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A brief outlne of topics

1 Scope of the talk

2 A universal kinematical group for quantum mechanics

Fundamental assumptions

Mass (or charge) and momentum (resp., current) density observables

The semidirect product: momentum (resp., current) as the transport of mass (resp., charge

Structure constants of the Lie algebra

3 Unitary representations of the semidirect product group

4 Anyon dipole, quadrupole, and higher multipole con�gurations
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Scope of the talk

The continuous unitary representations (CURs) of a certain in�nite-dimensional Lie group

describe the kinematics of all possible quantum systems with mass or charge in a

speci�ed physical space.

This group thus serves as a �universal kinematical group� for quantum mechanics.

Orignally it was constructed as a local current algebra from canonically quantized �elds.

We now obtain it straightforwardly from �rst principles.

This gives us a way to achieve quantum mechanics without any need to quantize a

classical phase space. Last year at WGMP XLI, I presented this idea in detail. Today I

�rst summarize brie�y the reasoning behind this, before introducing some new results.
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Scope of the talk (continued)

In 1980-81 our group at Los Alamos obtained one of the earliest predictions of possible

intermediate particle exchange statistics in two space dimensions, from studying the

unitary representations of this group. Such particles are now known as �anyons.� Shortly

thereafter, we published the �rst prediction of nonabelian anyons, similarly obtained.

With Hongyi Shen at Rutgers University, we show here how new interesting quantum

phases can arise not only from the exchange statistics of anyons, but independently from

their theoretically possible internal structure.

The mathematical origin of such phases is topological, as is the origin of the particle

exchange statistics in our earlier development.

I will illustrate by discussing the possible kinematics of anyonic con�gurations in R2

having dipole and quadrupole properties.
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A universal kinematical group for QM: Fundamental assumptions

1. We describe an arbitrary quantum system with mass or charge in a physical space.

2. In quantum mechanics observables are described by self-adjoint operators in a Hilbert

space with the usual measurement interpretations.

3. Measurements may be taken of the mass (resp. charge) density in bounded regions

of space. The operators describing such observables all commute.

4. Measurements may be taken of the momentum density (resp., current density) in

bounded regions of space.

Momentum density refers to instantaneous transport of the mass density. Likewise,

current density refers to instantaneous transport of the charge density.

(continued)
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Fundamental assumptions (continued)

5. The operators for momentum density observables do not commute with those for

mass density observables.

Likewise, the operators for current density observables do not commute with those

for charge density observables.

Sharp and I construct from these assumptions an in�nite-dimensional group G , whose

inequivalent continuous unitary representations (CURs) in Hilbert space describe the

quantum kinematics of all possible systems with mass (or charge) in M.
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Mass (or charge) density observables: the commutative Lie group D(M)

Mass (or charge) density observables in M are to be described by self-adjoint operators in

a Hlilbert space H. As point-like particles are possible, such densities may be singular;

i.e., distributions rather than functions.

E.g. for N point particles with masses m1, ...mN , located respectively at positions

x1, ...xN ∈ M, the mass density is ΣN
j=1mjδxj .

The mass density may be any positive distribution on M. Charge densities need not be

positive.

By our �rst three physical assumptions, we thus represent such density observables by a

self-adjoint operator-valued distribution ρ(x) on M, acting in H. The test function space

can be the space D(M) of real, smooth, compactly supported functions on M.
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Mass (or charge) density measurements (continued)

For a test function f : M → R, we write formally (in the usual notation for distributions):

ρ(f ) =

∫
M

ρ(x)f (x)dnx . (2.1)

Then ρ(f ), f ∈ D(M) is the self-adjoint operator describing the observable for mass or

charge density averaged by the test function f over its region of support. Our assumption

that such observables commute means that

[ρ(f1), ρ(f2)] = 0, ∀f1, f2 ∈ D(M). (2.2)

Now Stone's theorem associates with each self-adjoint operator ρ(f ) a

strongly-continuous one-parameter unitary group:

Us(f ) = exp isρ(f ), s ∈ R , where sρ(f ) = ρ(sf ), and

ρ(f ) = lims→0(1/is)[Us(f )− I ]. (2.3)

Because the ρ(f )'s all commute, we have U(f1)U(f2) = U(f1 + f2), ∀f1, f2 ∈ D(M).
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Momentum (or current) density observables: the algebra of vector �elds and

the di�eomorphism group Di�0(M)

Our �nal two assumptions pertain to measurement of momentum density or current

density. As the mass or charge density of a quantum system may be singular, the

associated �ux density may likewise be singular. Furthermore, it is a vector quantity.

