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Lecture 1: Fundamentals of general relativity 
 

1. Gravitation as geometry 
 

General relativity is an extension of special relativity (SR). 
 

The basic postulate of SR is that each observer moving with  
zero acceleration will measure the same velocity of light c: 
 

(Δs)2 := c2 (Δt)2 - (Δx)2 - (Δy)2 - (Δz)2 = 0,                           (1.1) 
 

Hermann Minkowski noticed in 1908 that the Lorentz transformations that preserve 
the equation (Δs)2 = 0, also preserve the value of  (Δs)2. 
 
In Euclidean geometry the distance between points of coordinates (x, y, z) and  
(x + Δx, y + Δy, z + Δz) is 
 
L2 = (Δx)2 + (Δy)2 + (Δz)2                                                       (1.2) 
 
and is preserved by rotations that are linear in (x, y, z), like the Lorentz transformations.   
 
From the similarity between (1.1) and (1.2) Minkowski concluded that special relativity 
is the geometry of a space which is today called the Minkowski spacetime. 

22.06.1864 Aleksota (now Kaunas, Lithuania) 
--12.01.1909 Göttingen, Germany 
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(Δs)2 := c2 (Δt)2 - (Δx)2 - (Δy)2 - (Δz)2 = 0.                                                                          (1.1) 

Einstein found out some time before 1908 that gravitational field can be simulated 
by acceleration of the observer.  
 

The Lorentz transformations preserving the metric form (1.1) describe the transition 
to another reference system moving without acceleration (with constant velocity).   
 

In a system moving with acceleration the new variables (t', x', y', z') can be arbitrary 
functions of the old (t, x, y, z).  
 

The coefficients of the transformed form (1.1) will be no longer constant. 
 

Example:  
x = x' + t'2    →    Δx = Δx' + 2t' Δt'    → 
 

(Δs) 2 = (c2 - 4t'2) (Δt')2 - 4t' Δx' Δt' - (Δx')2 - (Δy)2 - (Δz)2. 
 

→ In a spacetime with gravitational field, the coefficients of squares and products of 
Δt, Δx, Δy and Δz in (1.1) should also be functions of the coordinates. 
 
Such a geometry was introduced by Bernhard Riemann in his habilitation lecture in 
1854. 
 
 
Bernhard Riemann, Über Die Hypothesen, Welche Der Geometrie Zu Grunde Liegen. Springer 2013, with comments by J. Jost. 
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L2 = (Δx)2 + (Δy)2 + (Δz)2                                                                                                   (1.2) 

Riemann’s idea was to generalise the Pythagoras formula (1.2) to a symmetric quadratic 
form in an n-dimensional space: 
 
ds2 = g11(x1, ..., xn)(dx1)2 + 2 g12(x1, ..., xn) dx1 dx2+ .... + gnn(x1, ..., xn)(dxn)2,            (1.3)  
 
whose coefficients are functions of the coordinates. The ds is a distance between points 
of coordinates (x1, x2, ...., xn) and (x1 + dx1, x2 + dx2, ...., xn + dxn). 

Georg Friedrich Bernhard Riemann  
17.09.1826, Breselenz (Hannover, Germany) – 16.06.1866, Selasca (Lago Maggiore, Italy) 

in 1863 
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in  ≈1850 

https://upload.wikimedia.org/ 
wikipedia/commons/9/9e/ 
Bernhard_Riemann_2.jpg 

https://www.livescience.com/65577- 
riemann-hypothesis-big-step-math.html 

https://upload.wikimedia.org/
https://www.livescience.com/65577-
https://www.livescience.com/65577-


2. A quick introduction to general relativity 
 
Following Riemann, Einstein assumed that the geometry of spacetime is described by 
the fundamental form (usually called metric form, although it is not positive-definite): 
 
Φ = gαβ dxα

 dxβ ≡ g00 (dx0)2 + 2 g01 dx0 
 dx1 + 2 g02 dx0 

 dx2 + 2 g03 dx0 
 dx3  

                           + g11 (dx1)2 + 2 g12 dx1 
 dx2 + 2 g13 dx1 

 dx3 

                           + g22 (dx2)2 + 2 g23 dx2 
 dx3 + 2 g33 (dx3)2,                                    (2.1) 

 

where dx0, dx1, dx2, dx3  are coordinate differences between two neighbouring points A 
and B, and the collection of coefficients gαβ(x) is called the metric tensor (or just metric). 
 
