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1. Introduction and context

Remark 1.1. Program: develop a systematic approach to the geometry in the

Frechet-manifold setting, emphasis in homogenous manifolds of Frechet-Lie groups.

Not just ”existence” theorems but explicit formulas, equalities and inequalities.

It is classical (in oppposition to noncommutative) differential geometry, but in the

Banach setting; if your are new to the subject, see the books

• H. Upmeier’s book ”Jordan Algebras in Analysis, Operator Theory, and Quan-

tum Mechanics” 1985/1987,

• S. Lang ”Fundamentals of Differential Geometry” 1999 and newer editions.

• D. Beltita ”Smooth Homogeneous Structures in Operator Theory” 2005.

• B. Khesin, R. Wendt ”The geometry of infinite dimensional groups” 2009.

However, the setting the first three is of Banach manifolds. In Upmeier’s book there

are Finsler norms, but no connections, and in Lang’s book everything is seudo-

Riemannian (i.e. everything is in the setting of a smooth non-degenerate bilinear

form).

Remark 1.2. By geometry we mean additional structures in M :

• Linear connections ∇ in M , geodesics and their exponential map, paralell

transport.

• Metric structures: a Finsler metric (a continuous selection of tangent norms)

permits to compute the length of paths, and induces a pseudo-distance in M

by taking the infima of the lengths of paths joining given endpoints.

• Compatibility: is paralell transport an isometry for the distance?

• Geodesics, two definitions: solutions of Euler’s equation ∇γ′γ′ = 0 and on the

other hand L(γ) = dist(γ(0), γ(1)). In the second case, there can be none (no

Hopf-Rinow theorem).

• Curvature: if there is ∇, as a tensor R. But if we are interested in the

geometry, another suitable definitions should follow (no inner products in the

tangent spaces).

Remark 1.3. In Argentina a school of geometry and operator theory began with

Porta and Recht in the 1980s; then Corach and his students Andruchow and Stojanoff,

and their students (me for instance :) and so on.

Examples come first! We learn from them

• G = GL(H) or GL(X) or GL(A) or
• congruence groups

GLcongr(H) = {g ∈ GL(H) : g − 1 is a Hilbert-Schmidt operator}

• replace ”Hilbert-Schmidt” with your favorite ideal Iϕ of compact operators in

B(H).
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• restricted groups

GLres(H) = {g ∈ GL(H) : [g, ε] is a Hilbert-Schmidt operator}

where ε is the symmetry corresponding to the polarization H = H+ ⊕H−,

• likewise

GLϕ
res(H) = {g ∈ GL(H) : [g, ε] ∈ Iϕ}

• On the other hand, one can consider groups of isometries G = U(H) or Iso(X)

or UA or Ucongr(H), Ures(H) etc.

• their homogeneous spaces G/K: of ”noncompact” type for the action of the

whole G = GL etc., and of ”compact type” for the action of a group of

isometries G = U(H) etc.

• Loop groups

• Groups of diffeomorphisms, symplectomorphisms, Hamiltonian symplectomor-

phisms, etc.

See the 1986/1998 [39] and [40] by Presley, Segal and Wilson for the connection

bewtween loop groups and restricted Grassmannians.

See [26] L-2019, Section 5 for a list of examples of this type, and also [27] L-Miglioli

2023 for a mix of classical groups and the groups of Hamiltonian symplectomorphisms.

2. Connections, geodesics, metrics and curvature in the infinite

dimensional setting

We will revisit the notions briefly described in the previous section, but with one

particular example as guideline. Let A be a C∗-algebra i.e. a subalgebra of B(H)

closed in the operator norm, for instance A = K(H). Let UA be the unitary group of

A i.e.

UA = {U ∈ A : U−1 = U∗}
where X∗ denotes the operator adjoint uniquely defined by the equalities

⟨X∗ξ, η⟩ = ⟨ξ,Xη⟩.

Fix a projection P0 = P 2
0 = P ∗

0 ∈ A, the following set is a component of the Grass-

mann manifold of A
Gr = {UPU∗ : U ∈ UA}.

Remark 2.1 (Subspaces and rotations). Let S0 = Ran(P0) be the range of P0, then

the range of P is S = U(S0). So there is a correspondence between elements of the

orbit and subspaces that are obtained from S0 by a ”rotation” by certain U . All

subspaces of the same dimension and codimension as S0 can be reached with such

rotation: if ei fi are respective orthonormal basis of S0 and S⊥
0 , and likewise Ei, Fi of

S, then Uei = Ei, Ufi = Fi does the job.
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In the finite dimensional case dim(H) = n, it suffices to count the dimension of S0,

say it is 0 ≤ k ≤ n and then we obtain a different presentation of the Grassmannian

of k dimensional subspaces Gr ≃ Grk,n(K).

If the dimension of P is one, we obtain projective spaces Pn(K).

3. Differentiable structure

Our set Gr has a natural structure of Banach-homogeneous space: let

D0 = {k ∈ UA : UP0U
∗ = P0}

be the isotropy group for the action. Then D0 is the ”diagonal” subgroup of unitary

operators and it is not hard to see that it is a split, embedded Banach-Lie subgroup

of UA. Thus by very general considerations

Gr ≃ UA /D0

has a structure of Banach-manifolds that makes of the quotient map q : UA → Gr

a smooth submersion and the action α : UA×Gr → Gr given by (U, P ) 7→ UPU∗ a

smooth map.

However, for our purposes we will be necessary to give an explicit description of

the atlas for the manifold Gr. In this presentation there are natural charts better

described by means of the exponential map of B(H). We discuss first the tangent

spaces.

