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Introduction

Theorem [Balduf and Hu 2025]. The topological form is the Pfaffian form,

αG = ϕG (up to constants).

This raises questions, among them:

1. What is the topological form αG? What does it compute in topological QFT?

2. What is the Pfaffian form ϕG? How is it used in the odd graph complex?

3. (We skip the proof of the theorem)

What can one learn from them being equal?
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TQFT Propagator Pn(x⃗)

▶ Field theory for field Φ, Lagrangian L = 1
2ΦDΦ+ . . . quadratic part is

“free field differential operator” D. E.g. D = ∂µ∂
µ −m2.

▶ Consider n-dimensional topological QFT, position variable x⃗ = (x (1), . . . , x (n))⊺

with D = de Rham operator = exterior derivative:

D = d = dx (1)∂x (1) + dx (2)∂x (2) + . . .+ dx (n)∂x (n) .

▶ Propagator is Green function of D, hence dPn(x⃗) =
2π

n
2

Γ( n
2 )
δn(x⃗) dx1 ∧ . . . ∧ dxn. It is

Pn(x⃗) =
Ωn

|x⃗ |n
=

∑n
j=1(−1)jx (j) dx (1) ∧ d̂x (j) ∧ dx (n)

√
x⃗ · x⃗

n .

▶ Ωn is the projective n-dimensional volume form (= (n − 1)-dimensional infinitesimal
surface element of a sphere in n dimensions). For example:

P1 =
x

|x |
= sgn(x), P2 =

x (2) dx (1) − x (1) dx (2)

x (1)
2
+ x (2)

2 =
r2 sin2 ϕ dϕ+ r2 cos2 ϕ dϕ

r2
= dϕ.
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Parametric representation of the TQFT propagator Pn(x⃗)

▶ Recall integral representation of Euler gamma function,

Γ( n2 )

|x⃗ |n
=

∫ ∞

0

e−
x⃗2

a
da

a
n
2+1

.

▶ [Gaiotto, Kulp, and Wu 2025; Budzik et al. 2023] For each component x (j) introduce s(j) := x (j)
√
a
.

Then, ds(j) = dx (j)

a
1
2

− x (j)

2a
3
2
da. Explicit calculation yields (recall da ∧ da = 0):

ds(1) ∧ . . . ∧ ds(n) =
dx (1) ∧ . . . ∧ dx (n)

a
n
2

+
da ∧ Ωn

2a
n
2+1

.

▶ If one integrates a, first term vanishes, and∫ ∞

0

e−s⃗ 2

ds(1) ∧ . . . ∧ ds(n) =
Γ( n2 )

2

Ωn

(x⃗2)
n
2
=

Γ( n2 )

2
Pn(x⃗).

▶ Notice that the integrand factorizes: e−s(1)
2

ds(1) ∧ e−s(2)
2

ds(2) ∧ e−s(3)
2

ds(3) ∧ . . ..
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Brackets

▶ Use BRST formalism: BRST differential Q such that gauge-invariant “physical”
observables A are 0th cohomology group. That is,

QA = 0 and ∄B : A = QB.

▶ A classically gauge invariant observable might violate gauge invariance at quantum level
(“anomaly”). Work in perturbation theory, let Oj be local operators. Define bracket
[Gaiotto, Kulp, and Wu 2025]

{O1, . . . ,Ok} := Q

(∫
Rn(k−1)

O1 · · · Ok

)
.

▶ The integral is a sum over Feynman integrals with k vertices in the n-dimensional TQFT,

{O1,O2, . . .} =
∑

Graphs G

1

|Aut(G )|
IG

∏
v∈VG

∏
i

φi,v .

symmetry factor

Feynman integral

External leg structure
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The topological form

▶ Recall that parametric integrand factorizes along dimension ⇒ consider 1-dimensional
integrand. Schwinger parameter ae ∈ R for each edge. Then the topological form αG is a
differential form of degree ℓ in ae ,

IG =

∫
αG ∧ αG ∧ . . .︸ ︷︷ ︸

n factors

where αG :=
1

π
|EG |
2

∫
· · ·
∫

R
|VG |−1

∧
e∈EG

e−s2e dse .

The integral in αG is over vertex positions xv ∈ R.