If points A and B can be connected by an arc T on which Φ > 0 everywhere, then A and B 
are said to be in a timelike relation. Between such points one can travel with a velocity 
smaller than the light velocity, and the quantity 
 

∫
A

B      

Φ1/2 dλ := TAB 

T 
 

is the travel time along T.  

 
Among such arcs there is one on which TAB is maximum, called a timelike geodesic. 
Timelike geodesics are paths of free motion of massive bodies. 
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Φ = gαβ dxα
 dxβ ≡ g00 (dx0)2 + 2 g01 dx0 

 dx1 + 2 g02 dx0 
 dx2 + 2 g03 dx0 

 dx3  
                           + g11 (dx1)2 + 2 g12 dx1 

 dx2 + 2 g13 dx1 
 dx3  

                           + g22 (dx2)2 + 2 g23 dx2 
 dx3 + 2 g33 (dx3)2,                                                       (2.1) 

 

If points A and B can be connected by an arc N on which Φ = 0 everywhere, but cannot 
be connected by an arc on which Φ > 0 everywhere, then A and B are said to be in a 
null relation (sometimes, light-like relation).   
 
The arc N  is then called a null curve. 
 
Null curves are paths of electromagnetic signals (e.g., light rays). 
 
The set of points in null relation to A has the equation Φ = 0 (see (2.1)).  
 
It is called a null cone because Φ = 0 at a fixed point can be transformed to  
 
c2 (dt)2 - (dx)2 - (dy)2 - (dz)2 = 0,                  (2.2) 
 
which looks like the equation of a cone in a 4-dimensional Euclidean space. 
 
Each spacetime point is the vertex of a null cone. 
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Φ = gαβ dxα
 dxβ ≡ g00 (dx0)2 + 2 g01 dx0 

 dx1 + 2 g02 dx0 
 dx2 + 2 g03 dx0 

 dx3  
                           + g11 (dx1)2 + 2 g12 dx1 

 dx2 + 2 g13 dx1 
 dx3  

                           + g22 (dx2)2 + 2 g23 dx2 
 dx3 + 2 g33 (dx3)2,                                                       (2.1) 

 

 
If points A and B cannot be connected by an arc on which Φ > 0 everywhere or Φ 
= 0 everywhere, then A and B are said to be in a spacelike relation.  
 
The quantity 
 

∫
A

B    

(−Φ)1/2 dλ := LAB 

S 
 

is the length of the arc S  between A and B.  

 
Among those arcs there is one on which LAB is minimum, it is called a spacelike 
geodesic. 



the future light cone of event C 

the past light cone of event C 

The light cone of event C in the Minkowski spacetime 

C 

timelike geodesic 

The future light cone of event C in a spacetime 
with gravitational field (a fictitious illustration) 

the apparent horizon 

the present observer 

Big Bang 

The past light cone of the present 
observer in the now-standard model of 
the Universe 

the past light cone of event C 
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Examples of light cones 



A light cone with a self-intersection. 
This situation is typical in a gravitational lens. 

The spherical lens is at S,  the light source is at Z(p1). 

F 

The intersection of the light cone 
with plane F. 
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In general relativity, the geometry of spacetime is connected with matter distribution via 
the Einstein equations. This is the recipe for writing them out: 
 
Step 1 – calculate the Christoffel symbols: 
                                                                       ,β  means ∂/∂xβ ;      gαϱ  is the inverse matrix to gαϱ , 

                                                                                             repeated index means we sum over all its values: 0, 1, 2, 3. 