Consequently, such measurements must be represented in H as an n-component

operator-valued distribution J(x), J = (J1, ...Jn), where n is the dimensionality of M. The

test functions for these observables are C∞ tangent vector �elds g on M. That is, for

x ∈ M, g(x) is an element of Tx(M), the tangent space to M at x .

The self-adjoint operator J(g) describes the averaged momentum or current density, in

the direction of g(x) at each point x and weighted there with the magnitude |g(x)|:

J(g) =

∫
M

J(x) · g(x)dnx .where J(x) · g(x) = Σn
k=1Jk(x)g

k(x). (2.4)
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Momentum (or current) density observables (continued)

For observations in bounded regions, each g has compact support. Let vect0(M) denote

the space of C∞ compactly supported vector �elds on M. Then the self-adjoint operators

J(g), g ∈ vect0(M) describe momentum (current) density observables.

Now each g generates a smooth global �ow on M, the trajectory that a point carried by

g would follow. Such a �ow is a one-parameter group of C∞ di�eomorphisms of M,

denoted by ϕ g
r : M → M, where r is a real parameter. It is de�ned for all x and for all r

due to the compact support of g. (A di�eomorphism is a smooth, invertible map ϕ from

M to itself, whose inverse is also smooth.) We have,

ϕ g
r1+r2 = ϕ g

r2 ◦ ϕ
g
r1 , where ∂ϕ g

r (x)/∂r = g(ϕ g
r (x) (2.5)

with initial condition ϕ g
r=0(x) ≡ x . The product law is composition of di�eomorphisms.

To �rst order in r , the point x ∈ M moves (in local Euclidean coordinates) to x + rg(x).
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Momentum (or current) density observables (continued)

Now J(g) generates a continuous unitary represesention V (ϕ g
r ). Composing all such

�ows leads to a CUR of a group of C∞ di�eomorphisms of M. For g ∈ vect0(M), ϕ g
r is

the identity map outside the support of g. Any product of such di�eomorphisms likewise

has compact support, generating the group Di�0(M).

Writing multiplication in Di�0(M) as ϕ1ϕ2 := ϕ2 ◦ ϕ1, where ◦ denotes composition, we

have V (ϕ1ϕ2) = V (ϕ1)V (ϕ2) without reversing the order of the di�eomorphisms.

An in�nitesimal �ow by g1 followed by g2, succeeded by an in�nitesimal �ow back by g1

and then by g2 yields an in�nitesimal �ow by the Lie bracket [g1, g2]. In the usual

notation, [g1, g2] = g1 · ∇g2 − g2 · ∇g. Thus J is a self-adjoint representation in H of the

Lie algebra vect0(M) equipped with the Lie bracket; i.e., [J(g1), J(g2)] ∝ iJ([g1, g2]).
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The semidirect product group D(M)⋊Di�0(M)

Finally consider the commutation relations of the operators ρ(f ) with the operators J(g).

Here we use the physical assumption that momentum density (resp., current density)

refers to the in�nitesimal transport of mass density (resp., charge density).

This implies the proportionality [ρ(f ), J(g)] ∝ iρ(g · ∇f ). The right side is the density

averaged with the derivative of f in the g-direction (i.e., the Lie derivative of f by g. By

our �nal assumption, the constant of proportionality must be non-zero.

At the level of the unitary groups U and V , for f ∈ D(M) and ϕ ∈ Di�0(M), this gives

us the semidirect product group action, V (ϕ)U(f ) = U(f ◦ ϕ)V (ϕ).

Physically, these equations assert that mass or charge density measured at the location to

which it has been carried by momentum or current density takes the value measured at

its original location before being transported.
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The semidirect product group (continued)

To sum up, the kinematics of an arbitrary quantum system with mass or charge in the

space M is described universally by a CUR U(f )V (ϕ) of the semidirect product group

D(M)⋊Di�0(M). The group law is

(f1, ϕ1)(f2, ϕ2) = (f1 + f2 ◦ ϕ1, ϕ2 ◦ ϕ1). (2.6)

In this development, we have found a very general way to arrive at quantum mechanics

directly, without the need for quantization of a system in a classical phase space, and

without assuming an underlying quantum �eld theory.