Fix P ∈ Gr, operators A ∈ A as 2× 2 block matrices:

A =

(
PAP PAP⊥

P⊥AP P⊥AP⊥

)
=

(
a11 a12
a21 a22

)
,

and the algebra A decomposed as

A =

(
a11 0

0 a22

)
+

(
0 a12
a21 0

)
= Ad + Ac ∈ DP ⊕CP = A

DP is the P -diagonal part of A,
CP is the P -co-diagonal part of A.

We have

[DP ,DP ] ⊂ DP [DP , CP ] ⊂ CP [CP , CP ] ⊂ DP

a ”reductive algebra” or reductive decomposition.

We denote with sP = 2P − 1 around the range of P , we have sP = s∗P = s−1
P , in

matrix notation

P =

(
1 0

0 0

)
, sP =

(
1 0

0 −1

)
.

We have

(1) X ∈ DP iff it commutes with P
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(2) X ∈ CP iff X = XP + PX iff sPX = −XsP , here [P, [P,X]] = X.

(3) CUPU∗ = U CP U∗, U ∈ UA

(4) Gr ⊂ Ah, tangent space TPGr = CP ∩Ah. Typical tangent vector at P :

XP = [x, P ] with x∗ = −x ∈ CP . Correspondence

Cp ∩Ask ←→ CP ∩Ah

x =

(
0 −λ
λ∗ 0

)
←→

(
0 λ

λ∗ 0

)
= X

Definition 3.1 (Charts). ∥z∥ < π/2, z ∈ CP then

{Q ∈ Gr : ∥Q− P∥ < 1} ←→ {z∗ = −z : ∥z∥ < π/2, z ∈ CP}

by means of z 7→ ezPe−z (a parametrization of the orbit), is a real analytic chart of

Gr around P .

Sketch of proof: let sP = 2P − 1, sQ = 2Q− 1 be the induced symmetries, then

∥sQsP − 1∥ = ∥sQ − sP∥ = 2∥Q− P∥ < 2

hence there exists an analytic logarithm of u = sQsP ∈ UA, let’s say

z = z(Q) =
1

2
log(sQsP ).

It is clear that z∗ = −z and it is also not hard to see that z ∈ CP , i.e. zsP = −sP z.
This in turn implies

ezPe−z = ez(
sP + 1

2
)e−z =

e2zsP + 1

2
=

sQsP sP + 1

2
=

sQ + 1

2
= Q

hence z = z(Q) is the inverse map of z 7→ ezPe−z.

3.1. Other Grassmann manifolds. Fix P0 = P 2
0 = P ∗ ∈ B(H), and consider

some group of Hilbert space operators say Uϕ
res(H), or Uϕ

congr(H). The respective

Grassmann manifold will be then for instance

Grϕres(H) = {UP0U
∗ : U ∈ Uϕ

res(H)}

and likewise with the congruence groups. In particular for the restricted Hilbert-

Schmidt group, you get the Sato Grassmannian. Then you can get away with the

previous construction of charts verbatim, since all the operations are real analytic

and those are Banach-Lie groups.

4. Linear connection, geodesics and exponential map

Remark 4.1. Project onto the tangent spaces

Ah ∋ V ∗ = V =

(
a λ

λ∗ b

)
7→

(
0 λ

λ∗ 0

)
= ΠP (V ) ∈ TPGr.
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From previous remarks we see that

ΠP (V ) = [P, [P, V ]] = [[V, P ], P ].

Remark 4.2. If A has a faithful trace, ΠP are the orthogonal projections for the

Riemannian metric

⟨X, Y ⟩ = Tr(XY ) X, Y ∈ Ah

If µ : [0, 1] → Gr is a vector field along a path γ ⊂ Gr i.e. µ(t) ∈ Tγ(t)Gr = Cγ(t) for
each t ∈ [0, 1].

Remark 4.3. Connection ∇: when there is a suitable projection for each subspace

(tangent space), then we can differentiate and project:

Dtµ := Πγ(t)(µ
′(t)) covariant derivative of µ

A with trace: Dt is the Levi-Civita connection.

Fix P ∈ Gr, Z = [z, P ] ∈ TPGr, then δ(t) = etzPe−tz is the unique geodesic of the

connection ∇ i.e

Dtδ
′ = 0 (Euler’s equation)

with

δ(0) = P, δ′(0) = Z = [z, P ].

We have

δ′(t) = etz[z, P ]e−tz = etzZe−tz = [z, δ(t)] ∈ Tδ(t)Gr

where the initial conditions are verified, and

δ′′(t) = [z, δ′(t)] = [z, [z, δ(t)]] = etz[z, [z, P ]]e−tz = etz[z, Z]e−tz.

Since [z, Z] ∈ DP , δ
′′(t) ∈ Dδ(t), hence

Dtδ
′ = Πδ(δ

′′) = 0.

Thus geodesics are defined for all t, the exponential map of the connection∇ is defined

in the whole tangent space and it is

ExpP (Z) = δ(1) = ezPe−z = e[Z,P ]Pe−[Z,P ]

Notice that our charts back then are the exponential charts!

Remark 4.4. The paralell transport equation along γ

Dtµ = 0, µ(0) = W ∈ TPGr =⇒ P t
0(γ)W = µ(t)

is solved explicitly when γ is a geodesic t 7→ etzPe−tz: it is

µ(t) = etzWe−tz
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5. Length and distance; short paths

Definition 5.1 (L and dist). Length of paths γ : [0, 1]→ Gr is L(γ) =
∫ 1

0
∥γ′(t)∥dt,

here ∥X∥ is the C∗-algebra norm of X.

dist(P,Q) = inf{L(γ) : γ(0) = P, γ(1) = Q}.

Compatibility of the connection with the metric:

∥P t
0(γ)W∥ = ∥W∥ dist(UPU∗, UQU∗) = dist(P,Q).

