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Cyclic Lie-Rinehart algebras



The notion of Lie-Rinehart algebra is the algebraic counterpart of
the di�erential geometric notion of Lie algebroid, which in turn is a
generalization of Lie algebras.
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Lie Algebroid (A, [·, ·]A, aA)
De�nition

A Lie algebroid (A, [·, ·]A, aA) is a vector bundle A −→M over a
manifold M , together with a vector bundle map aA : A −→ TM ,
called the anchor map, and a Lie bracket
[·, ·]A : Γ(A)× Γ(A) −→ Γ(A), such that the following Leibniz rule
is satis�ed

[α, fβ]A = f [α, β]A + aA(α)(f)β,

for all α, β ∈ Γ(A), f ∈ C∞(M).

The anchor map is a Lie algebra homomorphism

aA ([α, β]A) = [aA(α), aA(β)].

Paradines, J., Théorie de Lie pour les grupoïdes di�érentiables.

Relations entre propriétés locales et globales, C. R. Acad. Sc.
Paris, Ser. A, 264, 245-248, 1967.
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Examples (A, [·, ·]A, aA)

[α, fβ]A = f [α, β]A + aA(α)(f)β,

Example

Any tangent bundle A = TM of a manifold M , with aA = id and
the usual Lie bracket of vector �elds, is a Lie algebroid.

Example

Any Lie algebra A = g, with trivial anchor aA = 0, is a Lie
algebroid.

Cyclic Lie-Rinehart algebras



Poisson manifold (M, {·, ·})

De�nition

A Poisson manifold (M, {·, ·}) is a smooth manifold M (equipped
with a Poisson structure) with a �xed bilinear and antisymmetric
mapping {·, ·} : C∞(M)× C∞(M) → C∞(M), which satis�es
Jacobi identity and Leibniz rule

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0,

{f, gh} = {f, g}h+ g{f, h},

where f, g, h ∈ C∞(M).

Poisson bracket can be written in terms of Poisson tensor

(π ∈ Γ
(∧2 TM

)
such that [π, π]SN = 0) as follows

{f, g} = π(df, dg).
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Poisson tensor

In the local coordinates x1, x2, . . . , xN on M

{f, g} =

N∑
i,j=1

πij(x)
∂f

∂xi

∂g

∂xj
.

Components of Poisson tensor are given by the formula

πij(x) = {xi, xj}

and satisfy

πij = −πji,
∂πij

∂xs
πsk +

∂πki
∂xs

πsj +
∂πjk

∂xs
πsi = 0.
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Lie�Poisson structure

Lie, Kirillov, Kostant, Souriau

(g, [·, ·]) � a Lie algebra is a vector space g together with a bilinear,
skew-symmetric bracket [·, ·] : g× g → g (called the Lie bracket)
which satis�es the Jacobi identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0,

for all X,Y, Z ∈ g.
g∗ � dual space to Lie algebra g � Poisson manifold.
Lie�Poisson bracket for f, g ∈ C∞(g∗) is given by formula

{f, g}(ρ) = ⟨ρ, [df(ρ), dg(ρ)]⟩ ,

where ρ ∈ g∗, df(ρ), dg(ρ) � linear forms on g∗. However due to
the canonical isomorphism valid in the �nite dimensional case
(g∗)∗ = g we can identify them with elements of Lie algebra g.
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Linear �ber-wise Poisson structure

If (A, [·, ·]A, aA) is a Lie algebroid then on the total space A∗ of

dual bundle A∗ q−→M there exists a Poisson structure given by

{f ◦ q, g ◦ q} = 0,

{lX , g ◦ q} = aA(X)(g) ◦ q,

{lX , lY } = l[X,Y ]A ,

where X,Y ∈ Γ(A), lX(v) = ⟨v,X(q(v))⟩, v ∈ A∗ and
f, g ∈ C∞(M).
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Example A = T ∗M

Let (M, {., .}) be a Poisson manifold, then its cotangent bundle
q∗ : T ∗M →M possesses a Lie algebroid structure

A = T ∗M

q∗

��

aT∗M
// TM

q

��
M

id
//M

given by
aT ∗M (df)(·) = {f, ·},
[df, dg]T ∗M = d{f, g},

where f, g ∈ C∞(M). In general form

[α, β]T ∗M = £π#(α)β −£π#(β)α− d(π(α, β))

for α, β ∈ Γ(T ∗M), where π# : Γ(T ∗M) → Γ(TM) is given by
π#(α)(·) = π(α, ·) and aT ∗M = π#.
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Lifting of a Poisson structure from M to TM

