Mechanics on algebroids

Janusz Grabowski

(Polish Academy of Sciences)

May 30, 2021

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Plan of the talk

- The classical Tulczyjew triple
- Euler-Lagrange equations
- Tulczyjew triples for algebroids
- Digression on field theories
- Tulczyjew triples for strings
- Lagrangian and Hamiltonian formalism for strings
- Example: Plateau problem
- Some references
- Home work

Dynamics

- By (usually implicit) first-order dynamics on a manifold N we will understand a submanifold (or even subset) D in TN.
- A curve $\gamma: \mathbb{R} \rightarrow N$ satisfies this dynamics (is a solution), if its tangent prolongation belongs to $D, \mathrm{t}(\gamma): \mathbb{R} \rightarrow D \subset \mathrm{TN}$.

Example

A vector field X on N, i.e. a section of the tangent bundle $N \rightarrow$ TN, defines the dynamics $D=X(N) \subset$ TN
In local coordinates, for the vector field $X=f_{z}(q) \frac{\partial}{\partial q^{a}}$, we have

$$
D=\left\{\left(q^{a}, \dot{q}^{b}\right) \in \mathrm{TN}: \dot{q}^{b}=f_{b}(q)\right\}
$$

and the explicit dynamical equations $\frac{\mathrm{d} q^{a}}{\mathrm{~d} t}(t)=f_{a}(q(t))$ are the equations for trajectories of this vector field.

Dynamics

- By (usually implicit) first-order dynamics on a manifold N we will understand a submanifold (or even subset) D in TN.
- A curve $\gamma: \mathbb{R} \rightarrow N$ satisfies this dynamics (is a solution), if its tangent prolongation belongs to $D, \mathrm{t}(\gamma): \mathbb{R} \rightarrow D \subset \mathrm{TN}$.

Example

A vector field X on N, i.e. a section of the tangent bundle $N \rightarrow$ TN, defines the dynamics $D=X(N) \subset \mathrm{TN}$
In local coordinates, for the vector field $X=f_{a}(q) \frac{\partial}{\partial q^{a}}$, we have

$$
D=\left\{\left(q^{a}, \dot{q}^{b}\right) \in \mathrm{TN}: \dot{q}^{b}=f_{b}(q)\right\}
$$

and the explicit dynamical equations $\frac{\mathrm{d} q^{\mathrm{a}}}{\mathrm{d} t}(t)=f_{a}(q(t))$ are the equations for trajectories of this vector field.

Dynamics

- By (usually implicit) first-order dynamics on a manifold N we will understand a submanifold (or even subset) D in TN.
- A curve $\gamma: \mathbb{R} \rightarrow N$ satisfies this dynamics (is a solution), if its tangent prolongation belongs to $D, \mathrm{t}(\gamma): \mathbb{R} \rightarrow D \subset \mathrm{TN}$.

Example

A vector field X on N, i.e. a section of the tangent bundle $X: N \rightarrow \mathrm{~T} N$, defines the dynamics $D=X(N) \subset \mathrm{T} N$.

Dynamics

- By (usually implicit) first-order dynamics on a manifold N we will understand a submanifold (or even subset) D in TN.
- A curve $\gamma: \mathbb{R} \rightarrow N$ satisfies this dynamics (is a solution), if its tangent prolongation belongs to $D, \mathrm{t}(\gamma): \mathbb{R} \rightarrow D \subset \mathrm{TN}$.

Example

A vector field X on N, i.e. a section of the tangent bundle $X: N \rightarrow \mathrm{~T} N$, defines the dynamics $D=X(N) \subset \mathrm{T} N$.

- In local coordinates, for the vector field $X=f_{a}(q) \frac{\partial}{\partial q^{a}}$, we have

$$
D=\left\{\left(q^{a}, \dot{q}^{b}\right) \in \mathrm{T} N: \dot{q}^{b}=f_{b}(q)\right\}
$$

and the explicit dynamical equations $\frac{\mathrm{d} q^{a}}{\mathrm{~d} t}(t)=f_{a}(q(t))$ are the equations for trajectories of this vector field.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:

M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$T^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$T^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{T} N$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,

$T^{*} M$ - phase space

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{T} N$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{T} N$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$\mathrm{T}^{*} M$ - phase space

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

Note that L can be
as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$M \cdots M$

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM})
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation:
as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM})
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial \dot{x}}\right)$.