▶ Key results of [Balduf and Gaiotto 2025]:

αG =
1

π
ℓ
2 4ℓ
(
ℓ
2

)
! · ψ

ℓ+1
2

G

∑
T spanning

tree

det (I[T ])

 ∑
σ∈ST

ψ
σ(f1),σ(f2)
G · · ·ψσ(fℓ−1),σ(fℓ)

G

 ∧
f ̸∈T

daf ,

and αG ∧ αG = 0 for all graphs (Kontsevich Formality theorem).

Here I is the edge-vertex incidence matrix, ψG is the Symanzik polynomial, ψe1,e2 are
edge-induced Dodgson polynomials (See appendix. All of these can be produced easily
with a computer).
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Topological differential form for the dunce’s cap

αG =
1

π
ℓ
2 4ℓ
(
ℓ
2

)
! · ψ

ℓ+1
2

G

∑
T spanning

tree

det (I[T ])

 ∑
σ∈ST

ψ
σ(f1),σ(f2)
G · · ·ψσ(fℓ−1),σ(fℓ)

G

 ∧
f ̸∈T

daf .

v1

v2 v3

a1 a2

a4

a3

G has five spanning trees T . For example, consider T = {2, 4}.

Then E \ T = {f1, f2} = {1, 3} and I[T ] =

(
−1 0
0 −1

)
and

ψ1,3 = −a4 (I didn’t introduce how to compute this, see appendix).
One obtains the contribution

(+1)

16π(a1a3 + a2a3 + a1a4 + a2a4 + a3a4)3/2
· (−2a4) da1 ∧ da3.

End result:

αG =
−a4( da1 ∧ da3 + da2 ∧ da3) + a3( da1 ∧ da4 + da2 ∧ da4)− (a1 + a2) da3 ∧ da4

8π(a1a3 + a2a3 + a1a4 + a2a4 + a3a4)3/2
.
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Pfaffians

▶ Let M be a 2n × 2n skew-symmetric matrix. The Pfaffian is

Pf(M) =
1

2nn!

∑
σ∈S2n

sgnσ ·Mσ(1),σ(2) · · ·Mσ(2n−1),σ(2n).

▶ If a skew-symmetric M has odd dimensions, set Pf(M) = 0.
Then Pf(M)2 = det(M) for all skew-symmetric matrices.

▶ This (like the determinant) assumes that the entries of M commute.

▶ Examples:

Pf

(
0 b
−b 0

)
= b, Pf


0 b c d
−b 0 g h
−c −g 0 l
−d −h −l 0

 = bl − ch + dg .
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The Pfaffian form
▶ Consider a graph with even loop number ℓ. Collect Schwinger parameters in diagonal

matrix D. Let C be its edge-cycle incidence matrix, and Λ = C⊺DC the cycle Laplacian,
and dΛ its differential w.r.t. Schwinger parameters,

dΛ = d (C⊺DC) = C⊺ dDC.

Then the matrix dΛ · Λ−1 · dΛ is a ℓ× ℓ (=even), skew-symmetric matrix whose entries
are 2-forms (hence they commute).

▶ The Pfaffian form is defined as [Brown, Hu, and Panzer 2024]

ϕG :=
1

(−2π)
ℓ
2

Pf
(
dΛ · Λ−1 · dΛ

)
√
detΛ

.

▶ Change of cycle basis C′ = A⊺CA with constant matrix A leads to

dΛ′Λ′⊺ dΛ = A⊺ dΛA (A⊺ΛA)−1 A⊺ dΛA = A⊺ dΛΛ−1 dΛ A

known: Pf(A⊺BA) = det(A) Pf(B).

⇒ ϕG changes sign by det(A) under change of basis (becomes important later!).
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Example: Pfaffian form of the dunce’s cap

v1

v2 v3

a1 a2

a4

a3

C1

C2

C =


1 0
1 0
−1 −1
0 1

 , Λ−1 =
1

ψG

(
a3 + a4 −a3
−a3 a1 + a2 + a3

)

Λ =

(
a1 + a2 + a3 a3

a3 a3 + a4

)
, dΛ =

(
da1 + da2 + da3 da3

da3 da3 + da4

)
.

dΛ Λ−1 dΛ is a 2× 2 matrix. Recall Pf

(
0 b
−b 0

)
= b.

