fourier (NSF) is consistent: (Eckart 1940):

∂tv = −v · ∇v −
1

ρ
∇p+

1

ρ
∇ · T

∂tρ = −∇ · (ρv)

∂ts = −v · ∇s−
1

ρT
∇ · q +

1

ρT
T : ∇v heat flux & viscous heating

H =
∫

Ω
ρ |v|2/2 + ρu(ρ, s) , Ḣ = 0 and S =

∫
Ω
ρs → Ṡ ≥ 0

Example of Thermodynamic Completion, i.e. NS → NSF.



Thermodynamic Consistency

The realization in a dynamical system of the first and second laws of thermodynamics:

First Law is energy conservation:

Ḣ = 0

Second Law is entropy production:

Ṡ ≥ 0

Good models lift thermodynamics to dynamical systems. They have two functions H,S.



Theories & Models as Dynamical Systems

Main Scientific Goal:

Predict the future or explain the past ⇒

ż = V (z) , dynamical variable z ∈ Z the Phase Space

Ultimately a dynamical system. Vector fields on manifolds and Cauchy problem (IVP).

Examples: Maps, ODEs, PDEs, etc. finite-dimensional, infinite-dimensional (field theories)

Whence vector field V ?

• Fundamental parent theory (microscopic, N interacting gravitating or charged particles,

BBGKY hierarchy, Vlasov-Maxwell system, ...). Identify small parameters, limits, rigorous

asymptotics, Hilbert’s 6th → Reduced Computable Model for V .

• Phenomena based modeling using known properties, constraints, symmetries, etc. used

to intuit → Reduced Computable Model V . ← Here metriplectic structure can be useful.



Vector Field Splitting

V (z) = Vnondissipative + Vdissipative

How?



Vector Field Splitting

V (z) = Vnondissipative + Vdissipative

How?

Vnondissipative ≡ Hamiltonian and Vdissipative ≡?



What is Dissipation?

• Not all conservative systems are Hamiltonian

• Not all Hamiltonian systems are conservative

• Not all reversible systems are Hamiltonian

• All finite dynamical systems (autonomous ODEs) are reversible (1 parameter Lie group)

• Some infinite systems (PDEs) are reversible and some irreversible (group vs. semigroup)

• Not all Hamiltonian systems have time reversal symmetry

• Not all systems with time reversal symmetry are Hamiltonian

• ∃ systems with time reversible symmetry and global asymptotic stability

Thermodynamically Consistent Dissipation:

Energy conserving systems with an increasing entropy that implies global asymptotic stability.

Such systems have a ‘vector field’ that naturally splits in Hamiltonian and dissipative parts.

Hamiltonian is an unambiguous way to define nondissipative. The Metriplectic 4-bracket is

an unambiguous way to define dissipative. Together they ⇒ thermodynamic consistency.



Toward a Thermodynamically Consistent Split

V (z) = VH + VD

Hamiltonian Form:

VH = J
∂H

∂z

where J(z) is Poisson tensor/operator and H is the Hamiltonian. Basic product decom-

position.

Dissipative Form:

VD = ... ? → VD = G
∂F

∂z

General degenerate ‘metric tensor’ of some kind for gradient flow?



Frameworks for Dissipation – Some History

Lagrangian/Action Based: Rayleigh (1873),: d
dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+
(
∂F
∂q̇ν

)
= 0

Linear dissipation e.g. of sound waves. Theory of Sound.

Gay-Balmaz & Yoshimura (2017) & Eldred (2020).

Gradient Based: Cahn-Hilliard (1958): ∂n
∂t = ∇2δF

δn = ∇2
(
n3 − n−∇2n

)
Phase separation, nonlinear diffusive dissipation, binary fluid ..

Otto, Ricci Flows, Poincarè conjecture on S3, Hamilton, Perelman (2002)... : ∂ψ
∂t = G δFδψ

Bracket Based: Kaufman & pjm (1982, 1984), Grmela (1984), pjm (1986), Öttinger &

Grmela (1997), ... : ∂ψ
∂t = (ψ,F) ← emerges here

Plasma models, kinetic theory, fluids.

New Metriplectic 4-Bracket Based: pjm, Updike, Zaidni (2024,2025):

An encompassing theory.



Metriplectic Dynamics
(Metric ∪ Symplectic Flows (pjm 1986) ↔ VD + VH)

• Formalism for natural split of vector fields

• Enforces thermodynamic consistency: Ḣ = 0 the 1st Law and Ṡ ≥ 0 the 2nd Law.

• Other invariants? E.g., collision operators preserve, mass, momentum, .... There exists

some theory for building in, but won’t discuss today.

• Encompassing 4-bracket: Entropy is a Casimir is & “curvature” is dissipation rate

Ideas of Casimirs are candidates for entropy, multibracket, curvature, etc. in pjm (1984).