To my knowledge, the kinematics of every known �nonrelativistic� (i.e., Galilean)

quantum-mechanical system corresponds to a CUR of this group. In a particular CUR,

one may identity a con�guration space on which it is modeled. The cotangent bundle of

this con�guration space serves as the classi�cal phase space for the system. The inverse

problem of reconstructing the CUR from the phase space is �quantization.�
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Structure constants of the Lie algebra

In the relations [ρ(f ), J(g)] ∝ ρ(g · ∇f ) and [J(g1), J(g2)] ∝ iJ([g1, g2]), it is

straightforward to determine carefully the units of the constants of proportionality.

For example, if the representation describes mass and momentum density observables,

the constants of proportionality must both be in units ML
2/T, in order that the

dimensionality of both expressions in each proportion be the same.

We therefore introduce the coe�cient ℏ, whose magnitude is to be determined

experimentally. Finally, we obtain the �Lie algebra of local currents� whose self-adjoint

representations describe all possible quantum systems with mass in the space M. For

f1, f2, f ∈ D(M) and g1, g2, g ∈ vect0(M),

[ρ(f1), ρ(f2)] = 0,

[ρ(f ), J(g)] = iℏρ(g · ∇f ),

[J(g1), J(g2)] = −iℏJ([g1, g2]). (2.7)
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Unitary representations of D(M)⋊Di�0(M)

Under very general conditions, a unitary representation U(f )V (ϕ) of the semidirect group

in a Hilbert space H may be written, for Ψ ∈ H,

[U(f )Ψ](γ) = e i<γ,f>Ψ(γ),

[V (ϕ)Ψ](γ) = χϕ(γ)Ψ(ϕγ)

√
dµϕ

dµ
(γ) . (3.1)

In Eqs. (3.1), γ belongs to a con�guration space ∆, which is a subset of the space of

distributions modeled on D(M); that is, ∆ ⊂ D′(M). We denote by < γ, f > the value

that γ takes on f ∈ D′(M).

The group Di�0(M) acts naturally on D′(M) as the dual to its action on D(M); that is,

< ϕγ, f >=< γ, f ◦ ϕ >. The space ∆ is invariant under this action.
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Unitary representations (continued)

A measure µ exists on at least some such invariant submanifolds ∆, with the needed

technical property of quasi-invariance under the group action. Letting µϕ denote the

measure transformed by ϕ, quasi-invariance ensures the existence (almost everywhere

with respect to µ) of the Radon-Nikodym derivative [dµϕ/dµ](γ) in Eqs. (3.1).

The Hilbert space H is realized as the space of square integrable functions on ∆ taking

values in a complex inner product space W; i.e., H = L2µ(∆,W). For scalar-valued wave

functions, W = C. For vector-valued functions, W can be higher-dimensional.

For the representation to be irreducible, µ must be ergodic; that is, every invariant set

under the action of the di�eomorphism group is either of full measure, or of measure

zero. This can occur in two di�erent ways � either ∆ consists of a single orbit in D′(M)

(as is the case for N-particle con�guration spaces), or it is the uncountable union of

orbits having zero measure (e.g., for in�nite particle systems).
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Unitary representations (continued)

Finally, χ is a unitary 1-cocycle acting in W. That is, it satis�es the cocycle equation

(almost everywhere in ∆),

χϕ1ϕ2(γ) = χϕ1(γ)χϕ2(ϕ1γ), ∀ϕ1, ϕ2 ∈ Di�0(M). (3.2)

Cocycles matter greatly, because inequivalent cocycles describe distinct topological

e�ects � e.g., the possible exchange statistics of particles associated with unitary

representations of the fundamental group of ∆.

