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Dynkin diagrams

An : • • • . . . • Bn : • •hh • . . . •

Cn : • (( • • . . . • Dn : • • • . . . •

•

E6 : • • • • •

•

E7 : • • • • • •

•

E8 : • • • • • • •

•

F4 : • • (( • •

G2 : • 66
(( •
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Some classifications using Dynkin diagrams

Classifications on the nose:

▶ irreducible finite root systems,

▶ simple complex finite dimensional Lie algebras,

▶ simple algebraic groups,

▶ simply connected complex Lie groups which are simple modulo
centers,

▶ simply connected compact Lie groups which are simple modulo
centers.

Closely related classification:

▶ finite irreducible Weyl groups (e.g. types B and C give the same
group).
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Simply laced Dynkin diagrams

An : • • • . . . • Dn : • • • . . . •

•

E6 : • • • • •

•

E7 : • • • • • •

•

E8 : • • • • • • •

•
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ADE classifications

Classifications on the nose:
▶ simply laced root systems,

▶ finite subgroups of SL2(C) (McKay),

▶ discrete subgroups of SU(2) (McKay),

▶ underlying graphs for quivers of finite representation type (Gabriel),

▶ simple surface singularities (Arnol’d),

▶ simple finite graphs for which the spectral radius of the adjacency
matrix is < 2 (Godsil, McKay),

▶ minimal conformal invariant theories (Cappelli, Itzykson, Zuber),

▶ simple transitive 2-representations of Soergel bimodules with middle
apex in finite dihedral types (Mackaay, Tubbenhauer).

Closely related classification:
▶ “Finite subgroups” of Uq(sl(2)) (Kirillov-Ostrik) (the types D2n+1

and E7 are missing).
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McKay correspondence

Let C be the monoidal category of finite dimensional SL(2,C)-modules.

Note: it is generated (in some weak sense) by the natural module
V := C2, under the monoidal and additive structures.

Let G be a finite subgroup of SL(2,C).

Then C acts on G -mod naturally (using restriction from SL(2,C) to G ).

Also, G -mod has finitely many indecomposables (=simples), say
X1,X2, . . . ,Xk .

Define the action matrix: ([V ⊗C Xi : Xj ])
k
i,j=1.

This is just a bookkeeping tool that records the multiplicities.

As it turns out, these matrices are exactly the adjacency matrices for
extended Dynkin diagrams of type ADE .

Why? Essentially because dimV = 2 is the Perron-Frobenius eigenvalue
and hence the spectral radius of such a matrix.
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Extended simply laced Dynkin diagrams

Ãn : • • • . . . • •

•

D̃n : • • • . . . • • •

• •

Ẽ6 : • • • • •

• •

Ẽ7 : • • • • • • •

•

Ẽ8 : • • • • • • •

•

Note: These are in bijection with the usual simply laced Dynkin
diagrams.
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Finite rank C -module categories

Recall: C be the monoidal category of finite dimensional
SL(2,C)-modules.

If G is a finite subgroup of SL(2,C), then G -mod has the following
properties:

▶ it is an C -module category;
▶ it is semi-simple (with finite dimensional morphism spaces);
▶ it has finitely many simples (up to isomorphism).

All C -module categories with the above properties can be classified:

Theorem. (Etingof-Ostrik)

All C -module categories with the above properties are classified by the
following data (up to isomorphism):

▶ a finite set I ;
▶ a collection of finite dimensional vector spaces Vij , for i , j ∈ I ;
▶ a collection of non-degenerate bilinear forms Bij : Vij ⊗Vji → C such

that, for each i ∈ I , we have
∑

j trace(Eij(E
t
ji )

−1) = −2.
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Remark and Example

Remark. This theorem implies that there are a lot of such C -module
categories.

Example. Take I = {i} to be a singleton and Vii of dimension two.

Let our form have the matrix
(

a b
c d

)
.

Non-degeneracy condition: ad − bc ̸= 0.

Trace equation: 1
ad−bc (2ad − b2 − c2) = −2.

Equivalently: 4ad = (b + c)2.

Put together: 4(ad − bc) = (b − c)2 ̸= 0.

This has many non-equivalent solutions.
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Lie algebra setup

Let D be the monoidal category of finite dimensional sl2(C)-modules.