Metriplectic in pjm (1986).



Metriplectic 4-Bracket Dynamics

Dynamical System (finite or infinite):

ż = {z,H}+ (z,H;S,H)

Dynamics for any observable (functional of dynamical variables), z, is generated by multi-

linear brackets, Poisson bracket + 4-bracket (2024), with Hamiltonian H and entropy =

Casimir S.



Hamiltonian Review

Poisson Bracket: {f, g}



Noncanonical Poisson Brackets – Flows on Poisson Manifolds

Definition. A Poisson manifold Z has bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)

st C∞(Z) with { , } is a Lie algebra realization, i.e., is

• R-bilinear,
• antisymmetric,
• Jacobi identity
• Leibniz, i.e., acts as a derivation ⇒ vector field.

Geometrically C∞(Z) ≡ Λ0(Z) and d exterior derivative.

{f, g} = ⟨df, Jdg⟩ = J(df,dg) =
∂f

∂zi
J ij

∂g

∂zj
.

J the Poisson tensor/operator. Flows are integral curves of noncanonical Hamiltonian
vector fields, JdH, i.e.,

żi = J ij(z)
∂H(z)

∂zj
, Z ′s coordinate patch z = (z1, . . . , zN)

Because of degeneracy, ∃ functions C st {f, C} = 0 for all f ∈ C∞(Z), called Casimir
invariants. (Lie’s distinguished functions!) Casimir are candidate entropies!



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Noncanonical Hamiltonian Structure

Sophus Lie (1890) −→ PJM (noncanonical 1980) −→ Poisson Manifolds etc.

Noncanonical Coordinates:

żi = {zi, H} = J ij(z)
∂H

∂zj

Noncanonical Poisson Bracket:

{f, g} =
∂f

∂zi
J ij(z)

∂g

∂zj

Bilinear Poisson Bracket Properties:
antisymmetry → {f, g} = −{g, f} → J ij = −Jji
Jacobi identity → {f, {g, h}}+{b, {h, f}}+{h, {f, g}} = 0 → Jacobiator Sijk = J iℓ∂ℓJ

jk+cyc ≡ 0
Leibniz → {fh, g} = f{h, g}+ {h, g}f , fg pointwise

G. Darboux: detJ ̸= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs ← G. Sudarshan
(Lie’s distinguished functions!)



Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: (q, p)

Hamiltonian function: H(q, p) ← the energy

Equations of Motion:

ṗα = −
∂H

∂qα
, q̇α =

∂H

∂pi
, α = 1,2, . . . N

Phase Space Coordinate Rewrite: z = (q, p) , i, j = 1,2, . . . 2N

żi = J ijc
∂H

∂zj
= {zi, H}c , (J ijc ) =

(
0N IN
−IN 0N

)
,

Jc := Poisson tensor, Hamiltonian bi-vector, cosymplectic form



II. Metriplectic 4-Bracket: (f, k; g, n)



Why a 4-Bracket?

• One slot for dynamical variables (observables), z.

• Two slots for two fundamental functions: Hamiltonian, H, and Entropy (Casimir), S.

• There remains one slot for F, free energy like generator F = H − TS. Better argument:

Needed to have multilinearity.

Comments:

• Provides natural reductions to other bilinear & binary brackets.

• The three slot brackets of pjm 1984 were not trilinear. Four needed to be multilinear.



The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):

( · , · ; · , · ): C∞(Z)× C∞(Z)× C∞(Z)× C∞(Z)→ C∞(Z)

For functions f, k, g, n ∈ C∞(Z) in a coordinate patch the 4-bracket has the form:

(f, k; g, n) = Rijkl(z)
∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
. ← quadravector?

• Metriplectic manifolds have both Poisson tensor, J ij, and compatible quadravector Rijkl,

where S (selected from set of Casimirs) and H come from Hamiltonian part.

A blend of my previous early ideas 1980s: Two important functions H and S, symmetries,

curvature idea, multi-brackets.



Metriplectic 4-Bracket Properties

(i) R-linearity in all arguments, e.g, for λ ∈ R

(f + λh, k; g, n) = (f, k; g, n) + λ(h, k; g, n)

(ii) algebraic identities/symmetries

(f, k; g, n) = −(k, f ; g, n) , (f, k; g, n) = −(f, k;n, g) , (f, k; g, n) = (g, n; f, k)

(iii) derivation in all arguments, e.g.,

(fh, k; g, n) = f(h, k; g, n) + (f, k; g, n)h

where as usual, fh denotes pointwise multiplication.

Symmetries of algebraic curvature without torsion identity. Minimal Metriplectic.

Observation: Often see Rl ijk or Rlijk but not Rlijk! Never 4-bracket, i.e. action on 1-forms?