 

Step 2 – calculate the curvature tensor (often called the Riemann tensor): 
 

 
 
Step 3 – calculate the Ricci tensor Rαβ and its trace R: 
 

Rαβ = Rϱ
αϱβ ,                     R = Rϱ

ϱ ≡ gϱσRϱσ 
 

Step 4 – calculate the Einstein tensor and equate it to the energy-momentum tensor: 
 
                                                                                                                                                  (2.3)                                                      
where: 
 
 
 
 

In general, the Einstein eqs. are a set of 10 partial differential equations  in 4 variables. 
With symmetries present, both these numbers decrease (see further). 

these are the Einstein equations 
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Sometimes the Einstein equations are considered in a slightly generalised form: 
 

Rαβ – (1/2) Rρ
ρ gαβ + Λ gαβ = (8πG/c2) Tαβ                                            (2.3') 

 

where Λ is the cosmological constant (its value is to be determined from observations). 
 

We shall mostly assume Λ = 0. 
 

The r.h.s of (2.3) most frequently used in cosmology is perfect fluid  
 

Tαβ = (ρc2 + p) uαuβ – pgαβ , 
 

where ρ is the mass density, p is the pressure, uα is the four-velocity field of the fluid. 
uα always obeys uαuα = 1. 
 

The subcase p = 0 is called dust. In this case uα is necessarily geodesic (see below). 
 

In comoving coordinates uα = (ut, ux , uy , uz) = (1, 0, 0, 0), and then 
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All geodesics obey the equation 
 

                                                                                                                                    (2.4)                   
 

where s is the affine parameter and k
α
 = dx

α
/ds is the tangent vector to the geodesic. 

 
In a non-affine parametrisation, the 0 on the r.h.s. of (2.4) changes to λk

α
. s is determined up to s = as'. 

 
Equation (2.4) can be derived from the variational principle: 

 δ  [ ∫
A

B

gαβ  (dxα/ds) (dxβ/ds)  ds] = 0,                                                                          (2.5) 

 

while the Newtonian equations of motion can be derived from 
 

 δ  [ ∫ 
A

B

 (mv2/2 – mφ) dt  = 0.                                                                                       (2.6) 
 

By requiring that (2.5) goes over into (2.6) in the limit c →∞ one obtains [1]: 
 

                                                                                                     (2.7) 

where  I, J = 1, 2, 3, and O(1/cn) means   
 
lim c →∞ cn-1 O(1/cn) = 0. 
 
[1] J. Plebański and A. Krasiński, An introduction to general relativity and cosmology. Cambridge University Press 2006. 
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                                                                                    (2.7)                                                                                         (2.3) 

                                                                      
 
                                                        (2.4) 
                                                                               

Substituting the approximation (2.7) into the Einstein equations (2.3) we conclude that 
in the limit c →∞ the equation α = β = 0 goes over into the Poisson equation 
 
Δφ = 4πG×(mass density) 
 
while the remaining Einstein equations become identities 0 = 0. 
 
Going to higher orders in 1/c one can discuss post-Newtonian corrections to Newton's 
theory of gravitation. 
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3. Symmetries 
 
Let F:Mn → Mn be a mapping of the spacetime Mn 
into itself. 
 
Let p be a point in Mn and p' = F(p) be its image.  
 
Then, tensors attached at p are transformed to  
tensors attached at p'.  
 
A tensor T at p becomes T' at p'.  
 
But p becomes an image of another point q, p = F(q) and tensors at q are sent to p.  
 
→ We have two tensors at p: T(p) that was there before the transformation and T'(p) 
that was sent from q to p by F.  
 
If T'(p) = T(p) for all points of the spacetime, then T is invariant under the action of F, 
and F is an invariance transformation of T.  
 
If Mn is a Riemann space, and the metric tensor of Mn is invariant under F, then F is a 
symmetry (also called isometry) of Mn. 
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Suppose F is a member of a continuous one-parameter group of transformations G. 
 
G = {Ft :Mn → Mn , t Є [t1, t2] }  with Ft0 being the identity transformation, t1 ≤ t0 ≤ t2. 
 