Note: C and D are monoidally equivalent.

Question: What kind of D-module categories appear naturally in (=can
be constructed intrinsically using) sl2(C)-Mod?

For example: start with an sl2(C)-module N.

Consider D N := {V ⊗C N : V ∈ D}.

Take its additive closure add(D N), i.e. add summands.

Then D acts on add(D N) in the obvious way (by acting on the “V ”
part of the expression and using additivity).

So add(D N) is a D-module category.

If N is simple (not necessarily fin. dim.), then add(D N) is “nice”, for
example, it has fin. dim. hom-spaces (but infinitely many
indecomposables, in general).
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Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Combinatorics

Let M be a “nice” D-module category with indecomposables
{Mi : i ∈ I}.

Here “nice” means additive, idempotent split with finite dimensional
morphism spaces.

Recall that D is generated, as a monoidal category, by the 2-dimensional
natural sl2-module C2.

Define the action matrix M as ([C2(Mj) : Mi ])i,j∈I .

Note: this is an infinite matrix, in general.

This matrix captures the combinatorial shadow of the action.

As the entries are non-negative integers, we an visualize the matrix as an
oriented graph, call it the action graph:

Vertices: elements of I .

We have [C2(Mj) : Mi ] oriented arrows from j to i , for i , j ∈ I .
Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 11 / 23



Example

Example. Take N = C to be the trivial sl2-module.

Then M = add(D N) = D .

Indecomposables: L0, L1, L2, . . . (simple fin.dim sl2-modules), where Li
has dimension i + 1.

Action: C2 ⊗C L0 = L1 and C2 ⊗C Li = Li+1 ⊕ Li−1, for i > 0.

Action matrix: M =


0 1 0 0 . . .
1 0 1 0 . . .
0 1 0 1 . . .
0 0 1 0 . . .
...

...
...

...
. . .

.

Action graph: • -- • --mm • --mm . . .mm .

Simplify • -- •mm to • •

to get: • • • . . . .
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sl2-combinatorics

Theorem. (M.-Zhu, 2024)

Let N be (any) simple sl2-module.

Then combinatorics of a simple D-invariant subquotient of add(D ·N) is
given by one of the following action graphs:

A∞ : • • • . . . A∞
∞ : . . . • • • . . .

C∞ : • (( • • . . . T∞ : • • • . . .

Note: These are four out of six infinite Dynkin diagrams.

The missing ones:
B∞ : • •vv • . . . D∞ : • • • . . .

•

Remark. The D∞ diagram is realizable in a similar way using
sl2 ⋉ L4-modules.

Remark. The B∞ diagram can only be realized via a “dual point of view”
at the C∞-realization (whose underlying category is not semi-simple).
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Notable phenomena

Recall: D is a semi-simple monoidal category (but it has infinitely many
indecomposables=simples).

Observation 1. Simple infinite rank D-module categories might have
non semi-simple underlying categories (happens, e.g. sometimes in type
A∞
∞ and always in type C∞, but never in types A∞ and D∞).

Observation 2. In type A∞, the simple D-module category is unique, up
to equivalence.

Observation 3. In type A∞
∞, there are infinitely many pairwise

non-equivalent simple D-module categories (parameterized by something
like C/Z minus Z).

Observation 4. In type A∞
∞, we construct a simple D-module category

for which the action of D never maps simples to projectives (in sharp
contrast to the finite rank case).
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3D-generalizations?

A. Ocneanu, 2000: Classification of subgroups of quantum SU(N).
Contemp. Math., 294 American Mathematical Society, Providence, RI,
2002, 133–159.

The SU(3)-example from this paper:
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Another example

J.-B. Zuber, 1998: Generalized Dynkin diagrams and root systems and
their folding. Progr. Math., 160 Birkhäuser Boston, Inc., Boston, MA,
1998, 453–493.

Ax example from this paper:
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sl3-setup

Let B be the monoidal category of finite dimensional sl3(C)-modules.

Let N be a simple sl3(C)-module.

Consider BN := {V ⊗C N : V ∈ B}.

Take its additive closure add(BN).

Then add(BN) is a B-module category.

The category add(BN) is additive, idempotent split, with finite
dimensional morphism and countably many indecomposable objects.

