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Lecture 1: Fundamentals of general relativity

1. Gravitation as geometry

General relativity is an extension of special relativity (SR).

The basic postulate of SR is that each observer moving with
zero acceleration will measure the same velocity of light c:

22.06.1864 Aleksota (now Kaunas, Lithuania)

2.= 2 2 _ 2 _ 2 _ 2= --12.01.1909 Goéttingen, Germany
(As)? := c? (At)? - (Ax)? - (Ay)? - (Az)? =0, (1.1) Bdi

Hermann Minkowski noticed in 1908 that the Lorentz transformations that preserve
the equation (As)?= 0, also preserve the value of (As)?.

In Euclidean geometry the distance between points of coordinates (x, y, z) and
(x + Ax, y + Ay, z + Az) is

L2 = (Ax)? + (Ay)? + (Az)? (1.2)
and is preserved by rotations that are linear in (x, y, z), like the Lorentz transformations.

From the similarity between (1.1) and (1.2) Minkowski concluded that special relativity
is the geometry of a space which is today called the Minkowski spacetime.



(Ds)? := 2 (At)? - (AX)? - (By)? - (Az)? = 0. (1.1)

Einstein found out some time before 1908 that gravitational field can be simulated
by acceleration of the observer.

The Lorentz transformations preserving the metric form (1.1) describe the transition
to another reference system moving without acceleration (with constant velocity).

In a system moving with acceleration the new variables (t', x', y', z') can be arbitrary
functions of the old (t, x, y, z).

The coefficients of the transformed form (1.1) will be no longer constant.

Example:
x=X'+t2 > Ax=Ax'+2t'At'" >

(As) 2 = (c? - 4t'2) (At')? - 4t' Ax' At' - (AX')? - (Ay)? - (Az)>.

-> In a spacetime with gravitational field, the coefficients of squares and products of
At, Ax, Ay and Az in (1.1) should also be functions of the coordinates.

Such a geometry was introduced by Bernhard Riemann in his habilitation lecture in
1854,

Bernhard Riemann, Uber Die Hypothesen, Welche Der Geometrie Zu Grunde Liegen. Springer 2013, with comments by J. Jost.
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https://www.amazon.pl/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=J%C3%BCrgen+Jost&search-alias=books

L2 = (Ax)? + (Ay)? + (Az)? (1.2)

Riemann’s idea was to generalise the Pythagoras formula (1.2) to a symmetric quadratic
form in an n-dimensional space:

ds? =g (Xq, oy X )(AX)2 + 2 815(Xy, ovy X)) AXq AXoF oo + 8 (X, -eey X, ) (DX, )2, (1.3)

whose coefficients are functions of the coordinates. The ds is a distance between points
of coordinates (xy, X, ..., X,,) and (x; + dx,, X, + dx,, ...., X, + dx_ ).

in 1863

P

https://www.livescience.com/65577-
riemann-hypothesis-big-step-math.htmi

in =1850

https://upload.wikimedia.org/
wikipedia/commons/9/9¢e/
Bernhard_Riemann_2.jpg

Georg Friedrich Bernhard Riemann
17.09.1826, Breselenz (Hannover, Germany) — 16.06.1866, Selasca (Lago Maggiore, ltaly)


https://upload.wikimedia.org/
https://www.livescience.com/65577-
https://www.livescience.com/65577-

2. A quick introduction to general relativity

Following Riemann, Einstein assumed that the geometry of spacetime is described by
the fundamental form (usually called metric form, although it is not positive-definite):

D = gy dx® dxP = gy, (dx°)2+ 2 g, dxO dxt+ 2 g, dxO dx?+ 2 g, dx° dx®
+ g, (dx1)?+2 g, dxt dx?+2 g, dx! dx3
+8,, (dx?)? + 2 g,, dx? dx3+ 2 g5, (dx3)?, (2.1)

where dx°, dx!, dx?, dx3 are coordinate differences between two neighbouring points A
and B, and the collection of coefficients g 4(x) is called the metric tensor (or just metric).

If points A and B can be connected by an arc § on which @ > 0 everywhere, then A and B

are said to be in a timelike relation. Between such points one can travel with a velocity
smaller than the light velocity, and the quantity

B

f OV2d\ =T,
A

]

is the travel time along &.

Among such arcs there is one on which T,g is maximum, called a timelike geodesic.
Timelike geodesics are paths of free motion of massive bodies.



