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Definition of RHS

A rigged Hilbert space is a triplet of spaces:

dCHCO*, (1)
such that:
1.- H is an infinite dimensional separable Hilbert space.

2.- ¢ is a dense subspace endowed with its own locally convex
topology, finer than the Hilbert space topology. Thus, the canonical
injection j : ® — # is continuous. Some other properties such as
reflexivity for ¢ are often considered.

3.- ©* is the space of continuous antilinear functionals on ®* (as
mappings from & into C). It is often called the antidual of ¢.
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RHS have been used for...

1.- Giving a rigorous meaning to the Dirac formulation of Quantum
Mechanics.

2.- Giving a proper mathematical meaning to Gamow vectors, i.e.,
vector states for the exponentially decay part of a quantum
resonance.

3.- Extending quantum mechanics in order to accommodate the
irreversible character of certain quantum processes such as the
decay processes.

4.- Providing an appropriate context for spectral decompositions of
Koopman and Frobenius-Perron operators for chaotic systems in
terms of the Pollicot-Ruelle resonances, which are singularities of the
power spectrum.
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5.- Extending the formalism of Statistical Mechanics in order to
include on it generalized states and singular structures, using either
the Rigged Liouville Space or some other algebraic structure.

6.- Defining some elements that appear in the axiomatic formalism of
Quantum Fields, such as Wightman Functional, Borchers Algebra,
generalized states, etc.

7.- Describing White Noise or other stochastic processes.

8.- Dealing with singular solutions of some partial differential
equations.

9.- Dealing with physics problems that require the use of distributions.
10.- Serve as a unifying framework for discrete and continuous basis,
basis of special functions and symmetry Lie algebras represented by
continuous operators.
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Let S be the Schwartz space. A function f(x) : R — Cisin S'if

1.- f(x) € C=(R)
2.-

m

lim x”d—f(x):o, vYnm=0,1,2,.... @)

X|—oo  aX™
The Schwartz space is a vector space over C.
Any f(x) € Sisin L?(R) so that S C L?(R)
Sis dense in L2(R) with respect to the Hilbert space topology.
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Topology

The topology on S is given by the following countable set of norms:

For any f(x) € S, we have

m

Prm(f) ZZELGJHQ X”Wf(x) , nm=0,1,2,..., (3)
or equivalently:
2
Gom(f \// dxm (x)| dx, nm=0,1,2,..., (4)
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The set of normalized Hermite functions, {H,}, is orthonormal and
complete in L2(R), so that if f(x) € S,

f(x) = anHa(x). (5)
n=0

Then, we may define the following set of horms

mp(f) :_Jian|2(n+1)zp, p=0,1,2,... (6)
n=0

which gives the same topology.
Then, S is a reflexive Fréchet space with the strong topology for S*
and

S c L3(R) c S~ (7)
is a RHS.
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Resonance scattering.

Let us assume a scattering process produced by some potential, V,
that we assume, for simplicity, to be short range and spherically
symmetric. Thus, the scattering is produced by a Hamiltonian pair
{Ho,H=Hy + V}.

A quasistationary state is produced when a free evolving quantum
state is captured by the interaction region for a large time and, then,
released to evolve freely again. A resonance describes this later
process, independently of the capture.

Let us assume that at a time ¢ = 0 the state, (0) = v, has been
captured and start the decay. The survival probability after a time ¢ is
defined as

P(t) = |(w]e~ )2 (8)
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Resonance scattering.

The survival probability has three regimes depending on the values of
time:

1.- For very short values of time, deviations of the exponential decay
law have been predicted and observed. This regime is usually called
the Zeno regime.

2.- For intermediate values of time (observable regime), the decay is
approximately exponential and the state energy distribution is
approximately a Breit-Wigner one (Cauchy distribution function):

1
(E— Ep)?+12/4°

w(E) = % Epin < E < o0 (9)

3.- Due to the semiboundedness of H, deviations of the exponential
law for very large values of t are predicted. The decay is slower than
exponential (Khalfin regime).
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Resonance scattering.

The intermediate regime is exponential, which can be easily
observed in the lab. One may think if this exponential decay
behaviour could be described by a vector (function) state.

There are physical characterizations and mathematical definitions of
what a resonance should be. Although not always equivalent, let us
give an example of each one, useful for our purposes:

1.- Presence of a bump in the cross section centred at the energy Er
and with width ~.

2.- Pairs of poles of the analytic continuation of the scattering function
S(E) through the positive semiaxis, located at the points
zr = Eg —iy/2 and Zp = Eg+ iv/2.
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Gamow vectors

Vector states, called the Gamow vectors, 1 for the exponentially
decaying quantum state have been defined as

Hy = (Eg — iv/2)¢, (10)
since then,

U(t)?/i — efl'tHd) _ efitEF; eft'y/Zd}’ (11)
and, then, ¢ decays exponentially with time.
Warning: This is mathematically ill defined.

Consequence: The vector state ¢/ cannot be in the Hilbert space on
which H acts.
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Cure: RHS

We can construct a pair of RHS, admitting a representation using
Hardy functions on a half plane:

Two RHS
d_CHCdX, (12)
b, CHCO. (13)

with

Invariance under H

Ho_ c o_, Ho, c o, . (14)
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With the duality formula

(Ho+|F1) = (p+|HFL), Voi €y, VFiedf, (15)

one may extend H into the (anti)-duals, so that the formulas

(Gamow |
Hyp = (Er — iv/2)Yp, Hyg = (Er + in/2)yp, (16)

are well defined for )p € @ and 1)g € ¢, respectively.
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Time evolution

In addition, we have:

Time evolution

1.—Forany t>0,e"o, c o, = e ™oy C of.
Ift<0,eMo, ¢ o, . (17)
2. —Foranyt<0,eMo_co_ — e ™Mp* c .

Ift>0,ed_ ¢ o_. (18)
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Resonance scattering. T CEES

Time evolution for Gamows

In addition,

Decaying and Growing Gamow states
e Mty — e MEr g t1/2yp 150, (19)
e Mg =e""re" 2y,  t<0. (20)

Decaying and growing Gamow vectors describe the same situation
only that they are time reversal of each other.
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