Example:  
 
Let Mn = R3 and Ft be the rotation of R3 around a fixed axis A by the angle t. Then G is 
the set of rotations of R3 around A by all angles in the range 0 ≤ t < 2π and t0 = 0. 
 
Apply to a point P Є Mn the mappings Ft corresponding to all  t Є [t1, t2].  
 
The collection of all images of P will then be an arc of a curve in Mn passing through  
P = Ft0(P), and each P Є Mn may be used to generate such an arc C.  
 
Now imagine the derivative by t of any tensor field T. 
 
This is a derivative along the tangent vector field k to C. 
 
It is called the Lie derivative, denoted ₤kT  and the vectors k are called generators of G. 
 
Ft Є G are isometries of Mn when ₤k gαβ = 0 along C. 
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₤kT can be calculated for any tensor (or other) field T, its explicit form depends on the 
transformation properties of T under coordinate changes. Examples: 
 
₤kΦ = kα Φ,α  (directional derivative)    for a scalar field Φ, 
 

₤kV
α = kϱ Vα,ϱ - k

α,ϱ V
ϱ (the commutator of k and V) for a contravariant vector field Vα, 

 

₤kWα
 = kϱ Wα,ϱ + kϱ,α Wϱ  (the anticommutator of k and W) for a covariant vector field Wα, 

 
₤k gαβ

 = kϱ gαβ
 ,ϱ + kϱ,α gϱβ  + kϱ,β gαϱ   for any doubly covariant tensor field, 

                                                             in particular, for the metric tensor. 
For the metric tensor the equations 
 
₤k gαβ

 = kϱ gαβ
 ,ϱ + kϱ,α gϱβ  + kϱ,β gαϱ  = 0                    (3.1) 

 
are called Killing equations. 
 
They allow us to find the generators of symmetries  kα 
for a given metric gαβ or the most general metric gαβ  
that has a given symmetry group (for example, SO(3)). 
 
With kα known, the symmetry transformations xα(x') are found from dxα/ds = kα [1]. 
 
 
[1] J. Plebański and A. Krasiński, An introduction to general relativity and cosmology. Cambridge University Press 2006. 

Wilhelm Karl Joseph Killing  
10 May 1847, Burbach near Siegen, Germany  
– 11 February 1923, Münster, Germany 

https://en.wikipedia.org/wiki/Burbach,_North_Rhine-Westphalia
https://en.wikipedia.org/wiki/Siegen
https://en.wikipedia.org/wiki/M%C3%BCnster
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A historical digression: 
 
The notion of the Lie derivative was invented by the Polish mathematician Władysław 
Ślebodziński [2,3], who did not care to give it a name. 
 
The misleading name "Lie derivative" was later introduced by D. van Dantzig and made 
popular by J. A. Schouten [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[2] Władysław Ślebodziński, Sur les équations canoniques de Hamilton.} Bulletins de la Classe des Sciences, Acad. Royale de Belg. (5) 17, 864 -- 870 (1931). 
English translations: Gen. Relativ. Gravit. 42, 2525 -- 2535 (2010), and: 
[3] Władysław Ślebodziński, in Golden Oldies in General Relativity. Hidden Gems. Edited by A. Krasiński, M. A. H. MacCallum and G. F. R. Ellis, Springer, Berlin-
Heidelberg 2013, pp. 3 – 14. 
[4] A. Trautman, page 4 in Ref. [3]. 

Władysław Ślebodziński 
6 February 1884, Pysznica near Stalowa Wola, Poland  

–  3 January 1972 Wrocław, Poland 
 



₤k gαβ
 = kϱ gαβ

 ,ϱ + kϱ,α gϱβ  + kϱ,β gαϱ  = 0                    (3.1) 
 

4. An example of a solution of Einstein's equations – the Friedmann model [5,6] 
 

Assume, that each 3-space of constant t is homogeneous and isotropic (i.e., is a 3-
dimensional sphere, Euclidean space or a space of constant negative curvature). 
 