We only need the top right entry of

dΛΛ−1 dΛ =
1

ψG

(
da1 + da2 + da3 da3

da3 da3 + da4

)(
(a3 + a4)( da1 + da2) + a4 da3 a4 da3 − a3 da4
−a3( da1 + da2) + (a1 + a2) da3 (a1 + a2)( da3 + da4) + a3 da4

)
This yields

ϕG =
a4 da1 da3 + a4 da2 da3 − a3 da1 da4 − a3 da2 da4 + (a1 + a2) da3 da4

−2πψ
3
2

G

.
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The main result

Compare the two example calculations for the dunce’s cap:

ϕG =
a4 da1 da3 + a4 da2 da3 − a3 da1 da4 − a3 da2 da4 + (a1 + a2) da3 da4

−2πψ
3
2

G

,

αG =
−a4( da1 da3 + da2 da3) + a3( da1 da4 + da2 da4)− (a1 + a2) da3 da4

8π(a1a3 + a2a3 + a1a4 + a2a4 + a3a4)3/2
=

1

4
ϕG .

Theorem [Balduf and Hu 2025]. Let C be any choice of cycle incidence matrix and P any
choice of path matrix, then det (C | P) ∈ {+1,−1} and for all graphs

αG =
det (C | P)

2ℓ
· ϕG .

Proof: Linear algebra, expansion formulas for Pfaffians, match the Dodgson polynomial formula
for the topological form αG .
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What is the Pfaffian form good for?

It solves a combinatorics problem on the odd graph complex...
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The odd graph complex

▶ The odd graph complex GC3 is a Q vector space of “oriented graphs” (G , η),

▶ G has vertex valence at least 3, modulo graph isomorphism.
Grading deg(G ) = |E | − 3ℓ.

▶ Orientation η is (ordering of vertices and a choice of edge directions).
orientation is equivalent to (cycle basis and edge order) [Conant and Vogtmann 2003].

▶ E.g. Tadpoles vanish: = −
▶ More generally, graphs with odd automorphism (=exchange odd number of elements)

vanish. E.g. multi edges with even number of edges:

v1v2
(1)
= -

odd automorphism

v2v1
(2)
=

draw differently

-
v1v2
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Boundary map of graph complexes

▶ Let G/γ denote shrinking of subgraph γ ⊂ G to a vertex. Define the boundary operator

∂(G , η) =
n∑

j=1

(−1)j (G/ej , η/ej) .

Example: ∂

1

2

3

= −
2
3

+

1

3

−
2
1

▶ Graph homology is H•(GC3) = ker ∂/ im ∂.
I.e. we want graphs G such that ∂G = 0 and there is no F with ∂F = G .
Homology is graded by degree, Hn where n = deg(G ) = |E | − 3ℓ, and by loop number .

▶ Example: The above graph D3 (=dipole on 3 edges) has ∂D3 = 0 since all resulting
graphs contain tadpoles. deg(D3) = 6− 3× 2 = 0. Turns out it is not exact,
∄F : ∂F = D3. Hence D3 ∈ H0(GC3), at loop number ℓ = 2.
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Homology of the odd graph complex

▶ Graph homology is H•(GC3) = ker ∂/ im ∂. It is graded by (homological) degree, Hn where
n = deg(G ) = |E | − 3ℓ, and by loop number.

▶ Homologies are known up to ℓ ≈ 10 [Brun and Willwacher 2024]. One finds only few classes,
but for ℓ→ ∞, their dimension grows super-exponentially [Borinsky and Zagier 2024].

▶ H−3 related to “algebra of 3-graphs” [Duzhin, Kaishev, and Chmutov 1998; Vogel 2011].

Homologies of GC3:

H−8 known to 0

H−7 vanish 0 0

H−6 1 1 2

H−5 0 0 0 0

H−4 0 0 0 0 0

H−3 1 1 1 2 2 3 4

ℓ 1 2 3 4 5 6 7 8 . . .
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Brown’s canonical differential forms
▶ Let G be a connected graph with cycle Laplacian Λ = C⊺DC. Define canonical form

[Brown 2021]

βn
G := tr

((
Λ−1 dΛ

)n)
.

(distinct objects are called “canonical forms” in the literature. This one is canonical because

it is invariant under multiplying Λ by any invertible matrix A with dA = 0.)