If (M, {, }) = (M,π) is a Poisson manifold, then the manifold TM
possesses a Poisson structure given by

{f ◦ q, g ◦ q}TM = 0,

{ldf , g ◦ q}TM = {f, g} ◦ q,

{ldf , ldg}TM = ld{f,g},

where ldf (v) = ⟨v, df(qM (v))⟩, v ∈ TM and f, g ∈ C∞(M). Let
x = (x1, . . . , xN ) be a system of local coordinates on M . Then the
Poisson tensor πC on the manifold TM associated with π has the
form

πC(x,y) =

 0 π(x)

π(x)
∑N

s=1

∂π

∂xs
(x)ys

 ,

in the system of local coordinates
(x,y) = (x1, . . . , xN , y1 = ldx1 , . . . , yN = ldxN

) on TM .
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The complete lift, the vertical lift

π(x) =

N∑
1≤i<j

πij(x)
∂

∂xi
∧ ∂

∂xj
,

⇓

πC(x,y) =

N∑
1≤i<j

(
πij(x)

∂

∂xi
∧ ∂

∂yj
+ πij(x)

∂

∂yi
∧ ∂

∂xj

+

N∑
s=1

∂πij

∂xs
(x)ys

∂

∂yi
∧ ∂

∂yj

)
=⇒

 0 π(x)

π(x)
∑N

s=1

∂π

∂xs
(x)ys


πV (x,y) =

N∑
1≤i<j

πij(x)
∂

∂yi
∧ ∂

∂yj
=⇒

(
0 0

0 π(x)

)
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Lifting of Casimir functions from M to TM

Theorem

Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for

the the Poisson structure π, then the functions

ci and ldci =
N∑
s=1

∂ci
∂xs

ys, i = 1, . . . r,

are the Casimir functions for the Poisson tensor πC .

J. Grabowski, P. Urba«ski, Tangent lifts of Poisson and related

structures, J. Phys. A: Math. Gen., 28, 6743-6777, 1995.
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Example: Lifting of a Poisson structure from so(3)

Let us consider the Lie algebra so(3) of skew-symmetric matrices
[X,Y ] = XY − Y X. The Poisson tensors can be written:

π1(X) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , c1(X) = x21 + x22 + x23.

The Poisson structures on T (so(3))∗ are given by tensors

πC(X,Y ) =



0 0 0 0 −x3 x2
0 0 0 x3 0 −x1
0 0 0 −x2 x1 0

0 −x3 x2 0 −y3 y2
x3 0 −x1 y3 0 −y1
−x2 x1 0 −y2 y1 0

 .

Moreover the Casimirs are given by

c1(X) = x21 + x22 + x23,
1

2
ldc1 = x1y1 + x2y2 + x3y3.

In this case we recognize the Lie-Poisson structure of e(3).
Cyclic Lie-Rinehart algebras



Lie algebroids with a Poisson structure

Let (A, [·, ·]A, aA) be a Lie algebroid and assume that

π ∈ Γ
(∧2A

)
satis�es [π, π]A = 0. Then (A, π) is called a Lie

algebroid with a Poisson structure.
Let us de�ne

[α, β]π = £π♯αβ −£π♯βα− d (π(α, β)) ,

for α, β ∈ Γ (A∗), where £ denotes the Lie derivation de�ned by

£Xα(Y ) = aA(X)α(Y )− α ([X,Y ]A) ,

for X,Y ∈ Γ(A) and π♯ : A∗ −→ A is de�ned by π♯α(·) = π(α, ·),
and set aA∗ = aA ◦ π♯.
Then (A∗, [·, ·]π, aA∗) is a Lie algebroid.

Cyclic Lie-Rinehart algebras



Substitution π = X ∧ Y

We rewrite

[α, β]π = £π♯αβ −£π♯βα− d (π(α, β)) ,

for π of the form π = X ∧ Y

[α, β]π =β(Y )£Xα− α(Y )£Xβ − (β(X)£Y α− α(X)£Y β)

=[α, β]X,Y − [α, β]Y,X .

General situation
[α, β]X,Y + λ [α, β]Y,X .
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Substitution π = X ∧ Y

For π of the form π = X ∧ Y

[α, β]π =β(Y )£Xα− α(Y )£Xβ − (β(X)£Y α− α(X)£Y β)

=[α, β]X,Y − [α, β]Y,X .

General situation
[α, β]X,Y + λ [α, β]Y,X .