Example. If N is finite dimensional, then add(BN) = B.

Question: What can one say about the combinatorics of the action of B
on add(BN)?
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Combinatorics

The category B is generated, in a very weak sense, by the natural
sl3(C)-module C3.

Very weak sense: every object of B is isomorphic to a summand of
(C3)⊗k , for some k .

However, the class of C3 does not generate the split Grothendieck ring
of B.

In fact, the latter is generated by the classes of C3 and its dual (C3)∗.

So, combinatorics is completely determined by the combinatorics of the
action of these two objects.

Just like for sl2, we cen define the action matrices for C3 and (C3)∗

which bookkeep the multiplicities of the action on indecomposable
objects.

And we can visualize those matrices as graphs.
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add(BN) is given by one of the following eight graphs:

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. .
.

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

...
...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...

...
...

...
...

...
. . .

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. .
.

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

. .
.

. . .
...

...
...

...
...

...
...

...
...

. . .

· · ·

· · ·

· · ·

· · ·

. . .

. .
.

. . .

. . .

. . .

. . .

...
...

...
...

. .
.

...
...

...
...

. . .

. . .

. .
.

. . .

. . .

. . .

. . .

Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 19 / 23



sl3-combinatorics

Theorem. (M.-Zhu, 2025)

The combinatorics of the action of B on any simple subquotient of
add(BN) is given by one of the following eight graphs:

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. .
.

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

...
...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...

...
...

...
...

...
. . .

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. .
.

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

. .
.

. . .
...

...
...

...
...

...
...

...
...

. . .

· · ·

· · ·

· · ·

· · ·

. . .

. .
.

. . .

. . .

. . .

. . .

...
...

...
...

. .
.

...
...

...
...

. . .

. . .

. .
.

. . .

. . .

. . .

. . .

Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 19 / 23



sl3-combinatorics

Theorem. (M.-Zhu, 2025)

The combinatorics of the action of B on any simple subquotient of
add(BN) is given by one of the following eight graphs:

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. .
.

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

...
...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...

...
...

...
...

...
. . .

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. .
.

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

. .
.

. . .
...

...
...

...
...

...
...

...
...

. . .

· · ·

· · ·

· · ·

· · ·

. . .

. .
.

. . .

. . .

. . .

. . .

...
...

...
...

. .
.

...
...

...
...

. . .

. . .

. .
.

. . .

. . .

. . .

. . .

Volodymyr Mazorchuk Infinite Dynkin diagrams and monoidal actions 19 / 23



Remarks

Remark 1. It is natural to view these graphs as 3D-analogues of infinite
Dynkin diagrams.

Remark 2. The combinatorics of the action of (C3)∗ is described by
similar eight graphs.

Remark 3. The regular B-module category BB is unique, up to
isomorphism, for its combinatorics.

Remark 4. If the graph does not have double oriented arrows (this holds
for four out of eight graphs), then the underlying category of the
corresponding B-module category is semi-simple.

Remark 5. We expect that infinitely many pairwise non-equivalent
simples B-module categories appear, but we do not know how to prove
that. In the case of sl2 the corresponding result was established using
very particular theorem of Dixmier about pairwise non-isomorphism of
certain primitive quotients of U(sl2).
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Speculations on further research

Speculation 1. For any simple Lie algebra g one can ask a similar
question for the action of g-fdmod on add(g-fdmodN), where N is a
simple g-module.

It is natural to expect that, for a fixed g, there are only finitely many
corresponding combinatorial pictures. Not very clear how to prove this
and, in particular, which discrete invariant(s) index(es) the answer.

Speculation 2. Similarly to the idea of the classical McKay
correspondence, it would be interesting to understand the combinatorics
of the action of g-fdmod on module categories arising from Lie
subalgebras of g.

Speculation 3. It would be also interesting to understand the
combinatorics of the action of g-fdmod on module categories arising from
non semi-simple Lie algebras a for which g is the simple quotient.

Note that this idea was used to realize the type D∞ Dynkin diagram for
sl2.
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.

THANK YOU!!!

Check out: Uppsala Algebra on YouTube:
https://www.youtube.com/channel/UCPWnhR29VHTAk7rZUEDQdDQ
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