Nijenhuis Geometry and Applications Lecture 2
 Linearisation and left-symmetric algebras

Alexey Bolsinov
Loughborough University, UK

XIII School on Geometry and Physics
Białystok, July 8 - July 12, 2024.

- Linearisation at singular points
- Left-symmetric algebras
- Comparison with Poisson Geometry
- Some properties of left-symmetric algebras
- Linearisation and non-degeneracy problems
- Some classification results
- Non-degeneracy of the diagonal algebra
- Interesting open problem
- Exercises

Linearisation at singular points

Let L be a Nijenhuis operator on a manifold M.

Definition

A singular point $p \in M$ is said to be of scalar type, if $L(p)=\lambda \cdot I d$. Assume (w.l.o.g.) that $\lambda=0$. Then locally:

$$
L(x)=0+L_{1}(x)+L_{2}(x)+L_{3}(x)+\ldots
$$

where the entries of $L_{k}(x)$ are homogeneous polynomials in x^{1}, \ldots, x^{n} of degree k.

Proposition (Definition)

The linear part $L_{\text {lin }}=L_{1}=\left(l_{j k}^{j} x^{j}\right)$ is itself a Nijenhuis operator that is called the linearisation of L at the point $p \in M$.
Question. Are there any special properties of Nijenhuis operators $L_{\text {lin }}=\left(l_{j k}^{j} x^{j}\right)$ whose components are linear in local coordinates?
Answer. The corresponding tensor $l_{j k}^{i}$ defines a structure of a left-symmetric algebra $\left(\mathfrak{a}_{L}, *\right)$ on $T_{p} M$, and the converse is also true.

Comparison with Poisson geometry

Let $P=\left(P^{i j}(x)\right)$ be a Poisson structure, $x \in \mathbb{R}^{n}$
If $P(0)=0$, then

$$
P^{i j}(x)=0+P_{k}^{i j} x^{k}+\ldots
$$

where the linear part $P_{\text {lin }}=\left(P_{k}^{i j} x^{k}\right)$ is a Lie-Poisson structure, i.e., $P_{k}^{i j}$ form a structure tensor of a certain Lie algebra.
Conversely, if \mathfrak{g} is a Lie algebra then \mathfrak{g}^{*} carries a natural Poisson structure (Poisson tensor)

$$
P_{\mathfrak{g}}=\left(c_{i j}^{k} x_{k}\right)
$$

$$
\text { Linearisation of a Poisson structure }=\text { Lie algebra }
$$

or, more or less equivalently,

$$
\text { Linear Poisson structures }=\text { Lie-Poisson structures }
$$

Left-symmetric algebras

Recall that an algebra \mathfrak{a}, in a very general context, is a vector space with a bilinear operation $*: \mathfrak{a} \times \mathfrak{a} \rightarrow \mathfrak{a}$. Different types of algebras: commutative, associative, unital, Lie, Frobenius, etc.
Left-symmetric algebras can be understood as a generalisation of associative algebras. Namely, the associativity condition ${ }^{1}$

$$
\xi *(\eta * \zeta)-(\xi * \eta) * \zeta=0
$$

is replaced with a weaker condition as follows.

Definition

An algebra $(\mathfrak{a}, *)$ is called left-symmetric if:

$$
\xi *(\eta * \zeta)-(\xi * \eta) * \zeta=\eta *(\xi * \zeta)-(\eta * \xi) * \zeta,
$$

for all $\xi, \eta, \zeta \in \mathfrak{a}$.
In particular, every associative algebra is left-symmetric. But there are many other examples.

[^0]
More examples

Example

Consider the two-dimensional algebra $\mathfrak{a}=\operatorname{Span}\left(e_{1}, e_{2}\right)$ with the relations

$$
\begin{aligned}
e_{1} * e_{1} & =e_{2} \\
e_{1} * e_{2} & =0 \\
e_{2} * e_{1} & =-e_{1} \\
e_{2} * e_{2} & =-2 e_{2}
\end{aligned}
$$

This algebra is left-symmetric, but not associative.

Example

Consider functions f on the real line \mathbb{R} with coordinate x and introduce the following operation

$$
f * g=f g_{x}
$$

where g_{x} denotes the derivative in x. The associator

$$
\begin{aligned}
& f *(g * h)-(f * g) * h=f *\left(g h_{x}\right)-\left(f g_{x}\right) * h= \\
& =f g_{x} h_{x}+f g h_{x x}-f g_{x} h_{x}=f g h_{x x} .
\end{aligned}
$$

is symmetric w.r.t. f and g. Obviously, this operation is not associative, but left-symmetric.

