A Purely Geometrical Aharonov–Bohm Effect

Affine Covariant Integral Quantization of the Punctured Plane

Jean-Pierre Gazeau^{1,2} Tomoi Koide³ Romain Murenzi⁴ Aidan Zlotak⁴

¹University of Białystok, Poland ²Université Paris Cité, CNRS, APC, France ³Instituto de Física, UFRJ, Brazil ⁴Department of Physics, Worcester Polytechnic Institute, Ma, USA

XLII WGMP - June 30-Juillet 6, 2025

arXiv:2412.13919v4 [quant-ph] 13 Jun 2025, submitted

Talk roadmap

Motivation

2 Model setup

- Phase space as SIM(2)
- 4 Affine Covariant Integral Quantization
- 5 Results & Interpretation

6 Outlook

Why revisit the Aharonov-Bohm (AB) effect?

- Paradigmatic example of *topology* in quantum mechanics.
- Experimental reality settled since Tonomura et al. (1982).
- Ongoing debates: role of gauge potentials vs. fields, information-theoretic angles.
- Our twist: derive AB-like gauge structure *purely* from topology via Affine Covariant Integral Quantization (ACIQ).

The **Aharonov–Bohm** (**AB**) effect shows that electromagnetic *potentials* can influence quantum states for particles even in regions where the corresponding *fields* vanish.

- Classical: Only E, B affect motion.
- Quantum: Potentials **A**, ϕ have physical consequences.

Experimental Setup

- Electron beam split into two paths.
- A solenoid lies between paths; $B \neq 0$ inside, but zero outside.
- Outside: $\mathbf{A} \neq \mathbf{0}$, $\mathbf{B} = \mathbf{0}$.

$$\Delta \varphi = \frac{e}{\hbar} \oint \mathbf{A} \cdot \mathrm{d}\boldsymbol{\ell} = \frac{e\Phi}{\hbar}$$

VOLUME 48, NUMBER 21

PHYSICAL REVIEW LETTERS

24 May 1982

- Proposed: Aharonov&Bohm, *Phys. Rev.* 115 (1959)
- Confirmed experimentally: Tonomura et al. PRL 48 (1982)

FIG. 4. Interference micrographs of the toroidal magnet shown in Fig. 1. (a) Contour map of electron phase. (b) Interferogram of electron phase. (c) Schematic form of the wave front.

A Purely Geometrical AB Effect

- Potentials have observable effects (not just fields).
- Quantum theory is **nonlocal**.
- Gauge potentials are physically relevant.

Infinite solenoid: classical picture

- Infinitely long, infinitesimal-radius coil along **e**₃.
- Particle of charge q confined to transverse (x_1, x_2) plane with basis e_1 , e_2 .
- \sim Outside region is punctured: origin removed.

Vector potential (Coulomb gauge)

$$\mathbf{A}^{\rm sol} = \frac{\Phi_0}{2\pi r^2} (-x_2, x_1), \qquad \Phi_0 = {\rm const.}$$

Hamiltonian on the punctured plane

$$\mathcal{H}_0(\mathbf{x},\mathbf{p}) = rac{1}{2m}ig(\mathbf{p}-\mathfrak{q}\,\mathbf{A}^{\mathsf{sol}}ig)^2, \qquad \mathbf{x}\in\mathbb{R}^2_*.$$

- Standard canonical quantization *fails*: translation symmetry broken.
- Need quantization that respects dilations + rotations: enter SIM(2).

The similitude group SIM(2)

Elements (a, θ, \mathbf{b}) act as

$$(a, \theta, \mathbf{b}) \mathbf{x} = a R(\theta) \mathbf{x} + \mathbf{b}, \quad R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

• New variables
$$q = \frac{1}{a}$$
, $\mathbf{q} = (q, \theta)$, $\mathbf{b} \equiv \mathbf{p}$.

• Phase space $\Gamma = \left\{ (\mathbf{q}, \mathbf{p}) \in \mathbb{R}^2_* \times \mathbb{R}^2 \right\} \simeq \mathsf{SIM}(2).$

• SIM(2) group structure: (1,0) (unit),

$$(\mathbf{q},\mathbf{p})(\mathbf{q}',\mathbf{p}')=\left(\mathbf{q}\mathbf{q}',rac{\mathbf{p}'}{\mathbf{q}^*}+\mathbf{p}
ight)\,,\quad (\mathbf{q},\mathbf{p})^{-1}=\left(\mathbf{q}^{-1},-\mathbf{q}^*\mathbf{p}
ight)\,,$$

where **q**, **p** are viewed as complex numbers.

• Non–unimodular: left Haar $d^2 \mathbf{q} d^2 \mathbf{p}$.