@ = ggpdx@dxP = go, (dx°)2+ 2 go; dx? dxt + 2 g, dx? dx?+ 2 g3 dx dx3
+g, (dx1)2+ 2 g, dxt dx?+ 2 g5 dxt dx3
+ 85, (AX?)2+ 2 gy dx? dx3+ 2 g4, (dX3)?, (2.1)

If points A and B can be connected by an arc ¥on which @ = 0 everywhere, but cannot
be connected by an arc on which @ > 0 everywhere, then A and B are said to be in a
null relation (sometimes, light-like relation).

The arc % is then called a null curve.

Null curves are paths of electromagnetic signals (e.g., light rays).

The set of points in null relation to A has the equation @ =0 (see (2.1)).

It is called a null cone because @ = 0 at a fixed point can be transformed to

c? (dt) - (dx)? - (dy)* - (dz)> =0, (2.2)

which looks like the equation of a cone in a 4-dimensional Euclidean space.

Each spacetime point is the vertex of a null cone.



@ = gpdx®dxP = goo (dXC)2+ 2 gy dxO dxt + 2 g, dx dx? + 2 gy3 dx dx3
+gy, (dx1)2+ 2 g, dxt dx?+ 2 g, dx? dx3
+ 85, (dX?)2+ 2 g5 dx? dx3+ 2 ga; (dx3)?, (2.1)

If points A and B cannot be connected by an arc on which @ > 0 everywhere or @
= 0 everywhere, then A and B are said to be in a spacelike relation.

The quantity

B
f CO)Y2dN = Ly,
< A
is the length of the arc & between A and B.

Among those arcs there is one on which £,; is minimum, it is called a spacelike
geodesic.



Examples of light cones

the future light cone of event C

time

the past light cone of event C

timelike geodesic

+
C

The future light cone of event C in a spacetime
with gravitational field (a fictitious illustration)

The light cone of event C in the Minkowski spacetime

<€—— the present observer

The past light cone of the present
observer in the now-standard model of
the Universe

<€—— the apparent horizon

\ Big Bang




AB

The intersection of the light cone
with plane F.

A light cone with a self-intersection.
This situation is typical in a gravitational lens.
The spherical lens is at S, the light source is at Z(p,).




In general relativity, the geometry of spacetime is connected with matter distribution via
the Einstein equations. This is the recipe for writing them out:

Step 1 — calculate the Christoffel symbols:
{ o 1 s Mmeans d/0xB;  g®e s the inverse matrix to 8op /
ﬂv} B

5 g’ (gﬁp,’y + Gvyp,8 — gﬁ%p) repeated index means we sum over all its values: 0, 1, 2, 3.

Step 2 — calculate the curvature tensor (often called the Riemann tensor):

L Vs Vi A IR R P R 1)

Step 3 — calculate the Ricci tensor R 5 and its trace R:

Rqp = RO R =R, =gR

agP ’

Step 4 — calculate the Einstein tensor and equate it to the energy-momentum tensor:

def G

Gap = Rap — gapR’) = —5 T,5 €— | these are the Einstein equations (2.3)
; p .
where:
energy density (a scalar) momentum density (a matrix 1 x 3)
Zxﬁ ==
momentum density (a matrix 3 x 1) the stress tensor (a matrix 3 x 3)

In general, the Einstein egs. are a set of 10 partial differential equations in 4 variables.

With symmetries present, both these numbers decrease (see further). "



Sometimes the Einstein equations are considered in a slightly generalised form:

Ry = (1/2) RP gp+ N gog = (8TG/C?) Ty (2.3")

where A is the cosmological constant (its value is to be determined from observations).
We shall mostly assume A = 0.

The r.h.s of (2.3) most frequently used in cosmology is perfect fluid

Top = (PC? +P) UgUg— P8up.

where p is the mass density, p is the pressure, u, is the four-velocity field of the fluid.
u, always obeys u u®=1.

The subcase p = 0 is called dust. In this case u® is necessarily geodesic (see below).
In comoving coordinates u®= (ut, uX, u¥, u?) = (1, 0, 0, 0), and then

pc*+p 0 0 0

0 —p 0 0 ¢
4 — 71()(3 = (PCZ e p) UaUs — PGap
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All geodesics obey the equation

dk
Tt Lo =0 24

where s is the affine parameter and k* = dx®/ds is the tangent vector to the geodesic.

In a non-affine parametrisation, the 0 on the r.h.s. of (2.4) changes to Ak’. s is determined up tos =as'.

Equation (2.4) can be derived from the variational principle:

B
Sl gqs (dx?/ds) (dx/ds) ds] =0, (2.5)
A
while the Newtonian equations of motion can be derived from

<5[/-AB (mv2/2 — me) dt =0. (2.6)

By requiring that (2.5) goes over into (2.6) in the limit ¢ o one obtains [1]:

2¢ 1 1 1
goo =1+ (; +0 <§) ) gor = O (ﬁ) ~, g1y = —05s +0 (;) (2.7)
where I,J =1, 2, 3, and O(1/c") means

lim . .. c"1O(1/c") = 0.