More examples

Example

Let M be a manifold with a flat symmetric connection ∇ and define the operation on vector fields as

$$
\xi * \eta=\nabla_{\xi} \eta
$$

The associator takes the form

$$
\xi *(\eta * \zeta)-(\xi * \eta) * \zeta=\nabla_{\xi} \nabla_{\eta} \zeta-\nabla_{\nabla_{\xi} \eta} \zeta .
$$

The condition $\mathcal{A}(\xi, \eta, \zeta)=\mathcal{A}(\eta, \zeta, \zeta)$ takes the form

$$
\begin{aligned}
\nabla_{\xi} \nabla_{\eta} \zeta-\nabla_{\nabla_{\xi} \eta} \zeta-\nabla_{\eta} \nabla_{\xi} \zeta+\nabla_{\nabla_{\eta} \xi} \zeta & =\nabla_{\xi} \nabla_{\eta} \zeta-\nabla_{\eta} \nabla_{\xi} \zeta-\nabla_{\left(\nabla_{\eta} \xi-\nabla_{\xi} \eta\right)} \zeta= \\
& =\nabla_{\xi} \nabla_{\eta} \zeta-\nabla_{\eta} \nabla_{\xi} \zeta-\nabla_{[\xi, \eta]} \zeta=0 .
\end{aligned}
$$

Relationship between LSAs and Nijenhuis operators.

Theorem (Winterhalder)
An operator of the form $L=\left(l_{j k}^{i} x^{j}\right)$ is Nijenhuis if and only if $l_{j k}^{i}$ form the structure constants of a left-symmetric algebra, i.e., the operation

$$
\xi * \eta=\sum_{i, j, k} l_{j k}^{i} \xi^{j} \eta^{k} e_{i}, \quad \xi=\xi^{j} e_{j}, \eta=\eta^{k} e_{k},
$$

defines the structure of a left symmetric algebra on the vector space \mathfrak{a} with a basis e_{1}, \ldots, e_{n}.

Two slightly different versions of this theorem

Let R be a Nijenhuis operator such that $R(p)=0$. Then the tangent space $T_{p} M$ can be endowed with an LSA structure.

Proposition

Take tangent vectors $\xi_{0}, \eta_{0} \in T_{p} M$ and introduce the following operation on $T_{p} M$:

$$
\xi_{0} * \eta_{0}=[R \xi, \eta](p)
$$

where ξ and η are (arbitrary) vector fields such that $\xi(p)=\xi_{0}, \eta(p)=\eta_{0}$. This operation is well defined and defines an LSA structure on $T_{p} M$.
Conversely, every left-symmetric algebra (a,*) carries a Nijenhuis structure on itself.
Consider \mathfrak{a} as an affine space (manifold). The tangent space $T_{\xi} \mathfrak{a}, \xi \in \mathfrak{a}$, is naturally identified with \mathfrak{a} itself.

Proposition

Let $R: T_{\xi} \mathfrak{a} \rightarrow T_{\xi} \mathfrak{a}$ be defined by

$$
R(\eta)=R_{\xi}(\eta)=\eta * \xi
$$

Then R is a Nijenhuis operator on \mathfrak{a}.

Proof of the first Proposition

By definition, $\xi_{0} * \eta_{0}=[R(\xi), \eta](p)$.
For $\xi_{0}, \eta_{0}, \zeta_{0}$ we compute

$$
\begin{gathered}
\mathcal{A}\left(\xi_{0}, \eta_{0}, \zeta_{0}\right)-\mathcal{A}\left(\eta_{0}, \xi_{0}, \zeta_{0}\right)= \\
\xi_{0} *\left(\eta_{0} * \zeta_{0}\right)-\left(\xi_{0} * \eta_{0}\right) * \zeta_{0}-\left(\eta_{0} *\left(\xi_{0} * \zeta_{0}\right)-\left(\eta_{0} * \xi_{0}\right) * \zeta_{0}\right)= \\
{[R \xi,[R \eta, \zeta]]-[R[R \xi, \eta], \zeta]-[R \eta,[R \xi, \zeta]]+\left.[R[R \eta, \xi], \zeta]\right|_{\text {at point } p}=}
\end{gathered}
$$