Properties – Existence – General Construction Methods

• Thermodynamic Consistency Built-in:

Ḣ = {H,H}+ (H,H;S,H) = 0 and Ṡ = (S,H;S,H) ≥ 0

Reduces to metriplectic 2-bracket (1984): (F,G)H = (F,H;G,H).

• For any Riemannian manifold ∃ metriplectic 4-bracket. This means there is a wide class

of them, but the bracket tensor does not need to come from Riemann tensor only needs

to satisfy the bracket properties.

• If Riemannian, entropy production rate is positive contravariant sectional curvature. For

closed σ, η ∈ Λ1(Z), entropy production by

Ṡ = K(σ, η) := (S,H;S,H) ≥ 0 ,

where the second equality follows from σ = dS and η = dH.

• Two methods of construction? Kulkarni-Nomizu (K-N) product and Lie algebra based.

K(σ, η) ≥ 0 automatic for K-N and easily made minimally degenerate!



Methods of Construction



Construction via Kulkarni-Nomizu Product

Given σ and µ, two symmetric rank-2 tensor fields operating on 1-forms (assumed exact)

df,dk and dg,dn, the K-N product is

σ⃝∧ µ (df,dk,dg,dn) = σ(df,dg)µ(dk,dn)− σ(df,dn)µ(dk,dg)

+ µ(df,dg)σ(dk,dn)− µ(df,dn)σ(dk,dg) .

Metriplectic 4-bracket:

(f, k; g, n) = σ⃝∧ µ(df,dk,dg,dn) .

In coordinates:

Rijkl = σikµjl − σilµjk + µikσjl − µilσjk .

If σ or µ defines inner product, then minimally degenerate, one fixed point on H= constant.

Infinite dimensions: µ→M , σ → Σ.



Lie Algebra Based Metriplectic 4-Brackets

• For structure constants ckls:

(f, k; g, n) = cijrc
kl
s g
rs ∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
.

Lacks cyclic symmetry, but ∃ procedure to remove torsion (Bianchi identity) for any sym-

metric ‘metric’ grs. Dynamics does not see torsion, but manifold does.

• For grsCK = crlk c
sk
l the Cartan-Killing metric, torsion vanishes automatically. Completely

determined by Lie algebra. For so(3) reproduces relaxing free rigid body (pjm 1986).

• Covariant connection ∇ : X × X → X. A contravariant connection D : Λ1(Z) × Λ1(Z) →
Λ1(Z) satisfying Koszul identities, but Leibniz becomes Dα(fγ) = fDαγ + J(α)[f ]γ where

J(α)[f ] = αiJ
ij∂f/∂zj is a 0-form that replaces the term X(f) (Fernandes, 2000). Here

α, β, γ ∈ Λ1(Z), f ∈ Λ0(Z). Build 4-bracket like curvature from connection.



III. Unified Thermodynamic (UT) Algorithm

UT Algorithm is an algorithm for constructing metriplectic systems! Applied to many

systems. So far UT Algorithm either reproduces, corrects, or extends for every

case considered!

Examples: Cahn-Hilliard-Navier-Stokes, Brenner-Navier-Stokes, Generalized Brenner-Navier-

Stokes, generalization of Landau collision operator ... .



Four Steps of the UT Algorithm

1. Identify dynamical variables defined on Ω ⊂ R3; e.g. for NSF

ξ = (m = ρv, ρ, σ = ρs)

2. Propose energy and entropy functionals, H[ξ] and S[ξ]; for NSF

H =
∫

Ω

|m|2

2ρ
+ ρu(ρ, σ/ρ) and S =

∫
Ω
σ

3. Find Poisson bracket {F,G} for which entropy S is a Casimir invariant, {F, S} = 0 ∀F

4. Construct metriplectic 4-bracket (F,K;G,N) via Kulkarni-Nomizu product by a new

method that separates local thermodynamics from phenomenological quantities,

giving the EoMs as Poisson bracket + 4-bracket:

∂tξ = {ξ, H}+ (ξ, H;S,H)

Result automatically Thermodynamically consistent!



3. For NSF Ideal Fluid Poisson Bracket Dynamics

Hamiltonian:

H =
∫

Ω

ρ|v|2

2
+ ρu (ρ, s) , T =

∂u

∂s
, p = ρ2∂u

∂ρ
.

Lie-Poisson Bracket (pjm-Greene, 1980):

{F,G} = −
∫

Ω
m · [Fm · ∇Gm −Gm · ∇Fm] + ρ [Fm · ∇Gρ −Gm · ∇Fρ]

+ σ [Fm · ∇Gσ −Gm · ∇Fσ] .

Equations of Motion:

∂tv = {v, H} = −v · ∇v −∇p/ρ , ∂tρ = {ρ,H} = −∇ · (ρv) , ∂tσ = {σ,H} = −∇ · (σ v) .