Remark 5.2. Triangular inequality straight from the definitions, but

(1) dist(p, q) = 0 implies p = q. In this case yes, we will see why soon.

(2) Is the topology of (Gr, d) equivalent to the manifold topology of Gr? In this

case again, yes.

Again: by general methods, since in this example we measure with a norm that

gives the ambient topology, and the space is homogeneous, we could get away with

it without getting our hands dirty. But we want more detail, so we will give a finer

description of the distance function.

Definition 5.3. We say that γ : [0, 1]→ Gr is short, or minimizing if

L(γ) = dist(γ(0), γ(1)).

Then it is easy to see that

dist(γ(s), γ(t)) = Lt
s(γ) =

∫ t

s

∥γ′∥

Theorem 5.4. If z∗ = −z ∈ CP and ∥z∥ ≤ π
2
, then δ(t) = etzPe−tz is minimizing in

[0, 1].

Proof. (Porta-Recht 1987 [36]): by means of the be the GNS representation of −z2 =
z∗z ≥ 0, we can assume that −z2 has a unit norm, norming eigenvector ξ ∈ H. Then

if γ ⊂ Gr joining P, ezPe−z we consider the respective symmetries sδ, sγ ∈ UA and we

push them to the unit sphere S of H evaluating at ξ. This map decreases distances,

but for δ it preserves it. And the fun fact: g = sδξ is a geodesic of the Riemannian

sphere S! This is apparent from g = sδξ = sP e
−2tzξ, hence

∥g′∥2 = 4⟨sP e−2tzzξ, sP e
−2tzzξ⟩ = 4⟨zξ, zξ⟩ = 4⟨−z2ξ, ξ⟩ = 4∥z∥2 = (2∥δ′∥)2

and

g′′ = 4sP e
−2tzz2ξ = −4∥z∥2sP e−2tzξ = −4∥z∥2sδξ = −4∥z∥2g = −LS(g)

2g.

Thus

2LGr(δ) = LS(g) ≤ LS(sγξ) ≤ L(sγ) = 2LGr(γ).

□
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Recall

{Q ∈ Gr : ∥Q− P∥ < 1} = {ezPe−z : z∗ = −z, ∥z∥ < π/2, z ∈ CP}

With this we obtain

dist(Q,P ) = ∥z∥ = ∥z(P,Q)∥ = 1

2
∥ log(sQsP )∥.

Corollary 5.5. d is a distance in Gr that gives the manifold topology.

5.1. Direct rotations and principal angles. What are we measuring? Recall that

if RanP = S, then Q = UPU∗ = ezPe−z is the projection corresponding to the

subspace S ′ = U(S) = ez(S).

So U = ez for a good z is a ”direct rotation”, a notion introduced by Dixmier in

1948 [15], though I would recommend the 1958 paper by Chandler Davis [14] which

is available electronically and much more clear, revisiting Dixmier’s results. There is

however no notion of paths or geodesics in Dixmier’s paper, and the closest to this

is Kovaric’s 1979 paper [23], in the setting of Banach algebras’s idempotents (but

then there there is no notion of length in general, it starts discussing lengths when he

restricts to the Banach algebra of Hilbert-Schmidt operators, which is a Hilbert space

hence the metric is Riemannian).

Since

Z = [z, P ] =

(
0 λ

λ∗ 0

)
then

−z2 = Z2 =

(
λλ∗ 0

0 λ∗λ

)
and

|Z| = |z| =

(
|λ∗| 0

0 |λ|

)
.

The non-zero spectrum of |λ| and |λ∗| coincide (exercise on functional calculus), so

for the non-zero spectrum (since z∗ = −z) we have σ(z) = ±iσ|λ|. In particular

dist(P,Q) = ∥z∥ = ∥λ∥ = maximum angle among subspaces.

To clarify: when the spectrum is discrete (for instance, if Z is compact), we have a

set of numbers called principal angles of the direct rotation.

When A is finite dimensional (classical case, A = Mn(R) or A = Mn(C), we have,

counting with multiplicity

σ(z) = {iθ1, iθ2, . . . , iθk}

with −π
2
≤ θk ≤ π

2
and k = dimRanP .
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Note that in this case we can use the Riemannian metric induced by the trace, and

then

dist(P,Q) = L(δ) = ∥z∥ =
√
Z2 =

√√√√ n∑
k=1

θ2k

This is the angular distance among subspaces of the Grasmmann manifold Grk,n(R)
coming from the Riemannian metric considered by Wong in a classical paper [44] back

in 1967.

The angles can be obtained in a different fashion that gives another insight: let

{ei}, {fi} be orthonormal basis of S = RanP and S ′ = RanQ respectively, consider

the matrix

M = {⟨ei, fj⟩} ∈ Rk×k.

Then the numbers cos θi are the eigenvalues of |M | =
√
M∗M .

In particular by choosing adequate basis one obtains M = PQ or QP since by a result

of Halmos [18] from 1969 ”two subspaces” in generic position can be described as

P =

(
1 0

0 0

)
, Q =

(
c2 cs

cs s2

)
where c = cos |λ∗| and s = sin |λ∗|. This can also be shown by direct computation of

Q = δ(1) = ezPe−z. In particular

dist(P,Q) = ∥z∥ = ∥|λ|∥ = arccos ∥PQ∥.

6. Cut locus and conjugate locus

Definition 6.1. The cut locus CP at P ∈ Gr is the set of points Q ∈ Gr such that

geodesics from P to Q are not minimizing past P . The tangent cut locus TCP ⊂ TPM

is the pre-image of CP at P by means of the exponential map i.e.

TCP = {V ∈ TPM : ExpP (V ) ∈ CP}

.

