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Dynamics

By (usually implicit) first-order dynamics on a manifold N we will
understand a submanifold (or even subset) D in TN.

A curve γ : R→ N satisfies this dynamics (is a solution), if its
tangent prolongation belongs to D, t(γ) : R→ D ⊂ TN.

Example

A vector field X on N, i.e. a section of the tangent bundle
X : N → TN, defines the dynamics D = X (N) ⊂ TN.

In local coordinates, for the vector field X = fa(q) ∂
∂qa , we have

D = {(qa, q̇b) ∈ TN : q̇b = fb(q)}

and the explicit dynamical equations dqa

dt (t) = fa(q(t)) are the equations
for trajectories of this vector field.
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The Tulczyjew triple - Lagrangian side

Any D ⊂ TN can be viewed as implicit dynamics whose solutions are
curves γ : R→ N s.t. γ̇ ∈ D. For the Lagrangian phase equations:

M - positions,
TM - (kinematic)
configurations,
L : TM → R - Lagrangian
T∗M - phase space

D = εM(dL(TM))) = T L(TM) ,

the image of the Tulczyjew differential T L, is the phase dynamics,

D =

{
(x , p, ẋ , ṗ) : p =

∂L

∂ẋ
, ṗ =

∂L

∂x

}
,

whence the Euler-Lagrange equation: ∂L
∂x = d

dt

(
∂L
∂ẋ

)
. Note that L can be

as well singular for the price that D is an implicit equation.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 30, 2021 4 / 27



The Tulczyjew triple - Lagrangian side

Any D ⊂ TN can be viewed as implicit dynamics whose solutions are
curves γ : R→ N s.t. γ̇ ∈ D. For the Lagrangian phase equations:

M - positions,
TM - (kinematic)
configurations,
L : TM → R - Lagrangian
T∗M - phase space

D = εM(dL(TM))) = T L(TM) ,

the image of the Tulczyjew differential T L, is the phase dynamics,

D =

{
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The Tulczyjew triple - Hamiltonian side

canonical isomorphism
T∗TM ' T∗T∗M,

E : T∗M ×M TM → R
H̃(p, v) = 〈 p, v 〉 − L(v)
H : T∗M → R

D = Π#
M(dH(T∗M))

D =

{
(x , p, ẋ , ṗ) : ṗ = −∂H

∂x
, ẋ =

∂H

∂p

}
,

whence the Hamilton equations.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 30, 2021 5 / 27



The Tulczyjew triple - Hamiltonian side

canonical isomorphism
T∗TM ' T∗T∗M,

E : T∗M ×M TM → R
H̃(p, v) = 〈 p, v 〉 − L(v)
H : T∗M → R

D = Π#
M(dH(T∗M))

D =

{
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Tulczyjew triple in mechanics

D� _
��

T∗T∗M

  

��

TT∗M
αM //

��

��

βMoo T∗TM

��

��

TM

��

TM //

��

oo TM

����

dLii

T∗M

!!

dH

::

T∗M //

  

oo T∗M

  
M M //oo M

The dynamics is in the middle, the right-hand side is Lagrangian, the
left-hand side – Hamiltonian.
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The Legendre transform

The Legendre transform is a pass from the Lagrange to the Hamilton
description of the dynamics:
we try to describe the Lagrangian phase dynamics as a Hamiltonian
phase dynamics.

It is easy in the case of hyperregular Lagrangians (the Legendre map
(q, p) 7→ λL(q, q̇) = (q, p) is a diffeomorhism).

In this case the Lagrangian phase dynamics DL is simultaneously
Hamiltonian with the Hamiltonian function

H(q, p) = q̇apa − L(q, q̇) ,

(q, q̇) = λ−1
L (q, p) .

In other words, the Lagrangian submanifolds dL(TM) ⊂ T∗TM and
dH(T∗M) ⊂ T∗T∗M are related by the canonical isomorphism RτM .
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Euler-Lagrange equations

The Euler-Lagrange equation for a curve γ : R→ M takes in this
model the form

t(λL ◦ γ) = T L ◦ γ ,

where T L = ε ◦ dL is the Tulczyjew differential and γ = t(γ) is the
tangent prolongation of γ.