Thus one obtains Bose or Fermi statistics, parastatistics, the intermediate statistics of

anyons, and nonabelian anyon statistics, as inequivalent irreducible continuous unitary

representations of the same in�nite-dimensional group.
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Topology of the con�guration space ∆

Brie�y, for γ ∈ ∆, there is a natural homomorphism from the subgroup of Di�0(M) that

leaves γ �xed (the stability subgroup), onto the fundamental group π1(∆). Then a

unitary representation of the fundamental group immediately provides a CUR of the

stability subgroup. One then obtains the cocycle via an inducing construction.

This in turn gives us a CUR of the full semidirect product group from Eq. (3.1),

establishing the kinematics of a quantum system modeled on ∆.

For N indistinguishable point particles in R3, π1(∆) is the symmetric group SN . Thus we

obtain the exchange statistics of bosons, fermions, and paraparticles from unitary

representations of SN . In R2. the fundamental group is the braid group BN , whose

representations led us to the kinematics of anyons and nonabelian anyons.

This brings me to the last part of my talk (with Hongyi Shen), group-theoretic prediction

of the kinematics of anyonic multipole con�gurations.
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Anyonic dipoles

Consider con�gurations in the plane that include a dipole term. For x ∈ M = R2 and

∈ Tx(R2), Tx(M) being the tangent space to M at x , de�ne the con�guration γ(x,λ) by:

< γ(x,λ), f >:= qf (x) + λ · ∇f (x). (4.1)

Here q can be (for example) the charge of a particle at x , and λ its dipole moment.

Then the action of a di�eomorphism ϕ ∈ Di�0(M) on γ(x,λ) that enters Eqs. (3.1) is

given by ϕγ(x,λ) = γ(x′,λ′), where

x ′ = ϕ(x), (4.2)

λ′ = Jϕ(x)λ, (4.3)

and where Jϕ(x) is the matrix of derivatives of ϕ (i.e., the Jacobian matrix) at x .

Because det Jϕ cannot vanish, if λ ̸= 0 then Jϕ(x)λ ̸= 0.
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Physical consequences for dipole particles or excitations in two-space

In such an orbit of Di�0(M), for each x ∈ M, the space of values taken by λ is without

the origin. When M = R2, the fundamental group of ∆ is nontrivial; we have π1(∆) = Z.

The stability subgroup of the con�guration γ(x,λ consists of di�eomorphisms for which

ϕ(x) = x and Jϕ(x)λ = λ. When M = R2, each such di�eomorphism encodes the

number of counterclockwise windings of the dipole about itself.

Consequently there are representations that introduce a new intermediate phase to the

wave function, proportional to the number of local rotations by 2π performed by the

di�eomorphism.

The spectrum of the local angular momentum operator generating the rotation shifts

accordingly.
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Physical consequences for anyonic dipoles (continued)

The magnitude of the phase coming from a local 2π rotation is, in principle, independent

of the exchange phase associated with the counterclockwise exchange in position of

indistinguishable pairs of anyonic dipoles in multi-particle systems.

One can construct a model wherein one pictures the dipole part of the system to be a

tightly-bound (con�ned) composite formed by a pair of equal but oppositely-charged

anyons, behaving like charged-particle/magnetic-�ux-tube composites.

In such a picture, the �internal� phase associated with the number of 2π rotations is

obtained from circulation of the charges about each others' �ux tubes.

In this model, the respective attached �uxes (if equal in magnitude) should likewise be

opposite in sign in order to contribute to a net nonzero rotational phase.
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Quadrupoles (and higher multipoles)

Quadrupole and higher multipole con�gurations involve greater complexity, and require a

more detailed discussion. We shall look at quadrupole con�gurations, where second

derivative terms are included in the distributions de�ning con�guration spaces. Higher

derivatives of delta-distributions provide us with higher multipole con�gurations.

We write quadrupole con�gurations, summing over repeated indices (which range from 1

to the dimension of M) as follows. For f ∈ D(M),

< γ(x,λ,Q), f > := qf (x) + λi∂i f (x) + Q ij∂i∂j f (x). (4.4)

A particle con�guration is described by its location x ∈ M, its charge q, its dipole

moment vector λ, and its quadrupole moment tensor Q.
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Quadrupoles con�gurations

Now the action of di�eomorphisms is given by ϕγ(x,λ,Q) = γ(x′,λ′,Q′), where

x ′ = ϕ(x),

(λ′)k = [∂jϕ
k ](x)λj +

1

2
Qpq[∂p∂qϕ

k ](x),

(Q ′)pq = [∂jϕ
p](x)[∂kϕ

q](x)Q jk .