Remark 6.2 (Monoconjugate and epiconjugate points). Those vectors V0 where our

operator D(ExpP )V0 is not invertible, will be called tangent conjugate points to P .

If the operator is not injective, it is customary to call the point monoconjugate, and

the (real) dimension of its kernel is the order of nullity or just nullity of the con-

jugate point. If the operator is not surjective the point is called epiconjugate. This

phenomena on conjugate points was first observed in the Riemann-Hilbert setting by

Grosmann [17] and McAlpin [33]. The conjugate locus is the image of the tangent

conjugate points through the exponential map at P .

6.1. Motivation. We state here a couple of results to show how are these related,

and their relevance:
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Theorem 6.3. If (M, g) is (finite-dimensional) Riemanian, the cut locus of P consists

exactly of the points Q that are either conjugate to P , or the points such that there

exist two minimizing geodesics from P arriving at the point.

The order of nullity of a minimizing γ joining P to its first conjugate point Q =

ExpP (V ) (the dimension of the kernel of the D(ExpP )V ) is also called Morse index of

γ in Morse theory.

Definition 6.4. Let P,Q ∈M a smooth manifold. Let

ΩP = {γ : [0, 1]→M : γ(0) = P} ⊂ H1([0, 1] : M)

ΩPQ = {γ ⊂M : γ(0) = P, γ(1) = Q} ⊂ H1([0, 1] : M)

Where H1 is the Sobolev space of fuctions (i.e. γ and γ′ are square integrable in a

chart).

Then π : ΩP → M given by γ 7→ γ(1) is a fibration, and the fiber over Q is exactaly

ΩPQ. What interested Morse is that if (M,d) Riemannian is connected and complete,

then all the fibers are homotopically equivalent, so you see ΩPQ ≃ ΩPP hence π1(M)

is in the picture.

Theorem 6.5. Let (M, g) be a (finite-dimensional, Riemannian and complete) man-

ifold. Let Q be the first conjugate point along γ ∈ ΩPQ with dist(P,Q) = L(γ). Then

ΩPQ has the homotopy type of a countable CW-complex which contains one cell of

dimension d for each minimizing γ from P to Q of order d.

The main tools in that setting to study these problems are the variational formulas:

let ν(s, t) : (−ε, ε) × [0, 1] be a variation of the path γ(t) = µ(0, t), which we denote

νs(t). Then

f(s) = E(νs) =

∫ 1

0

∥ d
dt
νs(t)∥2νs(t)dt.

The first variation formula is just a clever rewriting of f ′(0), which involves the

variation field µ along γ

X(t) =
d

ds

∣∣∣∣
s=0

ν(s, t).

Now let ν(u, s, t) : (−ε, ε)× (−ε, ε)× [0, 1] be a two-parameter variation of the path

γ(t) = µ(0, 0, t), with

X(t) =
d

du

∣∣∣∣
u=0

ν(u, 0, t), Y (t) =
d

ds

∣∣∣∣
s=0

ν(0, s, t)

the corresponding variation fields along γ. Then the second variation formula is

another clever rewriting of

Bγ(X, Y ) =
d2

ds du

∣∣∣∣
u=s=0

E(νu,s),
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now involving Jacobi fields along γ. The index of B is the number of negative eigen-

values of B (a well-defined quantity due to Sylvester’s inertia law).

Then:

(1) The path γ is a geodesic if and only if it is a critical point of the first variation,

i.e. f ′(0) = 0.

(2) If γ is minimizing then B has index 0 i.e. Bγ(X,X) ≥ 0 along γ.

(3) (The fundamental theorem of Morse theory) The index of B is the number of

conjugate points to γ(0) along γ, counted with multiplicity.

We won’t get into details, so now we return to our setting, knowing that these theorems

are not available.

6.2. Cut locus, existence and uniqueness of geodesics.

Definition 6.6. A has real rank zero when the set of self-adjoint elements with

finite spectrum is dense in norm in the space of self-adjoint elements of A. The first

examples of such C∗-algebras are the von Neumann algebras or the compact operators

on a separable Hilbert space.

A is purely infinite simple if for every non-zero a ≥ 0 there exists x ∈ A such that

x∗ax = 1. The first examples are the Cuntz algebras On, n ≥ 2, the algebra generated

by n isometries S∗
i Si = 1 such that

∑n
i=1 SiS

∗
i = 1. Cuntz algebras are also of real

rank zero.

Remark 6.7 (Diameter of Gr). By the results of the previous section, the geodesic di-

ameter of the Grassmannian of a C∗-algebra is greater or equal than π/2 (we assumed

throughout that P0 is non-central).

Exponential diameter is a relevant invariant in the classification program of C∗ −
algebras; in N.C. Phillips paper [35] it is shown that

(1) If A has real rank zero and the cancellation property (see [42] for the defini-

tion), then the diameter of Gr is exactly π/2.

(2) If A is purely infinite simple then this rectifiable diameter is exactly π. Cuntz

algebras are purely infinite simple, and also real rank zero! So the geodesics

diameter is π, but no geodesics is minimizing past π/2 (see the next theorem).

In particular this shows that Cuntz algebras do not have the cancellation

property.

The proofs of the above facts are very indirect, we can be more precise:

Theorem 6.8. Assume that A has real rank zero. Then unit speed geodesics of Gr

are not minimizing past |t| = π
2
.