In this sense, the Euler-Lagrange equation can be viewed as a
first-order differential equation on curves γ in TM:

TT∗M

τT∗M

��
T∗M TM

λL
oo
T L

ff

Rγ
oo

t(λL◦γ)

jj

The equation just tells that the curve T L ◦ γ is admissible, i.e. that
it is a tangent prolongation of a curve (it must be λL ◦ γ) on the
phase space, T L ◦ γ = t(λL ◦ γ).
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In this sense, the Euler-Lagrange equation can be viewed as a
first-order differential equation on curves γ in TM:

TT∗M

τT∗M

��
T∗M TM

λL
oo
T L

ff

Rγ
oo

t(λL◦γ)

jj

The equation just tells that the curve T L ◦ γ is admissible, i.e. that
it is a tangent prolongation of a curve (it must be λL ◦ γ) on the
phase space, T L ◦ γ = t(λL ◦ γ).
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Euler-Lagrange equations (continued)

In local coordinates,

T L(q, q̇) = (q,
∂L

∂q̇
(q, q̇), q̇,

∂L

∂q
(q, q̇)) .

For γ(t) = (q(t), q̇(t)) this implies the equations

q̇(t) =
dq

dt
(t) ,

d

dt

∂L

∂q̇
(q(t), q̇(t)) =

∂L

∂q
(q(t), q̇(t)) .

These equations are second-order equations for curves q = q(t) in
M.

Regularity of the Lagrangian is completely irrelevant for this
formalism. Singular Lagrangians just produce complicated and
implicit dynamics, but the geometric model is the same.
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Algebroid setting

DL

T∗E ∗

""

��

Π#
// TE ∗

##

��

T∗E

!!

��

εoo

E
ρ //

��

TM

��

E

��

ρoo

E ∗ //

##

E ∗

""

E ∗oo

""
M // M Moo

H : E ∗ −→ R

DH ⊂ T∗E ∗

D = T L(E )

D = Π#(dH(E ∗))

L : E −→ R

DL ⊂ T∗E

The Euler-Lagrange equations read T L ◦ γ = t(λL ◦ γ).
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Euler-Lagrange equations for algebroids

If (qa) are local coordinates in M,
(y i ) i (ξi ) are linear coordinates in fibers of, respectively, E and E ∗,
and

Π = ckij (q)ξk∂ξi ⊗ ∂ξj + ρbi (q)∂ξi ⊗ ∂qb − σ
a
j (q)∂qa ⊗ ∂ξj ,

then the Euler-Lagrange equations read

(1)
dqa

dt
= ρak(q)yk ,

(2)
d

dt

(
∂L

∂y j

)
(q, y) = ckij (q)y i

∂L

∂yk
(q, y) + σaj (q)

∂L

∂qa
(q, y) .

They are first-order differential equations (!) but for admissible curves in
E , i.e. for curves satisfying (1). For E = TM, they are exactly the tangent
prolongations of curves in M, for which the equation is second-order.
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Euler-Poincaré equations

A particular example of the equation (2) is not only the classical
Euler-Lagrange equation

d

dt

∂L

∂q̇a
(q, q̇) =

∂L

∂qa
(q, q̇) .

but also the Lagrange-Poincaré equation for G -invariant Lagrangians on
principal G -bundle(

d
dt

∂L
∂q̇a −

∂L
∂qa

)
(q, q̇, v)−

(
Bk
ba(q)q̇b + Dk

ia(q)v i
)
∂L
∂vk (q, q̇, v) = 0 ,

d
dt

∂L
∂v j (q, q̇, v)−

(
Dk
aj(q)q̇a + C k

ij v
i
)

∂L
∂vk (q, q̇, v) = 0 ,

and the Euler-Poincaré equations, for instance the rigid body equations,

d

dt

∂L

∂v j
(v)− C k

ij v
i ∂L

∂vk
(v) = 0 .
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but also the Lagrange-Poincaré equation for G -invariant Lagrangians on
principal G -bundle(

d
dt

∂L
∂q̇a −

∂L
∂qa

)
(q, q̇, v)−

(
Bk
ba(q)q̇b + Dk

ia(q)v i
)
∂L
∂vk (q, q̇, v) = 0 ,

d
dt

∂L
∂v j (q, q̇, v)−

(
Dk
aj(q)q̇a + C k

ij v
i
)

∂L
∂vk (q, q̇, v) = 0 ,
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Digression on field theories

The motion of a system is given by an n-dimensional submanifold in
the manifold M (”space-time”).