▶ β has various good properties, for example
▶ dβ4k+1 = 0,
▶ if k > 0, the form is projectively invariant,
▶ βn

G is zero unless n = 4k + 1 for k ∈ N0,
▶ have algebra structure, where products might have different degree.

E.g. β5 ∧ β9 has degree 14 ̸= 4k + 1.
▶ Have Hopf algebra structure where βj are primitive (i.e. define a coproduct ∆ such that

∆β4k+1 = 1⊗ β4k+1 + β4k+1 ⊗ 1).
▶ If ωG is a canonical form of degree n and |E | = n + 1, then ω is proportional to the

projective volume form Ω|E |,

ωG =
some polynomial

ψsome integer
Ω|E |.

Paul-H. Balduf, Mathematical Institute, Oxford Topological Feynman integrals and the odd graph complex 16
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Computing graph homology with canonical integrals

▶ Canonical forms can be used to find cohomology classes in the graph complex.
Let G be some linear combination of graphs such that ∂G = 0 (this can be checked by
explicit computation).
Hard part: How to establish whether ∃F such that ∂F = G?

▶ As dβ = 0, also
∫
F
dβ = 0 for every graph F ,

where
∫
F
=
∫
σF

with σF = [a1 : . . . : a|E |] ∈ P(R|E |)+ (“graph simplex”).

▶ Stokes theorem:

0 =

∫
F

dβ =

∫
∂F

β =

∫
G

β (if ∂F = G ).

This integral vanishes for all primitive canonical forms β.
(There are more terms for a non-primitive ω = β ∧ β ∧ . . ., but it still vanishes).

▶ Conversely: If one finds any β such that
∫
G
β ̸= 0, one knows that G ̸= ∂F .

This is a proof that G is not exact, and since ∂G = 0, this G defines a cohomology class
in the even graph complex.
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The role of the Pfaffian form

▶ The canonical forms β4k+1
G are invariant under change of cycle basis (i.e. they operate on

the even graph complex).

▶ The odd graph complex requires a form that flips sign in the same way as the graphs do.

▶ The Pfaffian form ϕG has this property [Brown, Hu, and Panzer 2024], it is an “orientation
form”. Concretely, for a change of cycle basis, Λ 7→ A⊺ΛA, we have

β4k+1
G 7→ β4k+1

G , but ϕG 7→ det(A)ϕG .

⇒
∫
G
ϕG ∧ω is well-defined on the odd graph complex, where ω is any product of β forms.

▶ Can use
∫
G
ϕG ∧ ω to detect homology: If this integral is ̸= 0, then G ̸= ∂F .

▶ Example from [Brown, Hu, and Panzer 2024]: For ℓ = 6, the form β5 ∧ ϕ is of degree 11.
There is a linear combination of graphs with ℓ = 6 and |E | = 12 where the integral is
non-vanishing, it spans the homology H−6 at ℓ = 6.
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Summary

▶ There is a certain “topological” differential form, αG , of degree ℓ in Schwinger parameters
which computes BRST anomalies in TQFTs.

▶ There is another, “Pfaffian”, differential form, ϕG , of degree ℓ which realizes the
combinatorial sign of the odd graph complex GC3 and therefore makes integrals∫
G
ϕG ∧ ωG well-defined. These integrals detect homology classes in GC3.

▶ The two forms are the same.
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Consequences

A certain physics question (anomalies in TQFT) and a certain pure math problem
(homology of GC3) are answered by the same method in differential geometry. We have . . .

▶ Obtained physical interpretation of the Pfaffian form ϕG : It computes BRST anomalies.

▶ Obtained a nice new representation for the topological αG in terms of relatively simple
matrices. ⇒ many of its properties follow easily from linear algebra, or from known
properties of ϕG
▶ dαG = 0, and

∫
αG is finite, projective, well-defined under change of labelings, etc.

▶ Much simplified proof of Kontsevich formality theorem αG ∧ αG = 0 (i.e. there are no
anomalies in topological QFT with 2 or more dimensions).

▶ Shown that their properties match one by one, e.g.

▶ L∞-relations of topological form αG correspond to Stokes relations of Pfaffian form ϕG .
▶ The sum of dipole/multi-edge graphs plays a special role on both sides.
▶ On both sides, one is interested in products between this form and some other forms.