(using the anti-symmetry and Jacobi identity for the Lie bracket of vector fields)

$$
\begin{gathered}
{[[R \xi, R \eta], \zeta]-[R[R \xi, \eta], \zeta]+\left.[R[R \eta, \xi], \zeta]\right|_{\text {at point } p}=} \\
{\left.[[R \xi, R \eta]-R[R \xi, \eta]-R[\xi, R \eta], \zeta]\right|_{\text {at point } p}=}
\end{gathered}
$$

(using the fact that $R(p)=0$)

$$
\left.\left[R^{2}[\xi, \eta]+[R \xi, R \eta]-R[R \xi, \eta]-R[\xi, R \eta], \zeta\right]\right|_{\text {at point } p}=
$$

(and finally using the fact that R is Nijenhuis)

$$
[0, \zeta]=0 .
$$

One property of left-symmetric algebras

Recall the following fundamental property of associative algebras.

Proposition

Every associative algebra ($\mathfrak{a}, *$) carries a natural Lie algebra structure ($\mathfrak{a},[$,$]), namely$

$$
[\xi, \eta]=\xi * \eta-\eta * \xi .
$$

In fact, the associativity condition can be relaxed.

Proposition

Every left-symmetric algebra ($\mathfrak{a}, *$) carries a natural Lie algebra structure ($\mathfrak{a},[]$,$) , namely$

$$
[\xi, \eta]=\xi * \eta-\eta * \xi .
$$

For this reason, left-symmetric algebras are also known under the name pre-Lie algebras.

Proof

The operation is bilinear and skew-symmetric, thus, the only thing we need to prove is the Jacobi identity. For arbitrary triple $\xi, \eta, \zeta \in \mathfrak{a}$ we have

$$
\begin{aligned}
& {[\xi,[\eta, \zeta]]+[\eta,[\zeta, \xi]]+[\zeta,[\xi, \eta]]=} \\
= & {[\xi, \eta * \zeta-\zeta * \eta]+[\eta, \zeta * \xi-\xi * \zeta]+[\zeta, \xi * \eta-\eta * \xi]=} \\
= & \xi *(\eta * \zeta)-\xi *(\zeta * \eta)-(\eta * \zeta) * \xi+(\zeta * \eta) * \xi+ \\
+ & \eta *(\zeta * \xi)-\eta *(\xi * \zeta)-(\zeta * \xi) * \eta+(\xi * \zeta) * \eta+ \\
+ & \zeta *(\xi * \eta)-\zeta *(\eta * \xi)-(\xi * \eta) * \zeta+(\eta * \xi) * \zeta= \\
= & \mathcal{A}(\xi, \eta, \zeta)-\mathcal{A}(\xi, \zeta, \eta)+\mathcal{A}(\eta, \zeta, \xi)-\mathcal{A}(\eta, \xi, \zeta)+ \\
+ & \mathcal{A}(\zeta, \xi, \eta)-\mathcal{A}(\zeta, \eta, \xi)
\end{aligned}
$$

We see, that the Jacobi condition is an alternated sum of associators (this holds for arbitrary algebra). Thus, the left-symmetry (as well as right-symmetry or symmetry in first and third argument) yields zero: the corresponding terms cancel out.

Linearisation and non-degeneracy problems

Definition

Let L be a Nijenhuis operator and $L(p)=0$ so that $L(x)=L_{\operatorname{lin}}(x)+\ldots$, where $L_{\text {lin }}$ is a linear part of L.
We will say that L is linearisable at p if there exists a coordinate transformation that reduces L to its linear part $L_{\text {lin }}$.

Linearisation problem. Given L such that $L(p)=0$, find out whether L is linearisable or not?

Definition

A left-symmetric algebra \mathfrak{a} is called non-degenerate if any Nijenhuis operator L, whose linearisation 'coincides' with \mathfrak{a}_{L} at a singular point $p \in M$, is linearisable at this point.

Non-degeneracy problem. Describe all non-degenerate left-symmetric algebras.