An infinitesimal piece of the motion is the first jet of the submanifold.

However, this model leads to essential complications even in
one-dimensional case (relativistic particle).

For instance, the infinitesimal action (Lagrangian) is not a function
on first jets, but a section of certain line bundle over the first-jet
manifold, a ‘dual’ of the bundle of ”first jets with volumes”.

Compromise: take for the space of infinitesimal pieces of motions the
space of simple n-vectors, which represent first jets of n-dimensional
submanifolds together with an infinitesimal volume.

It is technically convenient to extend this space to all n-vectors, i.e.
to the vector bundle ∧nTM of n-vectors on M.
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Dynamics of strings

An evolution of strings is represented by surfaces in M. Passing to
infinitesimal parts we will view a Lagrangian L as a function

L : ∧2TM → R .

If L is positive homogeneous, the action functional does not depend
on the parametrization of the submanifold and the corresponding
Hamiltonian (if it exists) is a function on the dual vector bundle
∧2T∗M (the phase space).

The dynamics should be an equation (in general, implicit) for
2-dimensional submanifolds in the phase space, i.e.

D ⊂ ∧2T ∧2 T∗M .
A submanifold S in the phase space ∧2T∗M is a solution of D if and
only if its tangent space TαS at α ∈ ∧2T∗M is represented by a
bivector from Dα.
If we use a parametrization, then the tangent bivectors associated
with this parametrization must belong to D.
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The Hamiltonian side for multivector bundles

Recall that ∧2T∧2 T∗M is a double graded bundle (actually a GrL-bundle)

∧2T ∧2 T∗M
vv &&

∧2T∗M
((

∧2TM

ww
M

.

We have:

the canonical Liouville 2-form on ∧2T∗M:

θ2
M =

1

2
pµν dxµ ∧ dxν , pµν = −pνµ ;

the canonical multisymplectic form

ω2
M = dθ2

M =
1

2
dpµν ∧ dxµ ∧ dxν ;

the vector bundle morphism

β2
M : ∧2 T ∧2 T∗M → T∗ ∧2 T∗M , : u 7→ iuω

2
M .
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The Hamiltonian side for multivector bundles
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The Lagrangian side for multivector bundles

In local coordinates,

β2
M(xµ, pλκ, ẋ

νσ, yηθρ, ṗγ,δ,ε,ζ) = (xµ, pλκ,−yηηρ, ẋνσ) .

Using the canonical isomorphism of double vector bundles

R : T∗ ∧2 T∗M → T∗ ∧2 TM ,

we can define α2
M = R ◦ β2

M , which is another double graded bundle
morphism,

α2
M : ∧2 T ∧2 T∗M → T∗ ∧2 TM ,

(of double graded bundles over ∧2TM and ∧2T∗M).

In local coordinates,

α2
M(xµ, pλκ, ẋ

νσ, yηθρ, ṗγδεζ) = (xµ, ẋνσ, yηηρ, pλκ) .

The map α2
M can also be obtained as the dual of the canonical

isomorphism
κ2
M : T ∧2 TM → ∧2TTM .
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The Tulczyjew triple for strings

Combining the maps β2
M and α2

M , we get the following Tulczyjew triple for
multivector bundles, consisting of double graded bundle morphisms:

T∗ ∧2 T∗M

��

""

∧2T ∧2 T∗M
α2
M //

β2
Moo

��

##

T∗ ∧2 TM

��

!!
∧2TM

��

∧2TM

��

oo // ∧2TM

��

∧2T∗M
##

∧2T∗M //oo

$$

∧2T∗M
""

M M //oo M

.