Proof. Let γ(t) = etvPe−tv with ∥v∥ = 1, assumme that t0 > π/2, let v0 = t0v, then

∥v0∥ > π/2. Let Q = γ(t0) = ev0Pe−v0 . Let v∗n = −vn ∈ A be such that vn has finite
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spectrum and ∥vn − v0∥ < 1
n
, let Qn = evnPe−vn . Consider the truncation zn of vn

into the interval i[−π
2
,−π

2
], i.e. for k ∈ N0 let

f(x) =


x+ (k + 1)π

2
−2(k + 2)π

2
≤ x < −(k + 1)π

2

x −π
2
≤ x ≤ π

2

x− (k + 1)π
2

(k + 1)π
2
< x ≤ (k + 2)π

2

,

and let zn = if(−ivn) = −z∗n. Since the spectrum of vn is finite, zn ∈ A, and

moreover ∥zn∥ ≤ π/2. It is plain also that ezn = evn , thus Qn = eznPe−zn and if we

let β(t) = etznPe−tzn then

dist∞(P,Qn) ≤ L1
0(β) = ∥znP − Pzn∥ ≤ max{∥Pzn(1− P )∥, ∥(1− P )znP∥}

≤ ∥zn∥ ≤ π/2 < ∥v0∥ = Lt0
0 (γ).

Since Qn → Q, we are done. □

Now we consider the enveloping von Neumann algebra of A, let P ∧ P ′ denote the

infimum of the projections (again a projection) and let ∼ denote the Murray-von

Neumann equivalence of projections. Then a full characterization of points that can be

joined with a geodesic was obtained by Andruchow in [1] following ideas in Dixmier’s

paper [15] as follows:

Theorem 6.9. Let P,Q ∈ Gr(P0) with A a von Neumann algebra. Then there exists

a geodesic joining P,Q if and only if

P ∧ (1−Q) ∼ Q ∧ (1− P ).

In this case there exist a minimizing geodesic joining them. Moreover, the geodesic is

unique if and only if P ∧ (1−Q) = 0.

In finite dimensional algebras, or in algebras of compact operators, the condition is

automatically fulfilled, see [1]. If A is not a von Neuman algebra, and the condition

is fullfilled, the geodesic might not have speed in A, so some caution is required. But

by considering the enveloping von Neumann algebra of the C∗-algebra A, it follows

that if there exist a geodesic joining P,Q, then the condition must be fullfilled.

We now discuss uniqueness of geodesics, and show that before the first cut locus they

are unique as in the Riemannian setting.

Theorem 6.10. Let V ∈ TPGr, let γ be the unique geodesic from P with initial speed

V . Then

(1) If t∥V ∥ < π/2, then the only minimizing geodesic joining P,Q = γ(t) is γ.

(2) If t0∥V ∥ = π
2
and either ±π

2
is an eigenvalue of t0V , then there is another min-

imizing geodesic γ1 ⊂ A′′ joining P to Q = γ(t0). Moreover, if the eigenvalue

is isolated, then γ1 ⊂ A and γ is not minimizing past t0.

Remark 6.11 (Real case). In the case of the real Grassmannians the proof needs

some adaptation: let e1 = Re(ξ1) and e2 = Im(ξ1), then ve1 = −e2 and ve2 = e1 so
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ue1 = −e2 and ue2 = e1 and we can write

v = v⊥ +
π

2
(−e1 ⊗ e2 + e2 ⊗ e1).

Then we change the sign of the second term to obtain v1 and the rest of the proof

follows in the same fashion.

Corollary 6.12. Assume P0 has finite rank or co-rank (in particular, any finite di-

mensional Grassmannian). If P,Q ∈ Gr(P0) and dist(P,Q) = π/2, then there exist

at least two minimizing geodesics joining them, and unit speed geodesics are not min-

imizing past π/2.

7. Tangent conjugate points

One of the first problems of interest is the charaterization of the conjugate points Q

to P along γ, and the tangent conjugate locus of P , which as we said before, are those

V such that D(ExpP )V is non-invertible.

This was solved for the classical Grassmannians Grk(n) in a wonderful paper by Sakai

in the seventies [41] 1977. It follows the ideas in the paper of Crittenden [13] 1962,

where the method of proof is based on the presentation of the Grassmanian as a

symmetric space of the compact type, and using the machinery of Cartan subalgebras

and real root decompositions. See the paper by Berceanu [9] for further explanation

and history of these developments.

The results of this section with full detail and proofs can be found in [3].

We begin by recalling the well-known formulas for the differential of the exponential

map in a Banach-Lie group:

Lemma 7.1. Let v, w ∈ Lie(G) where G is a Banach-Lie group, let exp be its expo-

nential map, let F (λ) = 1−e−λ

λ
extended by 1 at λ = 0, let G(λ) = eλF (λ). Then

D expv(w) = evF (ad v)w = [G(ad v)w]ew.

Remark 7.2 (Differential of the exponential map of the connection). Since the expo-

nential map of the reductive connection is ExpP (V ) = e[V,P ]Pe−[V,P ], one can compute

its differential explicitly,

D(ExpP )V (W ) = ev[sinhc(ad v)w,P ]e−v

where as before, V = [v, P ] and W = [w,P ] with v, w ∈ C̃P = Ask ∩CP . This formula

was obtained for any symmetric Banach space in [34, Lemma 3.10].

Remark 7.3 (Factorization of the differential of the exponential map). For v ∈ C̃P ,
the operator ad v does not preserve that space. However the operator ad2 v does. Thus

if we pair the roots of the entire function sinhc and their opposites, the Weierstrass
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factorization of that function allows us to write

(1) sinhc(z) =
∏
k ̸=0

(
1 +

z

ikπ

)
=
∏
k≥1

(
1 +

z2

k2π2

)
z ∈ C

By means of the holomorphic functional calculus we obtain

sinhc(t ad v) =
∏
k ̸=0

(
1 +

t ad v

ikπ

)
=
∏
k≥1

(
1 +

t2 ad2 v

k2π2

)
,

and in the last expression we have as building blocks linear operators from C̃P into

itself.