(4.5)

The general formulas (4.5), and the classi�cation of orbits, were discussed in this context

in my joint publication with Ralph Meniko� back in 1985 on the quantum kinematics of

tightly-bound composites.

With Hongyi Shen, we now focus on anyonic e�ects speci�c to two space dimensions.

(Gerald A. Goldin Dept. of Mathematics and Dept. of Physics & Astronomy Rutgers University[5pt] geraldgoldin@dimacs.rutgers.edu[15pt] Workshop on Geometric Methods in Physics XLI University of Biaªystok, Poland )The Kinematics of Anyon Multipole Con�gurations June 30 - July 5, 2025 24 / 32



Anyonic quadrupole con�gurationsv

In a CUR of the semidirect product group, wave functions having positive measure in

disjoint quadrupole orbits cannot be connected by U(f )V (ϕ). Each orbit carries

irreducible representations induced by unitary representations of its fundamental group.

Notice that if Q = 0 in Eq.(4.5), it reduces to the dipole case. But for Q ̸= 0. the origin

is no longer excluded from λ-space due the quadrupole term. Thus the topology of

quadrupole con�guration space is wholly determined by the topology of quadrupole orbits

under the action of di�eomorphisms.

The di�eent orbits descibe qualitatively di�erent quantum particles � distinct particle

types. The orbits are classi�ed according the signs of the eigenvalues of Q. We may have

one nonzero eigenvalue (either + or -) or we may have two, with like or unlike signs.

Con�gurations in di�erent orbits can be modeled by distinct composite anyonic

structures.
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A closer look at an anyonic quadrupole orbit

Let us explore an orbit for Q having just one nonzero eigenvalue. Such an orbit (with

zero net charge) can be modeled by con�gurations of three very tightly bound, very

nearly colinear particles in the plane. One particle must then have a charge di�erent in

sign from the other two, equal in magnitude to their sum.

Place the di�erently-charged particle between the other two, and let x be the coordinate

of that particle. The sign of the eigenvalue is that of the outer pair of particles. The

dipole moment λ and the quadrupole moment Q are de�ned about x . The orbit

(x ,λ,Q) has six degrees of freedom � two for x , two for λ, and two for Q.

Think of the separation between the �tightly bound� charges as �rst-order in�nitesimal.

The deviation from linearity is then second-order in�nitesimal. This does not change the

number of degress of freedom in the orbit.
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An anyonic quadrupole orbit (continued)

The fundamental group of this orbit is again isomorphic to Z. We can see easily from the

model that a locally rigid rotation by π about x restores the quadrupole moment to its

initial value, without a�ecting the dipole moment.

We again have nontrivial cocycles for the di�eomorphism group action, and the

possibility of nontrivial phases introduced into wave functions in CURs of the semidirect

product group.

One di�erence from the pure dipole case is that now local rotations about x by πn (rather

than by 2πn) belong to the subgroup of di�eomorphisms leaving a con�guration �xed.

The three tightly-bound, colinear charges in our model are understood to be extremely

large, but their sum is zero. If we would like to introduce a net charge q into the

representation, we can do so in our model by attaching an additional charge to the

structure at the point x .
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Internal anyonic phases (continued)

By attaching a magnetic �ux tube to each of the charged particles, one can adjust the

magnitudes of the resulting phases under local rotations. If desired, one can set these to

relate explicitly to the exchange phase of particles in multiplarticle systems, but there

does not appear to be a necessary connection in either the dipole or quadrupole cases

discussed.

Hongyi Shen is currently exploring further the classi�cation and topology of higher

multipole orbits, as part of his Ph.D. thesis.
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Research in progress

It is interesting to speculate that anyonic multipole co�gurations may eventually play

some theoretical role in our understanidng of phyiscal situations where anyons are

relevant � e.g., surface phenomena in the presence of variable magnetic �elds, or vortices

in thin quantum �uids.

Mathematically, they are relevant (for example) to the study of coadjoint orbits and

geometric quantization of exotic vortex con�guraitions in classical super�uids.

Thank you for your attention!

References are in the slides that follow.
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