A. Dobrogowska, G. Jakimowicz, Generalization of the concept

of classical r-matrix to Lie algebroids, J. Geom. Phys. 165,
1-15, 2021.
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On some constructions of Lie algebroids on the

cotangent bundle of a manifold

It is well known that if M is a manifold then TM is the tangent
algebroid of M , with the identity map as the anchor map and the
standard commutator of vector �elds. However, we will use these
�elds and give the construction of another algebroid structures.

Theorem

Suppose that M is a manifold and X,Y ∈ Γ(TM) are vector �elds

such that [X,Y ] = fY , f ∈ C∞(M). Then (T ∗M, [·, ·]X,Y , aX,Y )
is a Lie algebroid, where the Lie bracket and the anchor map are

given by

[α, β]X,Y = β(Y )£Xα− α(Y )£Xβ,

aX,Y (α) = −α(Y )X,

where α, β ∈ Γ(T ∗M).
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The Poisson structure on the tangent bundle TM

In local coordinates (x,y) when X =
∑N

i=1 v
i(x) ∂

∂xi and

Y =
∑N

i=1w
i(x) ∂

∂xi the Poisson tensor is given by formula

πX,Y=

 0 v(x)w⊤(x)

−w(x)v⊤(x)
∑N

s=1

(
∂v

∂xs
(x)w⊤(x)− w(x)

(
∂v

∂xs
(x)

)⊤
)
ys

,
where v⊤ = (v1, . . . , vN ) and w⊤ = (w1, . . . , wN ).
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Substitution π = X ∧ Y

General situation
[α, β]X,Y + λ [α, β]Y,X .
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On some constructions of Lie algebroids on the

cotangent bundle of a manifold

In addition, we will get a similar structure by swapping vector �elds
X,Y . Moreover, if we take a linear combination of these
structures, we will again obtain a Poisson structure. The same
thing also happens on the level of the Lie algebroid.

Theorem

Let X,Y ∈ Γ(TM) be such that [X,Y ] = 0, then a structure(
T ∗M, [·, ·]λX,Y , a

λ
X,Y

)
is a Lie algebroid, where the Lie bracket and

the anchor map are given by

[α, β]λX,Y = [α, β]X,Y + λ[α, β]Y,X

= β(Y )£Xα− α(Y )£Xβ + λ (β(X)£Y α− α(X)£Y β) ,

aλX,Y (α) = aX,Y (α) + λaY,X(α) = −α(Y )X − λα(X)Y

and λ is a real parameter.
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Remark

In the case when λ = −1, the assumption of [X,Y ] = 0 can be
weakened. It is su�cient to assume that [X,Y ] = fX + gY , where
f, g ∈ C∞(M).
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The Poisson structure on the tangent bundle TM

This structure also leads to the Poisson bracket. In the local
coordinates expression of the Poisson structure is the following
tensor

πλX,Y (x,y) =
0 v(x)w⊤(x) + λw(x)v⊤(x)

−w(x)v⊤(x)
∑N

s=1

(
∂v

∂xs
(x)w⊤(x)− w(x)

(
∂v

∂xs
(x)

)⊤

−λv(x)w⊤(x) + λ

(
∂w

∂xs
(x)v⊤(x)− v(x)

(
∂w

∂xs
(x)

)⊤
))

ys

.

In this construction, the block vw⊤ + λwv⊤ is symmetric for λ = 1
in contrast to the construction of the Poisson bracket from the
algebroid bracket of di�erential forms. Moreover, this block is
antisymmetric for λ = −1 and it is also a Poisson tensor on
manifolds M . In this case it is a complete lift of π = X ∧ Y .
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Example

Let us consider again the Lie algebra so(3) of skew-symmetric
matrices. Thus on so(3) we have the linear Poisson structure

π(X) = −x3 ∂

∂x1
∧ ∂

∂x2
+ x2

∂

∂x1
∧ ∂

∂x3
− x1

∂

∂x2
∧ ∂

∂x3
.

Observe that de�ning the vector �elds

X = x2
∂

∂x1
− x1

∂

∂x2
, Y =

∂

∂x3
, U = −x3 ∂

∂x1
, W =

∂

∂x2
.

we can split the above Poisson tensor into two terms
π(X) = X ∧ Y + U ∧W .
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Example

We obtain the following splitting

X ∧ Y + U ∧W

uuss )) ++
XC ∧ Y V

&&

−Y C ∧ XV

��

UC ∧ WV

��

−WC ∧ UV

xx
(X ∧ Y )C

((

(U ∧ W )C

vv
(X ∧ Y + U ∧W )C
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Example

We obtain the following splitting

so(3)

yytt && ++
g1005,17⊕ < x3 >

''

g5,1⊕ < y3 >

��

g5,1⊕ < x2 >

��

g3,1⊕ <x1, y2, y3>

vv
e(2) = g3,6

%%

g5,1⊕ < x1 + x2 >

xx
e(3)
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The particular case of above construction A = g

Because a Lie algebra g can be thought of as a Lie algebroid over a
point, so we have the opportunity to construct a Lie bracket on the
dual space g∗ of g.