Open question: Was it clear that they are the same? What is the fundamental relation
between graph cohomology and anomalies in QFT?
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Thank you!
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Background: Deformation quantisation
▶ Given is a classical field theory: Smooth manifold M. Field variable ϕ(t, x), canonical

conjugate π(t, x) are smooth functions on M. Hamilton function H(ϕ(t, x), π(t, x)).
Skew-symmetric Poisson bracket {f , g} ∈ C∞(M). Gives equations of motion:

∂tϕ = {ϕ,H} , ∂tπ = {π,H} , {ϕ, π} = 1.

▶ Naive quantisation: Replace {f , g} by i
ℏ

[
f̂ , ĝ
]
. Runs into inconsistencies for powers of

fields. Deformation quantisation: Find a “star product” ⋆ such that

[f , g ]⋆ := f ⋆ g − g ⋆ f
!
= ℏ {f , g}+O

(
ℏ2
)
.

▶ Power series ansatz with (to be determined) differential operators Bj(f , g).

f ⋆ g = B0(f , g) + ℏB1(f , g) + ℏ2B2(f , g) + . . . ,

Clearly B0(f , g) = f · g and B1(f , g) =
1
2 {f , g}. What are the higher Bj?

▶ Two conditions:

1. Should be associative f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h,
2. Should be invariant under diffeomorphisms f 7→ f + ℏD1(f ) + ℏ2D2(f ) + . . ..
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Background: Deformation quantisation 2

▶ Solution in [Kontsevich 2003]: Consider graphs Γ embedded in the upper half plane
H = {z ∈ C|ℑ(z) > 0} with hyperbolic metric.

▶ In Γ, each vertex with 2 outgoing edges corresponds to a factor ωij∂i∂j . (i.e. a graph Γ
encodes a nesting of Poisson brackets, a differential operator BΓ). Graph has n upper
vertices and 2 vertices at bottom line R, corresponding to arguments f , g of Bn(f , g).

▶ Define angle ϕ(p, q) between geodesic p −→ q and vertical line p −→ i∞.

▶ Each graph is weighted by a weight integral WΓ = const×
∫ ∧

e∈EΓ
dϕe . Star product is

(details omitted)

⋆ = · +
∞∑
n=1

ℏn
∑
Γ

WΓBΓ.
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Background: Deformation quantisation 3

▶ Crucial step: Show that the so-defined ⋆ is associative.

▶ Associativity condition at order ℏn,

n∑
k=0

Bk (Bn−k(f , g), h) =
n∑

k=0

Bk (f ,Bn−k(g , h)) ,

amounts to insertion of operators Bj , hence nesting/shrinking of graphs.

▶ Obstructions to associativity are given by certain integrals over the boundary of
configuration space,

cΓ =

∫
∂C̄n,m

∧
e∈EΓ

dϕe .

These integrals can be shown to vanish and ⋆ is associative. More general, abstract
statement: “Formality theorem”.
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The significance of αΓ ∧ αΓ

▶ αΓ is a differential form in dae , to be integrated over Schwinger parameters ae .
Itself, αΓ is an integral over vertex positions xv of some integrand WΓ. Schematically:

F (Γ) =

∫
{ae}

αΓ =

∫
{ae}

∫
{xv}

WΓ, WΓ =
∧
e∈EΓ

e−s2e dse .

▶ There is one Schwinger variable ae for each edge, but there could be more than one

coordinate xv for each vertex (i.e. the vertex coordinate is a vector (x
(1)
v , x

(2)
v , . . .).

Consider a 2-dimensional theory

F (Γ) =

∫
{ae}

∫
{
x
(1)
v

}
∫
{
x
(2)
v

} W
(1)
Γ ∧W

(2)
Γ =

∫
{ae}

αΓ ∧ αΓ.