ACIQ in one slide

• UIR of SIM(2):
$$(U(\mathbf{q},\mathbf{p})\psi)(\mathbf{x}) = \frac{e^{i\mathbf{p}\cdot\mathbf{x}}}{q}\psi\left(\frac{\mathbf{x}}{\mathbf{q}}\right)$$
 for $\psi \in \mathcal{H} = L^2(\mathbb{R}^2_*, \mathrm{d}^2\mathbf{x}).$

• Choose weight $\varpi(\mathbf{q},\mathbf{p})$ such that

$$\mathsf{M}^{\varpi} = \int_{\Gamma} \frac{\mathrm{d}^2 \mathbf{q} \, \mathrm{d}^2 \mathbf{p}}{4\pi^2} \, \varpi(\mathbf{q}, \mathbf{p}) Q U(\mathbf{q}, \mathbf{p}) Q \,, \quad Q \psi(\mathbf{x}) = x \psi(\mathbf{x}) \,.$$

is bounded, self-adjoint, $\underline{\mathsf{unit}\ \mathsf{trace}}$ (i.e., $\varpi(\mathbf{1},\mathbf{0})=1)$

• Resolution of identity:

$$\int_{\Gamma} \frac{\mathrm{d}^2 \mathbf{q} \, \mathrm{d}^2 \mathbf{p}}{c_{\mathsf{M}^{\varpi}}} \mathsf{M}^{\varpi}(\mathbf{q}, \mathbf{p}) = \mathbb{1}_{\mathcal{H}} \,, \quad \mathsf{M}^{\varpi}(\mathbf{q}, \mathbf{p}) = U(\mathbf{q}, \mathbf{p}) \mathsf{M}^{\varpi} \, U^{\dagger}(\mathbf{q}, \mathbf{p}) \,.$$

• Covariant map

$$f \mapsto \mathsf{Op}_f^{\varpi} = \int_{\Gamma} \frac{\mathrm{d}^2 \mathbf{q} \, \mathrm{d}^2 \mathbf{p}}{c_{\mathsf{M}^{\varpi}}} \, f(\mathbf{q}, \mathbf{p}) \, \mathsf{M}^{\varpi}(\mathbf{q}, \mathbf{p}) \,, \quad \mathrm{Op}_{f=1}^{\varpi} = \mathbb{1}_{\mathcal{H}}$$

Key benefit: geometry/topology enter via choice of weight; no ad hoc gauge fields.

Quantization map is covariant with respect to the unitary 2-D affine action U: $U(\mathbf{q}_0, \mathbf{p}_0) \operatorname{Op}_f^{\varpi} U^{\dagger}(\mathbf{q}_0, \mathbf{p}_0) = \operatorname{Op}_{\mathfrak{U}(\mathbf{q}_0, \mathbf{p}_0)f}^{\varpi},$

with

$$\left(\mathfrak{U}(\mathbf{q}_0,\mathbf{p}_0)f\right)(\mathbf{q},\mathbf{p})=f\left((\mathbf{q}_0,\mathbf{p}_0)^{-1}(\mathbf{q},\mathbf{p})\right)=f\left(\frac{\mathbf{q}}{\mathbf{q}_0},\mathbf{q}_0^*(\mathbf{p}-\mathbf{p}_0)\right)\,,$$

The technics

With

- $\Omega(\mathbf{q}):=\int_{\mathbb{R}^2_*} rac{\mathrm{d}^2\mathbf{x}}{\mathrm{x}^2}\,\widehat{\varpi}_{
 ho}\left(\mathbf{q},\pm\mathbf{x}
 ight)$ obeying $0<\Omega(1)<\infty$,
- and where \hat{f}_p is the partial 2-D Fourier transform of $f(\mathbf{q}, \mathbf{p})$ with respect to the variable \mathbf{p}

the action of $\operatorname{Op}_f^{\varpi}$ on ϕ in $C_0^{\infty}(\mathbb{R}^2_*)$ is given in the form of the linear integral operator

$$(\operatorname{Op}_{f}^{\varpi}\phi)(\mathbf{x}) = \int_{\mathbb{R}^{2}_{*}} \mathcal{A}_{f}^{\varpi}(\mathbf{x},\mathbf{x}') \phi(\mathbf{x}') \,\mathrm{d}^{2}\mathbf{x}',$$

where the kernel \mathcal{A}^{arpi}_{f} reads as

$$\mathcal{A}_{f}^{\varpi}(\mathbf{x},\mathbf{x}') = \frac{1}{c_{\mathsf{M}^{\varpi}}} \frac{x^{2}}{{x'}^{2}} \int_{\mathbb{R}^{2}_{*}} \frac{\mathrm{d}^{2}\mathbf{q}}{q^{2}} \,\widehat{\varpi}_{\rho}\left(\frac{\mathbf{x}}{\mathbf{x}'},-\mathbf{q}\right) \,\widehat{f}_{\rho}\left(\frac{\mathbf{x}}{\mathbf{q}},\mathbf{x}'-\mathbf{x}\right) \,,$$

and the constant $c_{M^{\infty}}$ is given by

$$c_{\mathsf{M}^{\varpi}}=2\pi\Omega(1)$$
.