The way of obtaining the implicit phase dynamics D, as a submanifold of
∧2T ∧2 T∗M, from a Lagrangian L : ∧2TM → R or from a Hamiltonian
H : ∧2T∗M → R is now standard.
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The phase dynamics - Lagrangian side

∧2TM - (kinematic) configurations, L : ∧2TM → R - Lagrangian

D = (α2
M)−1(dL(∧2TM)))

D =

{
(xµ, pλκ, ẋ

νσ, yηθρ, ṗγδεζ) : yηηρ =
∂L

∂xρ
, pλκ =

∂L

∂ẋλκ

}
.

Thus we get Lagrange (phase) equations.
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The phase dynamics - Hamiltonian side

H : ∧2T∗M → R

D = (β2
M)−1(dH(∧2T∗M))

D =

{
(xµ, pλκ, ẋ

νσ, yηθρ, ṗγδεζ) : yηηρ = − ∂H
∂xρ

, ẋνσ =
∂H

∂pνσ

}
.

Thus we get Hamilton equations.
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, ẋνσ =
∂H

∂pνσ

}
.

Thus we get Hamilton equations.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 30, 2021 19 / 27



The phase dynamics - Hamiltonian side

H : ∧2T∗M → R

T∗ ∧2 T∗M

%%

��

∧2T ∧2 T∗M

&&

��

β2
Moo D_?oo

∧2TM ∧2TM

∧2T∗M

dH

77

∧2T∗M

M M

D = (β2
M)−1(dH(∧2T∗M))

D =

{
(xµ, pλκ, ẋ
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The Euler-Lagrange and Hamilton equations

For a surface in ∧2TM,

(t, s) 7→ (xσ(t, s) , ẋµν(s, t)) ,

the Euler-Lagrange equations read

ẋµν =
∂xµ

∂t

∂xν

∂s
− ∂xµ

∂s

∂xν

∂t
,

∂L

∂xσ
=

∂xµ

∂t

∂

∂s

(
∂L

∂ẋµσ
(t, s)

)
− ∂xµ

∂s

∂

∂t

(
∂L

∂ẋµσ
(t, s)

)
.

As for the Hamilton equations, we have

∂H

∂pµν
=

∂xµ

∂t

∂xν

∂s
− ∂xµ

∂s

∂xν

∂t
,

− ∂H
∂xσ

=
∂xµ

∂t

∂pµσ
∂s
− ∂xµ

∂s

∂pµσ
∂t

.
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the Euler-Lagrange equations read
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An example

In the relativistic dynamics of strings, the manifold of infinitesimal
configurations is ∧2TM, where M is the space time with the Lorentz
metric g . This metric induces a scalar product h in fibers of ∧2TM: for

w =
1

2
ẋµν

∂

∂xµ
∧ ∂

∂xν
, u =

1

2
ẋ ′µν

∂

∂xµ
∧ ∂

∂xν

we have
(u|w) = hµνκλẋ

µν ẋ ′κλ ,

where
hµνκλ = gµκgνλ − gµλgνκ .

The Lagrangian is a function of the volume with respect to this metric,
the so called Nambu-Goto Lagrangian,

L(w) =
√

(w |w) =
√
hµνκλẋµν ẋκλ ,

which is defined on the open submanifold of positive bivectors.
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µν ẋ ′κλ ,

where
hµνκλ = gµκgνλ − gµλgνκ .

The Lagrangian is a function of the volume with respect to this metric,
the so called Nambu-Goto Lagrangian,

L(w) =
√

(w |w) =
√
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Nambu-Goto dynamics

The dynamics D ⊂ ∧2T ∧2 T∗M is the inverse image by α2
M of the image

dL(∧2TM) and it is described by the Lagrange (phase) equations

yααν = 1
2ρ
∂hµκλσ
∂xν ẋµκẋλσ,

pµν = 1
ρhµνλκẋ

λκ ,

where

ρ =
√
hµνλκẋµν ẋλκ .

The dynamics D is also the inverse image by β2
M of the lagrangian

submanifold in T∗ ∧2 T∗M, generated by the Morse family

H : ∧2 T∗M × R+ → R ,
: (p, r) 7→ r(

√
(p|p)− 1) .

In the case of minimal surface, i.e. the Plateau problem, we replace the
Lorentz metric with a positively defined one.
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λκ ,

where

ρ =
√
hµνλκẋµν ẋλκ .