▶ Here, αΓ ∧αΓ is some differential form in the dae ’s, independent of the xv . Conversely, we
can exchange the order of integration and do the dae integral first. The integrand is

W
(1)
Γ ∧W

(2)
Γ = exp

(
−
∑
e

(
s(1)e

2
+ s(2)e

2
))∧

e

ds(1)e ∧ ds(2)e .
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The significance of αΓ ∧ αΓ

∫
{ae}

W
(1)
Γ ∧W

(2)
Γ =

∫
{ae}

exp

(
−
∑
e

(
s(1)e

2
+ s(2)e

2
))∧

e

ds(1)e ∧ ds(2)e

▶ This expression factorizes for edges. Consider an edge e from point (0, 0) to (x (1), x (2)):

e−s(1)e
2−s(2)e

2

ds(1)e ∧ ds(2)e = e−
x⃗2

a

(
−2a−2

e dae
(
x (2) dx (1) − x (1) dx (2)

)
+a−1

e dx (1) ∧ dx (2)
)
.

▶ Only the term ∝ dae contributes to integral. Polar coordinates in the plane:

x⃗ =

(
x (1)

x (2)

)
= r

(
sinϕ

− cosϕ

)
,

dx⃗

dϕ
= r

(
cosϕ
sinϕ

)
=

(
−x (2)

x (1)

)
.

⇒ x (1) dx (2) − x (2) dx (1) =
(
(−x (2))2 + (x (1))2

)
dϕ = |x⃗ |2 dϕ is the differential of the

2D angle ϕ of the vector x⃗ .

▶ Integrate the Schwinger parameter ae for a single edge:∫ ∞

ae=0

e−s(1)
2−s(2)

2

ds(1) ∧ ds(2) =

∫ ∞

ae=0

e−
|⃗x|2
ae 2a−2

e |x⃗ |2 dϕe ∧ dae = 2dϕe .
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The significance of αΓ ∧ αΓ

▶ We conclude that the 2-dimensional integral is (very schematically)

F (Γ) =

∫
{
x
(1)
v

}
∫
{
x
(2)
v

}
∫
{ae}

W
(1)
Γ ∧W

(2)
Γ =

∫
{relative positions x⃗v}

∧
e

dϕe .

Closer investigation of the last integral shows: These are the Kontsevich integrals cΓ which
need to vanish in order to make the star product associative and establish the formality
theorem.

▶ On the other hand:

cΓ = F (Γ) =

∫
{ae}

∫
{
x
(1)
v

}
∫
{
x
(2)
v

} W
(1)
Γ ∧W

(2)
Γ =

∫
{ae}

αΓ ∧ αΓ

▶ Hence
∫
{ae} αΓ ∧ αΓ = 0 implies the vanishing of Kontsevich integrals.
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Formality theorem

▶ Kontsevich formality theorem [Kontsevich 2003] αG ∧ αG = 0 (there are no anomalies in
TQFTs with D ≥ 2) proved with some effort in [Balduf and Gaiotto 2025; Wang and Williams

2024].

▶ Now use that Pf(A)2 = det(A):

ϕG ∧ ϕG ∝ 1

detΛ

(
Pf
(
dΛΛ−1 dΛ

))2
= det

(
Λ−1

)
det
(
dΛ Λ−1 dΛ

)
= det

(
Λ−1 dΛ Λ−1 dΛ

)
= det

((
Λ−1 dΛ

)2)
=: det (M) =

1

(ℓ/2)!
Bn (s1, s2, . . .) ,

where we defined M :=
(
Λ−1 dΛ

)2
, Bn are Bell polynomials, and

sj = − (j − 1)!

2
tr
(
M j
)
= − (j − 1)!

2
tr
((

Λ−1 dΛ
)2j)

= − (j − 1)!

2
β2j
G = 0 ∀j .

(recall that only β4k+1 ̸= 0 due to cyclicity of trace and symmetry of Λ).

▶ Hence ϕG ∧ ϕG = 0, and therefore αG ∧ αG = 0.
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Formality theorem

▶ Kontsevich formality theorem [Kontsevich 2003] αG ∧ αG = 0 (there are no anomalies in
TQFTs with D ≥ 2) proved with some effort in [Balduf and Gaiotto 2025; Wang and Williams

2024].

▶ Now use that Pf(A)2 = det(A):

ϕG ∧ ϕG ∝ 1

detΛ

(
Pf
(
dΛΛ−1 dΛ

))2
= det

(
Λ−1

)
det
(
dΛ Λ−1 dΛ

)
= det

(
Λ−1 dΛ Λ−1 dΛ

)
= det

((
Λ−1 dΛ

)2)
=: det (M) =

1

(ℓ/2)!
Bn (s1, s2, . . .) ,

where we defined M :=
(
Λ−1 dΛ

)2
, Bn are Bell polynomials, and

sj = − (j − 1)!