Comparison with Poisson geometry 2

The above two problems are copy-pasted from Poisson geometry. Some well known facts:

- In dimension 2, let $\{x, y\}=f(x, y)$, with $f(0,0)=0, d f(0,0) \neq 0$. Then this Poisson structure is linearisable, i.e., there exist local coordinates \tilde{x}, \tilde{y} such that $\{\tilde{x}, \tilde{y}\}=\tilde{y}$. In other words, the non-commutative 2 -dim Lie algebra (defined by the relation $\left[e_{1}, e_{2}\right]=e_{2}$) is non-degenerate.
- Let P be a (smooth) Poisson structure in $\mathbb{R}^{3}(x, y, z)$ such that

$$
\{x, y\}=z+\ldots, \quad\{y, z\}=x+\ldots, \quad\{z, x\}=y+\ldots
$$

where 'dots' denote higher order terms. Then there exists another coordinate system $\tilde{x}, \tilde{y}, \tilde{z}$ such that

$$
\{\tilde{x}, \tilde{y}\}=\tilde{z}, \quad\{\tilde{y}, \tilde{z}\}=\tilde{x}, \quad\{\tilde{z}, \tilde{x}\}=\tilde{y} .
$$

In other words, P is always linearisable, i.e., the Lie algebra so(3) is non-degenerate (in the smooth sense).

Comparison with Poisson geometry

- Let P be a (smooth) Poisson structure in $\mathbb{R}^{3}(x, y, z)$ such that

$$
\{x, y\}=2 y+\ldots, \quad\{x, z\}=-2 z+\ldots, \quad\{y, z\}=x+\ldots
$$

where 'dots' denote higher order terms. Then there exists another coordinate system $\tilde{x}, \tilde{y}, \tilde{z}$ such that

$$
\{\tilde{x}, \tilde{y}\}=2 \tilde{y}, \quad\{\tilde{x}, \tilde{z}\}=-2 \tilde{z}, \quad\{\tilde{y}, \tilde{z}\}=\tilde{x}
$$

In other words, P is linearisable, i.e., the Lie algebra $s /(2)$ is non-degenerate in the real analytic sense (but not in the smooth sense!).

- Every semisimple Lie algebra is non-degenerate in the real analytic sense (bit not necessarily in the smooth sense).
- Every compact Lie algebra is non-degenerate in the smooth sense.

Classification of LSAs in dimension one

Theorem (Exercise)

There are two non-isomorphic left-symmetric algebras $\mathfrak{a}=\operatorname{Span}(\eta)$ in dimension 1 defined by the relations:

1. $\eta * \eta=0$ (trivial algebra);
2. $\eta * \eta=\eta$ (non-trivial algebra)

Indeed, a one-dimensional algebra is defined by one single relation

$$
\eta * \eta=a \eta, \quad a \in \mathbb{R}
$$

If $a \neq 0$, in can be made equal to 1 by rescaling $\eta \mapsto \frac{1}{a} \eta$.

Classification theorem in dim $=2$

Theorem

Up to isomorphism there are two continuous families and 10 exceptional two dimensional real left-symmetric algebras. The complete list of normal forms is presented in Table 1 and Table 2 below. For every algebra we give

- All non-zero structure relations for a given basis η_{1}, η_{2}
- The operator $R=R_{\eta}$ of right multiplication by $\eta=x \eta_{1}+y \eta_{2}$ (this is a Nijenhuis operator!)
- The operator $L=L_{\eta}$ of left multiplication by $\eta=x \eta_{1}+y \eta_{2}$.

The letter \mathfrak{b} stands for algebras with non-abelian associated Lie algebra and \mathfrak{c} for algebras with Abelian associated Lie algebra.