Remark 7.4 (Building blocks). For each T = T (k, s, s′) the point Q = ExpP (TV ) is

conjugate to P when sinhc(T ad v) is not invertible, and this happens if and only if

any of the operators

x 7→ (ad2 v +
j2

k2
|s− s′|21)x, j ∈ Z∗

is not invertible in CP . Equivalently, naming µj = |j|
|k| |s − s′| > 0, when any of

the operators ad2 v + µ2
j1 is not invertible. This will happen only if there exists

s1 ̸= s2 ∈ σ(V ) such that |s1 − s2| = µj.

Theorem (A). Let P ∈ Gr(P0) and let V ∈ TPGr(P0) of unit speed. If Q is conjugate

to P along γ then Q = γ(T ) with

T = T (k, s, s′) =
kπ

|s− s′|
k ∈ Z∗, s ̸= s′ ∈ σ(V ).

For a complete proof see [3], were it is done studying the spectrum of ad v = Lv −Rv

(left and right multiplication, which can be non-trivial).

8. First tangent conjugate point

The smallest T > 0 is obtained for k = 1, and s = 1, s′ = −1 and it is then T = π
2

(note that this is the cut locus and also the geodesic diameter for real rank zero, which

includes the classical setting!). At this points then the unique (possible non-invertible)

operator is

1 + 4 ad2 v.

Is it invertible? Is it injective? To answer this We consider V = U |V | the polar

decomposition of V in the enveloping von Neumann algebra of A, with |V | =
√
V ∗V

and U the partial isometry that maps the range of |V | in the range of V , Let

λ = (1− P )V P, Ω = (1− P )UP.

Let P|λ| stand for the projection onto the closure of the range of λ, P|λ| ≤ 1 − P ,

and consider the C∗-algebra A0 = P|λ|AP|λ|. In simpler terms, using block-operator
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notations with respect to P :

V =

(
0 λ

λ∗ 0

)
=

(
0 Ω

Ω∗ 0

)(
|λ∗| 0

0 |λ|

)
and

P|λ| ∈ A0 =

(
0 0

0 ∗

)
For the first conjugate point we obtain:

Theorem (B). Let V be a unit length tangent vector at P ∈ Gr(P0). Then the kernel

of D(ExpP )π
2
V at the first tangent conjugate point Q = γ(π

2
) is

S = {Ωz − zΩ∗ : z∗ = −z ∈ A0 and |λ|z = z} .

If Q is not monoconjugate to P , then it is epiconjugate to P .

9. Further conjugate points

For other candidates Q = γ(T ), the situation is different, since they might not be

conjugated to P .

Definition 9.1. For given V ∈ TPGr, we now consider the projection Pv onto the

range of V . We will decompose Ask in a direct sum of three subspaces, but now

relative to the projection Pv:

Ask =

(
∗ 0

0 0

)
⊕

(
0 ∗
∗ 0

)
⊕

(
0 0

0 ∗

)
,

or in other terms

(2) Ask = PvAskPv

⊕
C̃Pv

⊕
(1− Pv)Ask(1− Pv),

where

C̃Pv = PvAsk(1− Pv)⊕ (1− Pv)AskPv = PvAsk ⊕AskPv.

Denoting P|λ∗| ≤ P the range projection of λλ∗ and P|λ| the range projection of λ∗λ,

we have we

PV = P|V | = Pv = P|λ∗| + P|λ|.

We will use Re, Im : A → A to denote the real linear operators that take the sym-

metric and skew symmetric part of an operator in A, i.e Re(x) = (x + x∗)/2 and

Im(x) = (x− x∗)/2.

Proposition 9.2. Let V = [v, P ] ∈ TPGr(P0). Then each of the three subspaces

in (2) are invariant for sinhc(T adV ). If V has unit norm, v = u|v| is the polar

decomposition of v and T = T (k, s, s′), then with respect to this direct sum we have

sinhc(T ad v) = Lu(Π− ⊕ Π+)Lu∗

⊕
(Lsinhc(Tv) +Rsinhc(Tv) − 1)

⊕
1



16 GABRIEL LAROTONDA

where Π−,Π+ ∈ B(CP ) are given by

Π− = Πj∈N
(
1− 1

µ2
j

(L|v| −R|v|)
2
)
Re Π+ = Πj∈N

(
1− 1

µ2
j

(L|v| +R|v|)
2
)
Im

for µj = j|k|−1|s− s′|, and they preserve self-adjoint (resp. skew-adjoint) operators.

The proof of this is part of the paper [3], where we also obtain:

Theorem (C). Let T = T (k, s, s′), let µj =
j
|k| |s− s′| and

Λ = {j ∈ N : ∃s1 ̸= s2 ∈ σ(V ) with j|s− s′| = |k||s1 − s2|},

let

H = ⊕j∈Λ ker((L−R)2 − µ2
j)
∣∣
(A0)h

, K = ⊕j∈Λ ker(L+R− µj)
∣∣
(A0)sk

.

Then ker(DExpP )TV = S ⊕ T , where

S = {Ω(a+ b) + (a− b)Ω∗ : a ∈ H, b ∈ K}

and

T = {x = Pvx+ xPv ∈ TPGr(P0) : sinhc(TV )x = xPv}.

We remark that from the results of Sakai [41], in the classical Grassmannians Grk(n),

along a unit speed geodesic the point Q = γ(T ) for T = (k, s, s′) as above is always

conjugate to P . In our setting, in [3] we obtained

Theorem 9.3. If A0 is a prime C∗-algebra or a von Neumann factor, then each

Q = γ(T ) is either monogonjugate or epiconjugate to P .

10. Counting dimensions and examples

To compute the dimension of the kernel at the first tangent conjugate point, by

Theorem (B) it then suffices to compute the dimension of X = { b∗ = −b : |λ|b = b}.
Since ∥|λ| ∥ = 1, we know that 1 ∈ σ(|λ|). But it is possible that 1 is not an eigenvalue

of |λ|, hence in that case the space X is null, thus the kernel is null.