[1] J. Plebanski and A. Krasinski, An introduction to general relativity and cosmology. Cambridge University Press 2006.

12



2 il 1 i 1 of 81G
goo = 1+ C—f +0 < > ; gor = O <(—2> ; gr; = —0r;+0 (;) (2.7) Gar/ﬁ — Rn/f - .(]rx/iRpp — 2 ng (2.3)

(,'3

dke {a

ds PU}kPkU =Y (2.4)

Substituting the approximation (2.7) into the Einstein equations (2.3) we conclude that
in the limit ¢ oo the equation a = 3 = 0 goes over into the Poisson equation

Ap = AnGx(mass density)
while the remaining Einstein equations become identities 0 = 0.

Going to higher orders in 1/c one can discuss post-Newtonian corrections to Newton's
theory of gravitation.



3. Symmetries

BEFORE AFTER

Let F:M_, - M_ be a mapping of the spacetime M|
into itself.

Let p be a point in M and p' = F(p) be its image.

Then, tensors attached at p are transformed to
tensors attached at p'.

A tensor T at p becomes T' at p'.

But p becomes an image of another point q, p = F(q) and tensors at g are sent to p.

—> We have two tensors at p: T(p) that was there before the transformation and T'(p)
that was sent from q to p by F.

If T'(p) = T(p) for all points of the spacetime, then T is invariant under the action of F,
and F is an invariance transformation of T.

If M, is a Riemann space, and the metric tensor of M, is invariant under F, then F is a
symmetry (also called isometry) of M..

14



Suppose F is a member of a continuous one-parameter group of transformations G.

G={F.:M, > M, t€E[t, t,]} with F,being the identity transformation, t; <t,<t,.

Example:

Let M = R3 and F, be the rotation of R3around a fixed axis A by the angle t. Then G is
the set of rotations of R® around A by all angles in the range 0 <t < 2mand t,=0.

Apply to a point P € M, the mappings F, corresponding to all t € [t,, t,].

The collection of all images of P will then be an arc of a curve in M passing through
P = F,,(P), and each P € M, may be used to generate such an arc C.

Now imagine the derivative by t of any tensor field T.
This is a derivative along the tangent vector field k to C.
It is called the Lie derivative, denoted £, T and the vectors k are called generators of G.

F.€ G are isometries of M, when £, g, =0 along C.



£.T can be calculated for any tensor (or other) field T, its explicit form depends on the
transformation properties of T under coordinate changes. Examples:

£ D =k*®,, (directional derivative) for a scalar field @,
£.Vr=ke Ve, - kO‘,QV@ (the commutator of k and V) for a contravariant vector field V¢,

£ W, =keW,,,+ke,, W, (the anticommutator of k and W) for a covariant vector field W,,,

£,845= K°8p.o+ Ko 8o *+K%58,, fOrany doubly covariant tensor field,
in particular, for the metric tensor.
For the metric tensor the equations

£k go(Bz kQ gaB ’Q+ kQ’a ggﬁ + kQIBgaQ = O (3'1)

are called Killing equations.

They allow us to find the generators of symmetries k%
for a given metric g, or the most general metric g4
that has a given symmetry group (for example, SO(3)).

Wilhelm Karl Joseph Killing
10 May 1847, Burbach near Siegen, Germany

With k® known, the symmetry transformations x*(x') are found from dx®/ds = k* [1]. — 11 February 1923, Minster, Germany
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[1] J. Plebanski and A. Krasinski, An introduction to general relativity and cosmology. Cambridge University Press 2006.


https://en.wikipedia.org/wiki/Burbach,_North_Rhine-Westphalia
https://en.wikipedia.org/wiki/Siegen
https://en.wikipedia.org/wiki/M%C3%BCnster

A historical digression:

The notion of the Lie derivative was invented by the Polish mathematician Wtadystaw
Slebodzinski [2,3], who did not care to give it a name.

The misleading name "Lie derivative" was later introduced by D. van Dantzig and made
popular by J. A. Schouten [4].