2
tr
(
M j
)
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Graph matrices 1: Incidence matrix and Laplacian

▶ Always assume that the graph G is connected. Edge set E , vertex set V .

▶ |E | × (|V | − 1) incidence matrix I has entry Ie,v = +1 if edge e ends at vertex v , and −1
if e starts at v , and 0 else. Column of one vertex v⋆ left out.

▶ |E | × |E | edge variable matrix D = diag
(
a1, . . . , a|E |

)
contains Schwinger parameters.

▶ (|V | − 1)× (|V | − 1) vertex Laplacian

L := I⊺D−1I.

▶ First Symanzik polynomial

ψG := detL · detD = detL ·
∏
e∈E

ae =
∑

T spanning

∏
e /∈T

ae

is homogeneous of degree ℓ in the variables ae .
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Example: The dunce’s cap

“Dunce’s cap” G is a graph on 3
vertices and 4 edges, with ℓ = 2
loops. Labels and directions are
chosen as:

v1

v2 v3

a1 a2

a4

a3

We further choose v3 =: v⋆ as the
vertex to remove from x⃗ .
Remaining: |V | = 2, |E | = 4.
I is 4× 2 and D is 4× 4.

With these choices:

I =


1 −1
−1 0
0 −1
0 −1

 , D =


a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

 .

This gives the Laplacian L = I⊺DI:

L =

( 1
a1

+ 1
a2

− 1
a1

− 1
a1

1
a1

+ 1
a3

+ 1
a4

)
.

Symanzik polynomial:

ψG = detL ·
∏
e∈E

ae = a3a4 + a1(a3 + a4) + a2(a3 + a4).

(Notice matrix tree theorem: The terms of ψ are the
complements of spanning trees, ψ =

∑
T

∏
e /∈T ae).
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Topological differential form for the dunce’s cap

αG =
1

π
ℓ
2 4ℓ
(
ℓ
2

)
! · ψ

ℓ+1
2

G

∑
T spanning

tree

det (I[T ])

 ∑
σ∈ST

ψ
σ(f1),σ(f2)
G · · ·ψσ(fℓ−1),σ(fℓ)

G

 ∧
f ̸∈T

daf .

v1

v2 v3

a1 a2

a4

a3

G has five spanning trees T . For example, consider T = {2, 4}.

Then E \ T = {f1, f2} = {1, 3} and I[T ] =

(
−1 0
0 −1

)
and

ψ1,3 = −a4 (I didn’t introduce how to compute this).
One obtains the contribution

(+1)

16π(a1a3 + a2a3 + a1a4 + a2a4 + a3a4)3/2
· (−2a4) da1 ∧ da3.

End result:

αG =
−a4( da1 ∧ da3 + da2 ∧ da3) + a3( da1 ∧ da4 + da2 ∧ da4)− (a1 + a2) da3 ∧ da4

8π(a1a3 + a2a3 + a1a4 + a2a4 + a3a4)3/2
.
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Graph matrices 2: Cycle incidence matrix

▶ A circuit is a closed path of edges (regardless of edge directions). May visit vertex, but
not edge, multiple times.

▶ Circuits can be added and subtracted, form a vector space over Z (mod ±2). Cycle space,
dimension: |E | − |V |+ 1 = ℓ is loop number.

▶ A choice of basis for cycle space determines a cycle incidence matrix C: Entry Ce,c = +1 if
edge e is in cycle c in positive direction, −1 if in negative direction.

▶ Analogously, vertex incidence matrix I represents a choice of basis in cut space.

▶ The spaces, and hence the matrices C and I are orthogonal,
I⊺C = 0(|V |−1)×ℓ, C⊺I = 0ℓ×(|V |−1).
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Example: Cycles in the dunce’s cap

v1

v2 v3

a1 a2

a4

a3

C1

C2

ℓ = 2 ⇒ 2 linearly independent
circuits to be chosen as basis of
cycle space. This choice is not
unique.

With C1 and C2 as drawn,
C1 = {+a1,+a2,−a3} and C2 = {−a3,+a4}.