On the other hand, if 1 is an eigenvalue of V (equivalently, it is isolated in the

spectrum), let P1 ∈ A0 be the associated eigenprojection and let r = dimR(P1). Then

it must be

r ≤ rank(P|λ|) = rank(|λ|) = rank(λ∗λ) ≤ min{rank(P ), rank(1− P )}.

Corollary 10.1. For the complex Grassmannian the order at V0 =
π
2
V is d = r2, and

for the real Grassmannian it is d = r(r−1)
2

Proof. We have to count the solutions of b∗ = −b, P1b = b, or equivalently b∗ = −b
and the range of b is of dimension r. Now, those numbers are the real dimensions of

the spaces of skew-Hermitian (resp. skew-symmetric) matrices acting on a space of

real dimension r. □
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Lemma 10.2 (Eigenvalues of V produce monoconjugate points). Assumme s ̸= s′ ∈
σ(V ) are eigenvalues with respective eigenvectors ξs, ξ′ and assume that both ξs ⊗ ξ′

and ξ′ ⊗ ξs belong to A. Then γ(T ) for T = T (k, s, s′) is monoconjugate to P = γ(0)

for any k ∈ Z∗.

Proof. Consider the equations for j = k, s1 = s, s2 = s′

|λ|2a+ a|λ|2 − 2|λ|a|λ| − |s− s′|2a = 0(3)

|λ|2b+ b|λ|2 + 2|λ|b|λ| − |s− s′|2b = 0.(4)

for self-adjoint a ∈ A0 (resp. skew-adjoint b). Assumme A0 represented in some

Hilbert space H. We can safely assume that 0 < s ≤ 1. Consider first the case

of 0 < s′ < s. Let ξs, ξ′ ∈ H such that |λ|ξs = sξs and |λ|ξ′ = s′ξ′ . Note that

ξs, ξ′ ∈ RanP|λ| ∩ Ran(1 − P ) since ξs = s−1|λ|ξs and likewise for s′. Consider

a = a∗ = ξs ⊗ ξ′ + ξ′ ⊗ ξs ∈ A, then

P|λ|a = (P|λ|ξs)⊗ ξ′ + (P|λ|ξ′)⊗ ξs = a

and likewise aP|λ| = a. The same argument shows that (1 − P )a = a = a(1 − P ),

which shows that a ∈ A0. On the other hand, it is easy to check that a is a solution

of equation (3), hence the kernel is nontrivial. If s < s′ ≤ 1, the same solution applies

since we can exchange s, s′. Now assume s′ ≤ 0, take ξs as before and ξ′ such that

|λ|ξ′ = |s′|ξ′ = −s′ξ′ . In this case consider −b∗ = b = ξs ⊗ ξ′ − ξ′ ⊗ ξs ∈ A0. Then it

is easy to check that b is a solution of equation (4). If s′ ̸= −s, then b ̸= 0 and the

kernel is nontrivial. If s′ = −s, one would need to ask that the eigenspace of s has real

dimension at least 2 (this is plain for the complex case), for in this case one can take

two linearly independent eigenvectors ξs, ξ′ of the eigenvalue s, and then b ̸= 0. □

Remark 10.3 (Compact operators and the restricted Grassmannian). Consider the

unitary group of a proper ideal I ⊂ K(H) of compact operators (cf. Gohberg and

Krein [16, Chapter III]):

UI = {u ∈ U(H) : u− 1 ∈ I} = exp{A : A∗ = −A ∈ I}.

A relevant case of infinite dimensional Grassmannian occurs when we consider the

coadjoint orbit a a projection P ∈ B(H) for the action of the group UI , i.e.

GrI(P0) = {uPu∗ : u ∈ UI}.

Then the number d of Corollary 10.1 is finite, and the statement of that corollary

holds for the restricted Grassmannian, with the same proof (despite the fact that in

general it is not the unitary group of a C∗-algebra).

We also want to mention that the argument in the previous Lemma 10.2 holds for

these restricted Grassmannians (since the ideal I contains all finite rank operators

ξs ⊗ ξ′s), with one exception. Indeed since V is compact then |λ| is positive compact,

thus for each nonzero eigenvalue we have a finite dimensional nontrivial eigenspace.
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The exception is for the case of s ̸= 0, s′ = 0, i.e. the candidate to conjugate point

v such that ad2 v + s21 = 0 with 0 ̸= s ∈ σ(|λ|). This is an exception because the

kernel of V (equivalently, of |λ|) might be trivial thus we cannot build neither a nor

b. Thus all candidates Q = γ(T ) are monoconjugate to P = γ(0), except perhaps for

the case of T = (k, s, 0). Other restricted Grassmannians can be approached with our

techniques, for instance those considered in [7] by Ratiu et al.

11. Examples

We now present a series of examples to conclude.

Example 11.1 (First epiconjugate point which is not monoconjugate). Let H =

L2[−1, 1], and let A = B(H). Let P be the orthogonal projection given taking the

even part of a function f ∈ H, i.e.

Pf(x) =
1

2
(f(x) + f(−x)).

Let V ∗ = V ∈ A be given by V f(x) = xf(x). Then σ(V ) = [−1, 1] and in particular

∥V ∥ = 1. Moreover if v = [V, P ] then vf(x) = xf(−x). Now

PV f(x) =
1

2
(xf(x)− xf(−x)) = V (1− P )f(x)

hence V = PV + V P thus V is P -codiagonal. Let γ be the geodesic through P with

intial speed V . We claim that Q = γ(π
2
) is not monoconjugate but epiconjugate to P .