The dynamics D is also the inverse image by β2
M of the lagrangian

submanifold in T∗ ∧2 T∗M, generated by the Morse family

H : ∧2 T∗M × R+ → R ,
: (p, r) 7→ r(

√
(p|p)− 1) .

In the case of minimal surface, i.e. the Plateau problem, we replace the
Lorentz metric with a positively defined one.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 30, 2021 22 / 27



Nambu-Goto dynamics

The dynamics D ⊂ ∧2T ∧2 T∗M is the inverse image by α2
M of the image

dL(∧2TM) and it is described by the Lagrange (phase) equations

yααν = 1
2ρ
∂hµκλσ
∂xν ẋµκẋλσ,
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The dynamics D is also the inverse image by β2
M of the lagrangian

submanifold in T∗ ∧2 T∗M, generated by the Morse family

H : ∧2 T∗M × R+ → R ,
: (p, r) 7→ r(

√
(p|p)− 1) .

In the case of minimal surface, i.e. the Plateau problem, we replace the
Lorentz metric with a positively defined one.

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 30, 2021 22 / 27



Plateau problem

In particular, if M = R3 = {(x1 = x , x2 = y , x3 = z)} with the Euclidean
metric, the Lagrangian reads

L(xµ, ẋκλ) =

√∑
κ,λ

(ẋκλ)
2
.

The Euler-Lagrange equation for surfaces, being graphs of maps
(x , y) 7→ (x , y , z(x , y)), provides the well-known equation for minimal
surfaces, found already by Lagrange :

∂

∂x

 zx√
1 + z2

x + z2
y

+
∂

∂y

 zy√
1 + z2

x + z2
y

 = 0 .

In another form:

(1 + z2
x )zyy − 2zxzyzxy + (1 + z2

y )zxx = 0 .

J.Grabowski (IMPAN) Graded bundles in geometry and mechanics May 30, 2021 23 / 27



Plateau problem

In particular, if M = R3 = {(x1 = x , x2 = y , x3 = z)} with the Euclidean
metric, the Lagrangian reads

L(xµ, ẋκλ) =

√∑
κ,λ
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L(xµ, ẋκλ) =

√∑
κ,λ
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A generalization

We have a straightforward generalization for all integer n ≥ 1 replacing 2:

T∗ ∧n T∗M

��

##

∧nT ∧n T∗M
αn
M //

βnMoo

��

$$

T∗ ∧n TM

��

""
∧nTM

��

∧nTM

��

oo // ∧nTM

��

∧nT∗M

$$

∧nT∗M //oo

%%

∧nT∗M
##

M M //oo M

.

The map
βnM : ∧n T ∧n T∗M → T∗ ∧n T∗M

comes from the canonical multisymplectic (n + 1)-form ωn
M on ∧nT∗M,

being the differential of the canonical Liouville n-form
θnM = pµ1µ2...µn dx1 ∧ dx2 · · · ∧ dxn .

The map αn
M is just the composition of βnM with the canonical

isomorphism of double vector bundles T∗ ∧n T∗M and T∗ ∧n TM.
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Homework 3

Problem 1. Find the phase dynamics D ⊂ TT∗R3 corresponding to
the Lagrangian on TR3:

L(x , ẋ) =
1

2

3∑
i=1

x2
i + V (x) .

Problem 2. Find the Legendre transformation λ:TR3 → T∗R3 for the
above Lagrangian.

Problem 3. Find the phase dynamics D ⊂ TT∗R corresponding to the
Lagrangian on TR:

L(x , ẋ) = ẋ + V (x) .

Problem 4. Find the Legendre map λL : TR→ T∗R for the
Lagrangian from Problem 3. Is λL a diffeomorphism?

Problem 5. Let
Π = ξ ∂ξ ⊗ ∂η + 2η ∂ξ ⊗ ∂ξ

be a linear tensor on (R2)∗ = {(ξ, η)}. Find the bracket on R2

induced by Π, the phase dynamics D ⊂ T(R2)∗, corresponding to the
Lagrangian L = 1

2 (ξ2 + η2), and the Euler-Lagrange equations.
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THANK YOU FOR YOUR ATTENTION!
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