C =


1 0
1 0
−1 −1
0 1

 , recall I =


1 −1
−1 0
0 −1
0 −1

 .

Columns of C are basis vectors in cycle space, columns
of I are basis vectors in cut space.
Cut space and cycle space are orthogonal, i.e.

C⊺I =

(
1 1 −1 0
0 0 −1 1

)
1 −1
−1 0
0 −1
0 −1

 =

(
0 0
0 0

)
.
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Graph matrices 3: Cycle Laplacian

▶ Recall the vertex Laplacian L := I⊺D−1I, is a (|V | − 1)× (|V | − 1) sym. matrix.

▶ Analogously cycle Laplacian is the ℓ× ℓ symmetric matrix Λ := C⊺DC.
▶ Determinant is detΛ = ψG (regardless of the choice of C). Hence, Λ is invertible.

v1

v2 v3

a1 a2

a4

a3

C1

C2

C1 = {+a1,+a2,−a3} and C2 = {−a3,+a4}.

C =


1 0
1 0
−1 −1
0 1

 , Λ =

(
a1 + a2 + a3 a3

a3 a3 + a4

)
.

Inverse matrix denominator is Symanzik polynomial
detΛ = ψG ,

Λ−1 =
1

ψG

(
a3 + a4 −a3
−a3 a1 + a2 + a3

)
.
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Graph matrices 4: Path matrices

▶ A path matrix P is a |E | × (|V | − 1)–matrix where column j is a directed path of edges
from v⋆ to vj .

▶ P has the same shape as I, but they are distinct. In fact, P⊺I = 1(|V |−1)×(|V |−1).

▶ One can show that det (C | P) ∈ {+1,−1}. This determinant encodes a (relative) sign
ambiguity that arises from the choice of cycle basis in C [Conant and Vogtmann 2003].

v1

v2 v3 = v⋆

a1 a2

a4

a3

C1

C2

Let v⋆ = v3 and paths P1 = {a1,−a3} and P2 = {−a4} .

C =


1 0
1 0
−1 −1
0 1

 , P =


1 0
0 0
−1 0
0 −1

 , I =


1 −1
−1 0
0 −1
0 −1

 .

The concatenation (C | P) has full rank and det (C | P) = +1.
One also checks that P⊺I = 12×2.
It is coincidence that all matrices have the same shape.
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Dodgson polynomials

▶ Consider the expanded Laplacian, defined as the block matrix

M :=

(
D I

−IT 0

)
.

One can show that det(M) = ψ.

▶ Let M(A,B) be M with rows A and columns B removed. If |A| = |B|, this is a square
matrix, and its determinant is called Dodgson polynomial

ψA,B := det
(
M(A,B)

)
.

▶ In particular, if A = {i} and B = {j} each consist of only one index, the Dodgson
polynomials ψi,j are the cofactors of M, i.e. they are entries of the inverse.

▶ M has block form, so M−1 has block form. Bottom right block is L−1. ⇒ Lemma:

(
L−1

)
i,j

= (−1)i+j ψ
i,j

ψ
(where i , j are indices of vertices).
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Example: Dogson polynomials

v1

v2

v3

e1

e2

e3 e4 I =


1 −1
1 0
0 1
0 1

 M =


a1 0 0 0 1 −1
0 a2 0 0 1 0
0 0 a3 0 0 1
0 0 0 a4 0 1
−1 −1 0 0 0 0
1 0 −1 −1 0 0


In M, the first 4 rows and columns refer to edges, the last 2 rows and columns refer to vertices
v1, v2. Compute vertex-indexed Dodgson polynomials explicitly:

ψv1,v1 = det


a1 0 0 0 −1
0 a2 0 0 0
0 0 a3 0 1
0 0 0 a4 1
1 0 −1 −1 0

 = a2 (a1a3 + a1a4 + a3a4)

ψv1,v2 = −a2a3a4 = ψv2,v1 , ψv2,v2 = (a1 + a2)a3a4.

Indeed,

L−1 =
1

a3a4 + a1a3 + a1a4 + a2a3 + a2a4

(
a2(a3a4 + a1(a3 + a4) a2a3a4

a2a3a4 (a1 + a2)a3a4

)
.
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