Corollary

If (g, [·, ·]) is a Lie algebra and X,Y ∈ g such that [X,Y ] = cY (or

[X,Y ] = 0) are �xed, then (g∗, [·, ·]X,Y ) is a Lie algebra, where

[α, β]X,Y = α(Y )ad∗Xβ − β(Y )ad∗Xα,

(or
(
g∗, [·, ·]λX,Y

)
is a Lie algebra, where the commutator is

constructed as follows

[α, β]λX,Y = α(Y )ad∗Xβ−β(Y )ad∗Xα+λ (α(X)ad∗Y β − β(X)ad∗Y α) ,

for α, β ∈ g∗
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Note that when λ = −1 the bracket can be rewritten as

[α, β]−1
X,Y = −α(X)ad∗Y β + α(Y )⟩ad∗Xβ

+β(X)ad∗Y α− β(Y )ad∗Xα = [α, β]r.

It is a formula for the r-bracket or classical r-matrix. If r = Y ∧X
the assumptions of corollary can be weakened. In this case we
obtain a Lie bracket if r satis�es the Yang-Baxter equation or some
of its modi�cations (modi�ed Yang-Baxter equation). It means that
r♯ : g∗ −→ g given by r♯(α)(β) = r(α, β) satis�es the condition

⟨α|[r♯(β), r♯(ad∗Zγ)]⟩+⟨β|[r♯(ad∗Zγ), r♯(α)]⟩+⟨ad∗Zγ|[r♯(α), r♯(β)]⟩ = 0

for all α, β, γ ∈ g∗ and Z ∈ g. Then we can think about the
formula as a generalization of the notion of classical r-matrices by
introducing a parameter λ ∈ R.
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Classical R-matrix

One of the important tools of the integrable systems theory is the
so-called classical R-matrix. Given a Lie algebra (g, [·, ·]), a linear
operator R : g −→ g is called a classical R-matrix if the R�bracket

[X,Y ]R =
1

2
([R(X), Y ] + [X,R(Y )])

is a Lie bracket. The Lie algebra g equipped with two Lie brackets:
[·, ·] and R-bracket [·, ·]R is called a double Lie algebra. A certain
class of R-matrices can be obtained from the modi�ed Yang-Baxter
equation

R([R(X), Y ] + [X,R(Y )])− [R(X), R(Y )] = c[X,Y ].
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Generalization of the concept of classical r-matrix

Ultimately this concept can be extended to the level of arbitrary
r ∈ g⊗ g. If we de�ne mappings r, r : g∗ −→ g such that
r(α) = r(α, ·), r(α) = r(·, α) then we obtain the following
generalization:

Theorem

Assume that the map r satis�es the condition

⟨α|[r(γ), r(β)]⟩+ ⟨β|[r(α), r(γ)]⟩

+⟨γ|[r(α), r(β)]⟩ = 0,

for all α, β, γ ∈ g∗. Then

[α, β]r = ad∗r(α)β − ad∗r(β)α

is a Lie bracket on g∗.
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A new look at Lie algebras

Lie bracket has a form

[α, β]X,Y = ⟨β, Y ⟩ad∗Xα− ⟨α, Y ⟩ad∗Xβ,

for α, β ∈ g∗, where X,Y ∈ g ful�ll [X,Y ] = fY . It means that
Lie algebra structure of g gives Lie algebra structure on g∗.
However, as it was shown the bracket can be generalized to the
linear space V ∗ to the form

[α, β](F,v) = β(v)F ∗(α)− α(v)F ∗(β),

where α, β ∈ V ∗, F ∈ End(V ) and v is an eigenvector of F .