Classification theorem: table 1

Name	Structure relations	L	R
$\mathfrak{b}_{1, \alpha}$	$\begin{aligned} & \eta_{2} * \eta_{1}=\eta_{1}, \\ & \eta_{2} * \eta_{2}=\alpha \eta_{2} \\ & \hline \end{aligned}$	$\left(\begin{array}{cc}y & 0 \\ 0 & \alpha y\end{array}\right)$	$\left(\begin{array}{cc}0 & x \\ 0 & \alpha y\end{array}\right)$
$\mathfrak{b}_{2, \beta}, \beta \neq 1$	$\begin{aligned} & \hline \eta_{1} * \eta_{2}=\eta_{1}, \\ & \eta_{2} * \eta_{1}=\beta \eta_{1} \\ & \eta_{2} * \eta_{2}=\eta_{2} \\ & \hline \end{aligned}$	$\left(\begin{array}{cc}\beta y & x \\ 0 & y\end{array}\right)$	$\left(\begin{array}{cc}y & \beta x \\ 0 & y\end{array}\right)$
\mathfrak{b}_{3}	$\begin{aligned} & \eta_{2} * \eta_{1}=\eta_{1}, \\ & \eta_{2} * \eta_{2}=\eta_{1}+\eta_{2} \end{aligned}$	$\left(\begin{array}{ll}y & y \\ 0 & y\end{array}\right)$	$\left(\begin{array}{cc}0 & x+y \\ 0 & y\end{array}\right)$
\mathfrak{b}_{4}^{+}	$\begin{aligned} & \eta_{1} * \eta_{1}=\eta_{2}, \\ & \eta_{2} * \eta_{1}=-\eta_{1} \\ & \eta_{2} * \eta_{2}=-2 \eta_{2} \end{aligned}$	$\left(\begin{array}{cc}-y & 0 \\ x & -2 y\end{array}\right)$	$\left(\begin{array}{cc}0 & -x \\ x & -2 y\end{array}\right)$
\mathfrak{b}_{4}^{-}	$\begin{aligned} & \eta_{1} * \eta_{1}=-\eta_{2}, \\ & \eta_{2} * \eta_{1}=-\eta_{1} \\ & \eta_{2} * \eta_{2}=-2 \eta_{2} \end{aligned}$	$\left(\begin{array}{cc}-y & 0 \\ -x & -2 y\end{array}\right)$	$\left(\begin{array}{cc}0 & -x \\ -x & -2 y\end{array}\right)$
\mathfrak{b}_{5}	$\begin{aligned} & \eta_{1} * \eta_{2}=\eta_{1}, \\ & \eta_{2} * \eta_{2}=\eta_{1}+\eta_{2} \end{aligned}$	$\left(\begin{array}{cc}0 & x+y \\ 0 & y\end{array}\right)$	$\left(\begin{array}{ll}y & y \\ 0 & y\end{array}\right)$

Classification theorem: table 2

Name	Structure relations	$L=R$
\mathfrak{c}_{1}		$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
\mathfrak{C}_{2}	$\eta_{2} * \eta_{2}=\eta_{2}$	$\left(\begin{array}{ll}0 & 0 \\ 0 & y\end{array}\right)$
\mathfrak{c}_{3}	$\eta_{2} * \eta_{2}=\eta_{1}$	$\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$
\mathfrak{c}_{4}	$\begin{aligned} & \eta_{2} * \eta_{2}=\eta_{2} \\ & \eta_{2} * \eta_{1}=\eta_{1} \\ & \eta_{1} * \eta_{2}=\eta_{1} \\ & \hline \end{aligned}$	$\left(\begin{array}{ll}y & x \\ 0 & y\end{array}\right)$
\mathfrak{c}_{5}^{+}	$\begin{aligned} & \hline \eta_{2} * \eta_{2}=\eta_{2} \\ & \eta_{2} * \eta_{1}=\eta_{1} \\ & \eta_{1} * \eta_{2}=\eta_{1} \\ & \eta_{1} * \eta_{1}=\eta_{2} \end{aligned}$	$\left(\begin{array}{ll}y & x \\ x & y\end{array}\right)$
\mathfrak{c}_{5}^{-}	$\begin{aligned} & \eta_{2} * \eta_{2}=\eta_{2} \\ & \eta_{2} * \eta_{1}=\eta_{1} \\ & \eta_{1} * \eta_{2}=\eta_{1} \\ & \eta_{1} * \eta_{1}=-\eta_{2} \\ & \hline \end{aligned}$	$\left(\begin{array}{cc}y & x \\ -x & y\end{array}\right)$

Example of a non-degenerate LSA

Proposition

The left-symmetric algebra \mathfrak{c}_{5}^{+}is non-degenerate. Equivalently, if $L=L(x, y)$ is a Nijenhuis operator of the form

$$
L=\left(\begin{array}{ll}
y & x \\
x & y
\end{array}\right)+\text { higher order } \geq 2 \text { terms }
$$

Then there exists a smooth coordinate change, centred at 0 that transforms L into its linear part.
Proof. Let $f=\operatorname{tr} L$ and $g=\operatorname{det} L$. Then

$$
\begin{aligned}
& f=2 y+\ldots, \\
& g=y^{2}-x^{2}+\ldots
\end{aligned}
$$

Here ... stand for terms of orders ≥ 2 and ≥ 3 respectively. Instead of reducing L to the required form, we will be looking for a suitable coordinate transformations to simplify f and g.