By imposing the Killing equations (3.1) on the generators of symmetries of these 3-
spaces one is led to the following metric [7,8,1] 
 
                                                                                                               (4.1) 
 

where k is an arbitrary constant (k > 0 for spherical space, k = 0 for Euclidean space, k < 
0 for negative-curvature space),  
 

and S(t) is to be found from the Einstein equations (see next page).  
 

This is how these spacetimes, now called Friedmann–Lemaître–Robertson–Walker 
(FLRW) first appeared in literature – out of mathematical speculation, with a high 
symmetry assumed for simplicity. 
 
 
[5] A. A. Friedmann, Über die Krümmung des Raumes. Z. Physik 10, 377 (1922); Gen. Relativ. Gravit. 31, 1991 (1999) + addendum: 32, 1937 (2000). 
[6] A. A. Friedmann, Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Physik 21, 326 (1924); GRG 31, 2001 (1999) ; both 
reprinted  papers with an editorial note by A. Krasiński and G. F. R. Ellis, Gen. Relativ. Gravit. 31, 1985 (1999). 
[7] H. P. Robertson, Relativistic cosmology. Rev. Mod. Phys. 5, 62 (1933); Gen. Relativ. Gravit. 44,  2115 (2012) , with an editorial note by G. F. R. Ellis, Gen. 
Relativ. Gravit. 44,  2099 (2012). 
[8] A. G. Walker, On Riemannian spaces with spherical symmetry about a line, and the conditions for isotropy in general relativity. Quart. J. Math. Oxford, 
ser. 6, 81 (1935). 
[1] J. Plebański and A. Krasiński, An introduction to general relativity and cosmology. Cambridge University Press 2006. 18 
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With (4.1), the Einstein equations imply for the velocity uα = (1, 0, 0, 0). Such 
coordinates are called comoving. 
 
For dust, the Einstein equations with the metric (4.1) reduce to 
 
                                                                                                                   (4.2) 
 
where                     is the mass density. M and Λ are constant, so ϱ depends only on t.  
 
The assumption of high symmetry reduced the whole geometrical wealth of the  
Einstein theory to one equation for a function of one variable.  
 
Equations (4.1) – (4.2) are used until today, with various modifications of the r.h.s. of 
(4.2), as ``standard’’ models of the actual Universe. 
 

Their properties, and some problems connected with them, will be discussed in the 
next lecture. 

(4.1) 
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https://kierul.files.wordpress.com/2013/06/aleksandr_fridman.png 

https://pl.wikipedia.org/wiki/Aleksandr_Friedman#/media/Plik:Fridman_AA.jpg 

Aleksandr Aleksandrovich Fridman 
ФРИДМАН Александр Александрович 
16 July 1888, Sankt Peterburg - 16 September 1925, Leningrad (same city) 

Monsignor Georges Lemaître 
17 Jul 1894, Charleroi, Belgium  
- 20 Jun 1966, Louvain, Belgium 
https://todayinsci.com/L/Lemaitre_Georges/ 
LemaitreGeorges-Quotations.htm 

Howard Percy Robertson 
27 Jan 1903, Hoquiam, Washington, USA 
 -- 26 Aug 1961, Pasadena, California, USA 
https://history.aip.org/phn/11605024.html 

Arthur Geoffrey Walker 
17 July 1909, Watford, Hertfordshire, England  
- 31 March 2001, Chichester, Sussex,England 
https://memim.com/arthur-geoffrey-walker.html 

https://www.google.pl/url?sa=i&url=https://persona.rin.ru/view/f/0/34306/fridman-aleksandr-aleksandrovich&psig=AOvVaw2FY0f55c15mlxdBIEyVERI&ust=1622556776261000&source=images&cd=vfe&ved=0CA0QjhxqFwoTCMjkppiN9PACFQAAAAAdAAAAABAU
https://todayinsci.com/L/Lemaitre_Georges/
https://mathshistory.st-andrews.ac.uk/Map/