Casimir:

S =
∫

Ω
ρs =

∫
Ω
σ .

Note: Fm = δF/δm, etc., functional derivatives.



4. Metriplectic 4-Bracket

Old method (early 2024): guess M and Σ.



New Method

Theorem: Order dynamical variables st

∂tξ
α = {ξα, H}+∇ ·Jα , α = 1, . . . , N − 1 ,

∂tξ
N = {ξN , H}+∇ ·JN + Zα · L̃αβ ·Zβ .

where ξN = σ, the entropy density. Above splits Hamiltonian and conservative.

Then

Ṡ =
∫

Ω
Zα · L̃αβ ·Zβ =:

∫
Ω
σ̇prod ≥ 0 .

and Ḣ ⇒

Zα = ∇Hξα , Jα = −HξN L̃
αβ∇Hξβ = −Lαβ∇Hξβ .

which leads naturally to

M(dF, dG) = FξN GξN , Σ(dF, dG) = ∇(Fξα)
Lαβ

HξN
∇(Gξβ) .



Important Byproduct of UT Algorithm

• Special ordering of dynamical variables and concomitant ‘Force-Flux’ relations of
nonequilibrium thermodynamics:

Jα = LαβXβ → Jα = −Lαβ∇(δH/δξβ)

‘Forces’: X ∼ ∇T,∇p,∇v etc., UT Algorithm removes ambiguous selection of forces and
provides definition of phenomenological coefficients, Lαβ, for dynamical variables ξβ.

• Separates dependences on thermodynamical variables that come from internal energy
U (local thermodynamic equilibrium) from those that appear in the phenomenological
coefficients Lαβ. For example in in the Fourier heat law entropy production expression

σ̇prod = ∇T ·
κ̄

T2
· ∇T

one T comes from Fourier’s law q = −κ̄∇T/T while the other comes from the phenomeno-
logical coefficient.

• Physically identify the sectional curvature

Ṡ = (S,H;S,H) = K(H,S) =
∫

Ω
Σ(dH, dH) =

∫
Ω
∇Hξα · L̃αβ · ∇Hξβ ≥ 0 .



4. Metriplectic 4-Bracket: General and NSF

General flux expressions:

Jρ = −Lρρ· ∇Hρ − Lρm :∇Hm − Lρσ · ∇Hσ ,
J̄m = −Lmρ ⊗∇Hρ − Lmm :∇Hm − Lmσ ⊗∇Hσ ,
Jσ = −Lσρ· ∇Hρ − Lσm :∇Hm − Lσσ · ∇Hσ ,

where Jρ is mass flux, J̄m is momentum flux 2-tensor, and Jσ is entropy flux.

For NSF all zero except:

Lmm = ¯̄Λ and Lσσ =
κ̄

T
.

¯̄Λ isotropic 4-tensor, κ̄ conduction 2-tensor

Ṡ = (S,H;S,H) =
∫

Ω
Σ(dH, dH) =

∫
Ω
∇v :

¯̄Λ

T
: ∇v +∇T ·

κ̄

T2
· ∇T ≥ 0 .

Note in κ̄/T2 one T from H one from Lαβ. Σ sectional curvature density?



4. Metriplectic 4-Bracket for NSF Generalizations

For Brenner NSF all zero except:

Lmρ = D̃ρm , Lmσ = D̃σ̂m , Lmm = ¯̄Λ + D̃m⊗ Ī ⊗m .

Lσρ = D̃ρσ̂ Ī , Lσσ =
κ̄

T
+ D̃σ̂2 Ī Lσm = D̃σ̂ Ī ⊗m

Ṡ =
∫

Ω

1

T

[
D̃

κ2
Tρ

2
|∇ρ|2 +∇T ·

κ̄

T
· ∇T +∇v : ¯̄Λ : ∇v

]
≥ 0 .

Generalization of Brenner by Reddy et al. (2019) falls out. We further generalized.



V. Final Comments

• The UT Algorithm based on the metriplectic 4-bracket, is a proven framework, provides

a direct method for constructing thermodynamically consistent systems.

• Tons of interesting geometry already ... more to explore.

• Metriplectic 4-brackets are easy to discretize while maintaining symmetries. First nu-

merical implementation via 4-bracket discretization (Barham et al. 2025) for 1-D Navier-

Stokes-Fourier. Finite element projection of PDE to thermodynamically consistent finite-

dimensional 4-bracket, i.e., ODEs. For example, for the density ρ(x, t)

ρh(x, t) =
N∑
i=1

ρi(t)ϕi(x) → ρ̇i(t) = {ρi, H}+ (ρi, H;S,H) ...

Results use Firedrake library, implicit midpoint, Irksome module ...