Proof of Proposition (continued...)

Step 1. As $f=\operatorname{tr} L=2 y+\ldots$, we may set $y_{\text {new }}=\frac{1}{2} f$ so that $f=\operatorname{tr} L=2 y_{\text {new }}$. The first coordinate remains unchanged. Keeping the same notation x, y for the new coordinates, we now have

$$
\begin{aligned}
& f=2 y \\
& g=y^{2}-x^{2}+\ldots .
\end{aligned}
$$

Step 2. To simplify g, we treat y as a parameter and apply the parametric Morse lemma, which says that we can introduce a new variable $x_{\text {new }}=h(x, y)=x+\ldots(y$ remains unchanged $)$ in such a way that

$$
g=-x_{\text {new }}^{2}+k(y), \quad \text { with } k(y)=y^{2}+\ldots
$$

Keeping the same notation x, y for the new coordinates, we now have

$$
\begin{aligned}
& f=2 y \\
& g=-x^{2}+k(y)
\end{aligned}
$$

where f and g are the trace and determinant of our Nijenhuis operator L. Question. What can we say about L in this situation?

Proof of Proposition (continued..)

Recall that a Nijenhuis operator can be reconstructed from the coefficients of the characteristic polynomial by using the following fundamental formula

$$
L=J^{-1}\left(\begin{array}{ll}
\sigma_{1} & 1 \\
\sigma_{2} & 0
\end{array}\right) J, \quad \text { where } J=\left(\frac{\partial\left(\sigma_{1}, \sigma_{2}\right)}{\partial(x, y)}\right)
$$

and $\sigma_{1}=\operatorname{tr} L, \sigma_{2}=-\operatorname{det} L$ are the coefficients of the characteristic polynomial of L. A simple computation gives the following formula for L

$$
L=\left(\begin{array}{cc}
\frac{1}{2} k^{\prime} & x+\frac{k^{\prime}\left(4 y-k^{\prime}\right)-4 k}{4 x} \\
x & 2 y-\frac{1}{2} k^{\prime}
\end{array}\right)
$$

Now another miracle in Nijenhuis geometry... Look at the fraction $\frac{k^{\prime}\left(4 y-k^{\prime}\right)-4 k}{4 x}$. Its numerator is a function of y only. Hence this fraction is smooth at the origin if and only if $k^{\prime}\left(4 y-k^{\prime}\right)-4 k \equiv 0$. It shows that $k=k(y)$ must be very special!
This relation (after differentiating by y) implies $k^{\prime \prime}(y)\left(2 y-k^{\prime}\right)=0$ and since $k^{\prime \prime}(y) \neq 0$, we get $k^{\prime}=2 y$ and $k=y^{2}$, giving finally $L=\left(\begin{array}{ll}y & x \\ x & y\end{array}\right)$, as required.

Example of a degenerate LSA

Proposition

The left-symmetric algebra \mathfrak{c}_{4} is degenerate.
More specifically, the following non-linear perturbation

$$
\left(\begin{array}{ll}
y & x \\
0 & y
\end{array}\right) \quad \mapsto \quad L=\left(\begin{array}{cc}
y & x \\
0 & y
\end{array}\right)+\left(\begin{array}{cc}
y x^{2} & x^{3} \\
-x y^{2} & -y x^{2}
\end{array}\right)
$$

gives a non-linearisable Nijenhuis operator L.
Proof. Consider the trace and determinant of L :

$$
\operatorname{tr} L=2 y, \quad \operatorname{det} L=y^{2}+y^{2} x^{2}
$$

Obviously, the discriminant of the characteristic polynomial $\chi_{L}(t)$ is not identically zero, so that generically L has two different eigenvalues, while its linear part $L_{\text {lin }}=\left(\begin{array}{ll}y & x \\ 0 & y\end{array}\right)$ has one single eigenvalue y of multiplicity 2.

Hence, L and $L_{\text {lin }}$ are essentially different and cannot be reduced to each other by a coordinate transformation.