Emergent quantum operators

With $\Omega(\mathbf{q}) := \int_{\mathbb{R}^2} \frac{\mathrm{d}^2 \mathbf{x}}{x^2} \, \widehat{\varpi}_{\rho} \left(\mathbf{q}, \pm \mathbf{x} \right)$ obeying $0 < \Omega(1) < \infty$, and where $\widehat{\varpi}_{\rho}$ is the partial 2-D Fourier transform of ϖ with respect to the variable **p**, one obtains

$$\begin{split} \mathsf{Op}_{\mathbf{p}}^{\varpi} &= \mathbf{P} + \frac{\mathrm{i}}{\mathbf{Q}^*} \Big(2 + \frac{\nabla \Omega(1)}{\Omega(1)} \Big) \,, \quad \mathbf{P} = -\mathrm{i} \nabla \,, \quad \mathbf{Q} \psi(\mathbf{x}) = \mathbf{x} \psi(\mathbf{x}) \\ \mathsf{Op}_{\mathbf{p}^2}^{\varpi} &= (\mathbf{P} - \mathfrak{q} \, \mathbf{A}^{\varpi}(\mathbf{Q}))^2 + \frac{K^{\varpi}}{Q^2} \,. \end{split}$$

- Affine vector potential A[∞](Q) = i/(qQ*)(2 + ∇Ω(1))/Ω(1)).
 Centrifugal scalar potential V[∞](Q) = K[∞]/Q².

AB gauge field from topology

 \bullet with the example of well localised about SIM(2) unit $({\bf 1},{\bf 0})$:

$$\varpi(\mathbf{q}, \mathbf{p}) \propto e^{-\nu(q+1/q)} e^{i\mu \arg \mathbf{q}} \left(1 - q \frac{p^2}{2\sigma^2}\right) e^{-q \frac{p^2}{2\sigma^2}} \Rightarrow \text{flux quantised when}$$
$$\mu \in \mathbb{Z}.$$

one obtains

$$\mathbf{A}^{arpi}(\mathbf{Q})=rac{\Phi_{0}^{arpi}}{2\pi Q^{2}}(-Q_{2},\ Q_{1}), \qquad \Phi_{0}^{arpi}=rac{2\pi\hbar\mu}{\mathfrak{q}}.$$

• No external solenoid required: AB phase emerges from punctured topology.

A Purely Geometrical AB Effect

- Repulsive $V^{\varpi}(\mathbf{Q})$ regularises the origin; ensures essential self-adjointness.
- Physically acts like a "centrifugal core", preventing wave-function leakage into the singularity.

- 3-D analogue: affine quantization on $\mathbb{R}^3_*\times\mathbb{R}^3$ (possible link to magnetic monopoles!).
- Experimental signatures of the scalar barrier in mesoscopic rings.
- Other topologically non-trivial manifolds (e.g. genus g surfaces).

- Affine symmetry of the punctured plane naturally yields AB-type vector potential.
- **②** No need to postulate external gauge field: topology (and \hbar !) do the job.
- Scalar potential is not a bug but a feature; secures well-posed quantum dynamics.

Key references I

- Y. Aharonov and D. Bohm, "Significance of Electromagnetic Potentials in the Quantum Theory," *Phys. Rev.* **115**, 485 (1959).
- J.-P. G., T. Koide and R. Murenzi, "2-D Covariant Affine Integral Quantization(s)," *Adv. Oper. Theory* **5**, 901 (2020); **7** 1-4 (2022).
- A. Tonomura *et al.*, "Observation of Aharonov–Bohm Effect by Electron Holography," *Phys. Rev. Lett.* **48**, 1443 (1983).
- H. Bergeron, J.-P. G., P. Małkiewicz, P. Peter, "New class of exact coherent states: Enhanced quantization of motion on the half line," *Phys. Rev. D* 109, 023516 (2024).

Thank you!

PHYSICAL REVIEW LETTERS

24 MAY 1982

PHYSICAL REVIEW

A journal of experimental and theoretical physics established by E. L. Nichols in 1893

SECOND SERIES, VOL. 115, No. 3

AUGUST 1, 1959

Significance of Electromagnetic Potentials in the Quantum Theory

Y. AHARONOV AND D. BORM H. H. Wills Physics Laboratory, University of Bristol, Bristol, England (Received May 28, 1959: revised manuscript received June 16, 1959)

In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum domain. We shall show that, contrary to the conclusions of classical mechanics, here exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest further possible developments in the interpretation of the potentials.

VOLUME 48

Observation of Abaronov-Bohm Effect by Electron Holography

Akira Tonomura, Tsuyoshi Matsuda, Ryo Suzuki, Akira Fukuhara, Nobuyuki Osakabe, Hiroshi Umezaki, Junji Endo, Kohesi Shinagawa, Yutaka Sugita, and Hideo Fujiwara Central Research Laboratory, Hitachi Lid., Kokubumit, Tokyo 185, Japan (Received 16 Pebruary 1982)

In this experiment, an electron- and optical-holographic technique is employed with small toroids ferromagness each forming a magnetic-flax closure. The holographic flatterforometry proves that a phase difference between two electron beams having passed through the field-fore regions arguess well with the finalmental relation flaws as the Aharonov-holm effect. It is also confirmed from the same hologram that flax leakage from the toroids does not affect the conclusion.

NUMBER 21