To this end, note first that |V |f(x) = |x|f(x) and it is plain that σ(|V |) = [0, 1]

while |V | has no eigenvalues. This also tells us that PV f(x) = f(x) i.e. PV is the

identity operator. Therefore sinhc(T adV ) is unitary equivalent to H ⊕ K for any

T . We have P|λ| = 1 − P and moreover |λ| = (1 − P )|V |(1 − P ) is described by

(|λ|f)(x) = |x|f(x) for odd functions f ∈ L2[−1, 1], which is the range of 1− P . We

use the characterization of first conjugate points obtained in Theorems (A) and (B).

The point Q must be conjugate to P . But |λ|b = b for b∗ = −b has no solutions

in A0, because |λ| has no eigenvalues. Hence the point is not monoconjugate but

epinconjugate.

By taking the product of algebras, we show an example where

Example 11.2 (Q = γ(π/2) is monoconjugate and epiconjugate to P ). Consider

the direct sum A = B(H) ⊕M2(C), with the maximum norm, with H = L2[−1, 1]
as above. Let P, V be as in the previous example and let p = e1 ⊗ e1 ∈ M2(C),
while w = e1 ⊗ e2 − e2 ⊗ e1 is p-codiagonal, skew adjoint and of unit norm. consider

P ′ = (P, p), V ′ = (V,w), then with the product in each coordinate it is plain that

P ′ is a projection and V ′ is P ′-codiagonal and of unit norm. In both cases Pv, Pw is

the unit of the respective algebra, hence PV ′ is the unit of A. Therefore for the first

conjugate point we are again dealing only with the right-down corner of the algebra
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A, which is the direct sum of both corners. Moreover |λ|(f, ξ) = (|x|f, ξ) for odd

f ∈ L2[−1, 1] and ξ ∈ C, i.e.

L|λ| =

(
M 0

0 1

)
Where M = M|x| is the multiplication operator. In the second coordinate, the kernel

is the span of b = (0, i), in particular Q is monoconjugate to P . Now LM + RM − 2

is not invertible and injective (previous example), therefore it is not surjective and Q

is also epiconjugate to P .

11.1. Projective spaces. We now characterize the kernel for all conjugate points in

projective spaces, presented as the orbit of a one-dimensional projection:

Example 11.3 (Complex projective space). Here P is (complex) one-dimensional

projection. In this case λχ∗, χλ∗ are complex numbers and λλ∗ is a real non-negative

number. The normalization condition implies that λλ∗ = ∥λλ∗∥ = 1, and this also

tells us that p = |λ|2 = λ∗λ is a one-dimensional projection in A0. It is apparent that

Ω = λ ∈ A and in particular solving for z ∈ A0 solves the problem in A.

Proposition 11.4. For each tangent V in the complex projective space, there are two

kinds of monoconjugate points:

i) T0 = (2k + 1)π
2
, k ∈ Z: the kernel is spanned by X = iV (in particular the

order is always 1)

ii) T1 = kπ, k ∈ Z ̸=0: the kernel is given by all b∗ = −b ∈ A0, and the whole C̃Pv .

For the case of Gr(P0) = Cn/C, the order of the T1 points is 2(2n− 3).

Example 11.5 (Real projective space). In this case the computations are done in the

same fashion as in the previous example, but now the subspaces are real. Therefore

the solutions for the points of type T0 is {0}, because there are no skew-adjoint matrix

in real dimension 1. Therefore these are not monoconjugate points. The points of

type T1 fulfill the same conditions as in the previous example: b∗ = −b ∈ A0 and the

whole space of Pv co-diagonal operators. For the case of Gr(P0) = Rn/R, these spaces
have dimension n− 2 and n− 1 respectively so the order of these points is 2n− 3.

We close with a finite dimensional example where Q = γ(T ) for T (k, s, s′) is not

conjugate to P , except for the case of the points T = kπ
2

already discussed. This is

unlike the classical Grassmannians Grk(n) where they all are conjugate, and the main

reason of failure is that A0 ≃ C⊕ C is not a factor.

Example 11.6. Let A = M2(C)⊕M2(C), let

P =

(
1 0

0 0

)
⊕

(
1 0

0 0

)
and V =

(
0 1

1 0

)
⊕

(
0 α

α 0

)
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for some 0 < α < 1. Then V is P -codiagonal, σ(V ) = {−1,−α, α, 1} and PV = 1⊕ 1

is the identity of A. We also have

A0 =

(
0 0

0 C

)
⊕

(
0 0

0 C

)
, |λ| =

(
0 0

0 1

)
⊕

(
0 0

0 α

)
,

and the identity of A0 is of course 1− P . Then σ(|λ|) = {1, α} but L−R = 0 in A0

hence σ(L−R) ⊊ {0, 1− α, α− 1}. On the other hand L+R = 2⊕ 2α in A0 hence

σ(L+R) = {2, 2α} again with strict inclusion in {2α, 1+α, 2}. There are four family

of candidates to conjugate points,

T1 =
kπ

2
, T2 =

kπ

1 + α
, T3 =

kπ

1− α
, T4 =

kπ

2α
.

For the first family we know that γ(T1) is conjugate to P , in fact monoconjugate

because the algebra is finite dimensional. On the other hand it is easy to see that

none of the other points are conjugate to P : we only show that for the case of T2, the

other cases being similar. For this case one can check that the only possible value of

µj is µ = 1+α > 1. Since PV = 1 all conjugate points occur inside A0. Therefore we

are only interested in

H = (L−R)2 − (α + 1) = −(α + 1)

which is invertible and

K = L+R− (α + 1) = (1− α)⊕ (α− 1)

which is also invertible. Hence sinhc(T2 ad v) is invertible and γ(T2) is not conjugate

to P along γ.
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