Another classification theorem

Theorem (Smooth case)
In the smooth category

Degenerate LSA	Non-degenerate LSA
$\mathfrak{c}_{1}, \mathfrak{c}_{2}, \mathfrak{c}_{3}, \mathfrak{c}_{4}$,	$\mathfrak{b}_{4}^{+}, \mathfrak{b}_{4}^{-}, \mathfrak{c}_{5}^{+}, \mathfrak{c}_{5}^{-}$
$\mathfrak{b}_{5}, \mathfrak{b}_{2, \beta}$	$\mathfrak{b}_{3}, \mathfrak{b}_{1, \alpha}$ for $\alpha \notin \Sigma_{\mathrm{sm}}$
$\mathfrak{b}_{1, \alpha}$ for $\alpha \in \Sigma_{\mathrm{sm}}$	

Theorem (Analytic case)
In the real analytic category

Degenerate LSA	Non-degenerate LSA
$\mathfrak{c}_{1}, \mathfrak{c}_{2}, \mathfrak{c}_{3}, \mathfrak{c}_{4}$,	$\mathfrak{b}_{4}^{+}, \mathfrak{b}_{4}^{-}, \mathfrak{c}_{5}^{+}, \mathfrak{c}_{5}^{-}$
$\mathfrak{b}_{5}, \mathfrak{b}_{2, \beta}$	$\mathfrak{b}_{3}, \mathfrak{b}_{1, \alpha}$ for $\alpha \notin \Sigma_{\text {an }}$
$\mathfrak{b}_{1, \alpha}$ for $\alpha \in \Sigma_{\text {an }}$	

Comments on the sets $\Sigma_{\text {sm }}$ and $\Sigma_{\text {an }}$ related to

The continuous fraction for α is a decomposition of α in the form

$$
\alpha=q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\ldots}},
$$

where $q_{0} \in \mathbb{Z}$ and $q_{i}, i \geq 1$ are in \mathbb{N}. Let $\left[q_{0}, q_{1}, q_{2}, \ldots\right]$ be a decomposition of an irrational α into the continuous fraction. If the series

$$
B(x)=\sum_{i=0}^{\infty} \frac{\log q_{i+1}}{q_{i}}
$$

converges, then α is a Brjuno number.

- $\Sigma_{\text {sm }}$ contains $\alpha<0, \alpha=\frac{1}{m}$ for $m \geq 2$ and s for $s \geq 3$.
- $\Sigma_{\text {an }}$ contains $\alpha=-\frac{p}{q}$, negative irrational numbers that are not Brjuno numbers, $\alpha=\frac{1}{m}$ for $m \geq 2$ and s for $s \geq 3$.

Non-degeneracy of the diagonal algebra

Theorem (Real analytic or formal)
Let $L(x)=L_{\operatorname{lin}}(x)+L_{2}(x)+L_{3}(x)+\ldots$ with

$$
L_{\operatorname{lin}}(x)=\left(\begin{array}{cccc}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right)
$$

Then $L(x)$ is linearisable. In other words, the diagonal left-symmetric algebra is non-degenerate.

Differentially non-degenerate LSAs

Definition

We say that a left-symmetric algebra \mathfrak{a} is differentially non-degenerate if the Nijenhuis operator R_{ξ} of right multiplication (see above) is differentially non-degenerate (at a generic point $\xi \in \mathfrak{a}$).
Recall that the entries of the operator $R_{\xi}=\left(R_{j}^{i}(\xi)\right)$ are linear functions in ξ, i.e., $R_{j}^{i}=\sum_{\alpha} l_{j \alpha}^{i} \xi^{\alpha}$, where $\xi=\sum_{\alpha} \xi^{\alpha} e_{\alpha}$. This implies that the coefficient $\sigma_{k}(\xi)$ of the characteristic polynomial

$$
\chi_{R_{\xi}}(t)=\operatorname{det}\left(t \mathrm{Id}-R_{\xi}\right)=t^{n}-\sigma_{1}(\xi) t^{n-1}-\sigma_{2}(\xi) t^{n-2}-\cdots-\sigma_{n}(\xi)
$$

is a homogeneous polynomial in ξ^{1}, \ldots, ξ^{n} of degree k.
The differential non-degeneracy condition means that the polynomials $\sigma_{1}, \ldots, \sigma_{n}$ are algebraically independent.
Open problem 1. Classify/describe differentially non-degenerate left-symmetric algebras. (The problem is solved in dimensions $1,2,3$.)
Open problem 2. Is it true that a differentially non-degenerate left-symmetric algebra is non-degenerate.

Purely algebraic statement of Open Problem 1.