A. Dobrogowska, G. Jakimowicz, A new look at Lie algebras, J.
Geom. Phys. 192 (2023), 104959.
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Eigenvalue problem

We present some constructions of a Lie bracket on a space V ∗

having a pair: linear mapping and its eigenvector. A pair (F, v)
gives a Lie bracket on a dual space V ∗:

Theorem

If V is a vector space, F : V −→ V is a linear map and v ∈ V is an

eigenvector of the map F , then (V ∗, [·, ·](F,v)), is a Lie algebra,

where the Lie bracket is given by

[ψ, ϕ](F,v) = ϕ(v)F ∗(ψ)− ψ(v)F ∗(ϕ)

for ψ, ϕ ∈ V ∗.
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V ≃ V ∗ ≃ RN

We can identify V and V ∗ with RN with the canonical basis
{e1, e2, . . . , eN} (i.e. V ≃ V ∗ ≃ RN ), so that the pairing between
V and V ∗ is given by the scalar product. Then the Lie bracket can
be rewritten in the form

[u,w](F,v) = ⟨w|v⟩F Tu− ⟨u|v⟩F Tw for u,w ∈ RN ,

where ⟨·|·⟩ is the scalar product in RN .
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Cyclic Lie-Rinehart algebras

⟨·, ·⟩ : L×N → R is a duality pairing of two R-modules L, N ;

E0 ∈ End(L), D0 ∈ End(N),X0 ∈ Der(R) and ℓ ∈ L and
n, y0 ∈ N satisfying the conditions that the mapping

L× L→ R, (ℓ1, ℓ2) 7→ ⟨ℓ1, y0⟩⟨ℓ2, D0(y0)⟩

is symmetric and we have

X0(⟨ℓ, n⟩) = ⟨E0(ℓ), n⟩+ ⟨ℓ,D0(n)⟩.

If we de�ne the anchor

a : L→ TR, a(ℓ) := ⟨ℓ, y0⟩X0

then the mapping

L× L→ L, (ℓ1, ℓ2) 7→ ℓ1 · ℓ2 := ∇ℓ1ℓ2 = ⟨ℓ1, y0⟩E0(ℓ2)

de�nes the structure of a pre-Lie-Rinehart algebra on L
([ℓ1, ℓ1] = ℓ1 · ℓ2 − ℓ2 · ℓ1).
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�eld of real numbers: R K
algebra of smooth functions: C∞(M,R) R

Lie algebra of tangent vector �elds: Γ(TM) Der(R)

space of di�erential 1-forms: Ω1(M) HomR(Der(R), R)
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D0 = adX = [X, ·],

E0 = £X ,

X0 = X,

y0 = Y,

[α, β]X,Y = β(Y )£Xα− α(Y )£Xβ,

aX,Y (α) = −α(Y )X.

D0 = F,

E0 = F ∗,

X0 = 0,

y0 = v

[ψ, ϕ](F,v) = ϕ(v)F ∗(ψ)− ψ(v)F ∗(ϕ).
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Cyclic Lie-Rinehart algebras

⟨·, ·⟩ : L×N → R is a duality pairing of two R-modules L, N ;

E0 ∈ End(L), D0 ∈ End(N), X0 ∈ Der(R) and ℓ ∈ L and
n, y0 ∈ N satisfying the conditions that the mapping

L× L→ R, (ℓ1, ℓ2) 7→ ⟨ℓ1, y0⟩⟨ℓ2, (D0)
2(y0)⟩

is symmetric and we have

X0(⟨ℓ, n⟩) = ⟨E0(ℓ), n⟩+ ⟨ℓ,D0(n)⟩.

If we de�ne the anchor

a : L→ TR, a(ℓ) := ⟨ℓ, y0⟩X0

then the mapping

L×L→ L, (ℓ1, ℓ2) 7→ ℓ1·ℓ2 := ∇ℓ1ℓ2 = ⟨ℓ1, y0⟩E0(ℓ2)−⟨ℓ1, D0(y0)⟩ℓ2

de�nes the structure of a pre-Lie-Rinehart algebra on L
([ℓ1, ℓ1] = ℓ1 · ℓ2 − ℓ2 · ℓ1).
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Example

In the special case K = R and R = C∞(R) we have
[X, [X,Y ]] = cY for X = d

dt and Y = g d
dt , c(t) = t for all t ∈ R.

For the R-module Ω1
R the Lie bracket has the form

[fdt, hdt] = −g(t)DH(f, h)(t)dt

for all f, h ∈ C∞(R), where DH denotes Hirota's operator which
acts on the pair of functions f and h in the following way

DH(f, h)(t) :=

(
d

dt
− d

dt̃

)
f(t)h(t̃)

∣∣∣∣
t=t̃

= f ′(t)h(t)− f(t)h′(t).

This operator is used in the method of �nding soliton solutions for
non-linear equations, as for the example KdV.
Lie-Rinehart algebra structures on the space of di�erential forms
Ω1
R have been constructed before in the algebraic theory of Dirac

structures, motivated by the study of integrability of certain
nonlinear di�erential equations.
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Thank you for your

attention
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