Wrtadystaw Slebodzinski
6 February 1884, Pysznica near Stalowa Wola, Poland
— 3 January 1972 Wroctaw, Poland

[2] Wiadystaw Slebodzinski, Sur les équations canoniques de Hamilton.} Bulletins de la Classe des Sciences, Acad. Royale de Belg. (5) 17, 864 -- 870 (1931).
English translations: Gen. Relativ. Gravit. 42, 2525 -- 2535 (2010), and:

[3] Wtadystaw Slebodzinski, in Golden Oldies in General Relativity. Hidden Gems. Edited by A. Krasiriski, M. A. H. MacCallum and G. F. R. Ellis, Springer, Berlin-
Heidelberg 2013, pp. 3 — 14.

[4] A. Trautman, page 4 in Ref. [3]. T



£ 8up=K8up ot Ko Bp + K28y, =0 (3.1)

4. An example of a solution of Einstein's equations — the Friedmann model [5,6]

Assume, that each 3-space of constant t is homogeneous and isotropic (i.e., is a 3-
dimensional sphere, Euclidean space or a space of constant negative curvature).

By imposing the Killing equations (3.1) on the generators of symmetries of these 3-

spaces one is led to the following metric [7,8,1]
dr?

1 — kr?
where k is an arbitrary constant (k > O for spherical space, k = 0 for Euclidean space, k <
O for negative-curvature space),

ds? = df? — S2(t) + 17 (d0? + sin® 9d?) (4.1)

and S(t) is to be found from the Einstein equations (see next page).

This is how these spacetimes, now called Friedmann—-Lemaitre—Robertson—Walker
(FLRW) first appeared in literature — out of mathematical speculation, with a high
symmetry assumed for simplicity.

[5] A. A. Friedmann, Uber die Krimmung des Raumes. Z. Physik 10, 377 (1922); Gen. Relativ. Gravit. 31, 1991 (1999) + addendum: 32, 1937 (2000).

[6] A. A. Friedmann, Uber die Méglichkeit einer Welt mit konstanter negativer Kriimmung des Raumes. Z. Physik 21, 326 (1924); GRG 31, 2001 (1999) ; both
reprinted papers with an editorial note by A. Krasinski and G. F. R. Ellis, Gen. Relativ. Gravit. 31, 1985 (1999).

[7] H. P. Robertson, Relativistic cosmology. Rev. Mod. Phys. 5, 62 (1933); Gen. Relativ. Gravit. 44, 2115 (2012) , with an editorial note by G. F. R. Ellis, Gen.
Relativ. Gravit. 44, 2099 (2012).

[8] A. G. Walker, On Riemannian spaces with spherical symmetry about a line, and the conditions for isotropy in general relativity. Quart. J. Math. Oxford,
ser. 6, 81 (1935).

[1] J. Plebanski and A. Krasinski, An introduction to general relativity and cosmology. Cambridge University Press 2006. 18



‘ ; ‘ 172 . A . .
ds? = dt* — S%(t) [1 ¢ ’k =+ r? ((1'192 + sin? 19(1992) (4.1)
— kr

With (4.1), the Einstein equations imply for the velocity u® = (1, 0, 0, 0). Such
coordinates are called comoving.

For dust, the Einstein equations with the metric (4.1) reduce to

2GM 1
2 _ 9 - 2
gk = 25 k SAS (4.2)
where p = s is the mass density. M and A are constant, so p depends only on t.
T

The assumption of high symmetry reduced the whole geometrical wealth of the
Einstein theory to one equation for a function of one variable.

Equations (4.1) — (4.2) are used until today, with various modifications of the r.h.s. of
(4.2), as “standard”” models of the actual Universe.

Their properties, and some problems connected with them, will be discussed in the
next lecture.



Monsignor Georges Lemaitre

https://pl.wikipedia.org/wiki/Aleksandr_Friedman#/media/Plik:Fridman_AA.jpg 17 Jul 1894, CharIerql, Be'g'f’m

- 20 Jun 1966, Louvain, Belgium
https://kierul.files.wordpress.com/2013/06/aleksandr_fridman.png https://todayinsci.com/L/Lemaitre Georges/
Aleksandr Aleksandrovich Fridman LemaitreGeorges-Quotations.htm
PPUAMAH AnekcaHap AnekcaHapoBUY

16 July 1888, Sankt Peterburg - 16 September 1925, Leningrad (same city)

Howard Percy Robertson Arthur Geoffrey Walker
27 Jan 1903, Hoquiam, Washington, USA 17 July 1909, Watford, Hertfordshire, England
-- 26 Aug 1961, Pasadena, California, USA - 31 March 2001, Chichester, Sussex,England

https://history.aip.org/phn/11605024.html https://memim.com/arthur-geoffrey-walker.html 20
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https://todayinsci.com/L/Lemaitre_Georges/
https://mathshistory.st-andrews.ac.uk/Map/