Open problem 1^{\prime}. Describe all collections of algebraically independent homogeneous polynomials $\sigma_{1}, \ldots, \sigma_{n}$ in n variables x_{1}, \ldots, x_{n} ($\operatorname{deg} \sigma_{k}=k$) such that the entries of the matrix

$$
R=\left(\frac{\partial \sigma_{k}}{\partial x^{j}}\right)^{-1}\left(\begin{array}{cccc}
\sigma_{1} & 1 & & \\
\sigma_{2} & 0 & \ddots & \\
\vdots & \vdots & \ddots & 1 \\
\sigma_{n} & 0 & \ldots & 0
\end{array}\right)\left(\frac{\partial \sigma_{k}}{\partial x^{j}}\right)
$$

are linear functions in x^{1}, \ldots, x^{n} (here $\left(\frac{\partial \sigma_{k}}{\partial x^{j}}\right)$ denotes the Jacobi matrix of the collection of polynomials $\left.\sigma_{1}, \ldots, \sigma_{n}\right)$.

Comment. According to the fundamental property of Nijenhuis operators (see Lecture 1), R is Nijenhuis for any collection of independent polynomials $\sigma_{1}, \ldots, \sigma_{n}$. But in general, the entries of R are rational functions of the form $R_{j}^{i}=\frac{P_{i j}(x)}{Q(x)}$ where $\operatorname{deg} P_{i j}=n+1, \operatorname{deg} Q=n$ and $Q=\operatorname{det}\left(\frac{\partial \sigma_{k}}{\partial x^{j}}\right)$. Sometimes, a miracle happens: each $P_{i j}$ turns out to be divisible by Q, and then R defines a left-symmetric algebra.

Exercises

- Prove that \mathfrak{c}_{5}^{+}is isomorphic to the direct sum of two one-dimensional non-trivial algebras.
- Prove that \mathfrak{c}_{5}^{-}is a real form of one-dimensional complex algebra with non-trivial multiplication.
- Classify of differentially non-degenerate LSAs in dimension 2 (without using the classification theorem for LSAs in 2D).
- Let \mathfrak{g} be a Lie algebra. Consider the Lie-Poisson bracket $P_{x}=\left(c_{j k}^{i} x_{i}\right)$ on \mathfrak{g}^{*} and assume that $\operatorname{det} P_{a} \neq 0$ at a generic point $a \in \mathfrak{g}^{*}$ (such \mathfrak{g} is called a Frobenius Lie algebra). Let us introduce an operator (field of endomorphisms) R on g^{*} by setting

$$
R(x): T_{x} \mathfrak{g}^{*} \rightarrow T_{x} \mathfrak{g}^{*}, \quad R(x)=P_{x} \circ P_{a}^{-1}
$$

where the P_{x}, P_{a} are understood as (skew-symmetric) linear maps $R_{x}, R_{a}: \mathfrak{g}=T_{x}^{*} \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}=T_{x} \mathfrak{g}^{*}$. Prove that R is Nijenhuis operator on \mathfrak{g}^{*} with linear entries, which implies that \mathfrak{g}^{*} carries a structure of a left-symmetric algebra (this structure depends on the choice of a regular element $a \in \mathfrak{g}^{*}$).

Exercises

- Two Nijenhuis operators L_{1} and L_{2} are called compatible if their sum $L_{1}+L_{2}$ is a Nijenhuis operator too.
(a) Check that this condition implies that any linear combination $a_{1} L_{1}+a_{2} L_{2}$ is Nijenhuis.
(b) Write down the compatibility condition in tensorial form, like

$$
L_{1} L_{2}[u, v]-L_{1}\left[L_{2} u, v\right]-\cdots=0 \quad \text { for all vector fields } u, v
$$

The expression in the I.h.s. is known as Frölicher-Nijenhuis bracket of two operators.
(c) (Argument shift method à la Mishchenko-Fomenko) Let R_{ξ} be the Nijenhuis operator associated with a left-symmetric algebra \mathfrak{a} and R_{a} be the constant operator obtained by setting $\xi=a \in \mathfrak{a}$. Then R_{ξ} and R_{a} are compatible.

[^0]: ${ }^{1}$ The left-hand side $\mathcal{A}(\xi, \eta, \zeta)=\xi *(\eta * \zeta)-(\xi * \eta) * \zeta$ is called associatore