The Tulczyjew triple - Lagrangian side

Any $\mathcal{D} \subset \mathrm{TN}$ can be viewed as implicit dynamics whose solutions are curves $\gamma: \mathbb{R} \rightarrow N$ s.t. $\dot{\gamma} \in \mathcal{D}$. For the Lagrangian phase equations:
M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$$
\left.\mathcal{D}=\varepsilon_{M}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM})
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$. Note that L can be as well singular for the price that \mathcal{D} is an implicit equation.

The Tulczyjew triple - Hamiltonian side

canonical isomorphism
$\mathrm{T}^{*} \mathrm{~T} M \simeq \mathrm{~T}^{*} \mathrm{~T}^{*} M$,

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

canonical isomorphism
$\mathrm{T}^{*} \mathrm{~T} M \simeq \mathrm{~T}^{*} \mathrm{~T}^{*} M$,
$E: \mathrm{T}^{*} M \times_{M} \mathrm{TM} \rightarrow \mathbb{R}$
$\tilde{H}(p, v)=\langle p, v\rangle-L(v)$
$H: T^{*} M \rightarrow \mathbb{R}$

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

Hamiltonian side of the triple

canonical isomorphism
$\mathrm{T}^{*} \mathrm{~T} M \simeq \mathrm{~T}^{*} \mathrm{~T}^{*} M$,
$E: T^{*} M \times_{M} T M \rightarrow \mathbb{R}$
$\widetilde{H}(p, v)=\langle p, v\rangle-L(v)_{T^{*}}$
$H: \mathrm{T}^{*} M \rightarrow \mathbb{R}$

$\mathcal{D}=\Pi_{M}^{\#}\left(\mathrm{~d} H\left(\mathrm{~T}^{*} M\right)\right)$

The Tulczyjew triple - Hamiltonian side

Hamiltonian side of the triple

The Tulczyjew triple - Hamiltonian side

Hamiltonian side of the triple

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

Hamiltonian side of the triple

whence the Hamilton equations.

Tulczyjew triple in mechanics

The dynamics is in the middle, the right-hand side is Lagrangian, the left-hand side - Hamiltonian.

The Legendre transform

- The Legendre transform is a pass from the Lagrange to the Hamilton description of the dynamics: we try to describe the Lagrangian phase dynamics as a Hamiltonian phase dynamics.
- It is easy in the case of hyperregular Lagrangians (the Legendre map $(q, p) \mapsto \lambda_{L}(q, \dot{q})=(q, p)$ is a diffeomorhism $)$
- In this case the I agrangian phase dynamics D_{L} is simultaneously Hamiltonian with the Hamiltonian function

$(q, \dot{q})=\lambda_{L}^{-1}(q, p)$
- In other words, the Lagrangian submanifolds $d L(T M) \subset T^{*} T M$ and $d H\left(T^{*} M\right) \subset T^{*} T^{*} M$ are related by the canonical isomorphism $\mathcal{R}_{\tau_{M}}$

The Legendre transform

- The Legendre transform is a pass from the Lagrange to the Hamilton description of the dynamics: we try to describe the Lagrangian phase dynamics as a Hamiltonian phase dynamics.
- It is easy in the case of hyperregular Lagrangians (the Legendre map $(q, p) \mapsto \lambda_{L}(q, \dot{q})=(q, p)$ is a diffeomorhism).
- In this case the Lagrangian phase dynamics D_{L} is simultaneously Hamiltonian with the Hamiltonian function
- In other words, the Lagrangian submanifolds $d L(T M) \subset T^{*} T M$ and $\mathrm{d} H\left(\mathrm{~T}^{*} M\right) \subset \mathrm{T}^{*} \mathrm{~T}^{*} M$ are related by the canonical isomorphism $\mathcal{R}_{\tau_{M}}$.

The Legendre transform

- The Legendre transform is a pass from the Lagrange to the Hamilton description of the dynamics: we try to describe the Lagrangian phase dynamics as a Hamiltonian phase dynamics.
- It is easy in the case of hyperregular Lagrangians (the Legendre map $(q, p) \mapsto \lambda_{L}(q, \dot{q})=(q, p)$ is a diffeomorhism).
- In this case the Lagrangian phase dynamics D_{L} is simultaneously Hamiltonian with the Hamiltonian function

$$
\begin{aligned}
H(q, p) & =\dot{q}^{a} p_{a}-L(q, \dot{q}) \\
(q, \dot{q}) & =\lambda_{L}^{-1}(q, p)
\end{aligned}
$$

- In other words, the Lagrangian submanifolds $d L(T M) \subset T^{*} T M$ and $\mathrm{d} H\left(\mathrm{~T}^{*} M\right) \subset \mathrm{T}^{*} \mathrm{~T}^{*} M$ are related by the canonical isomorphism

The Legendre transform

- The Legendre transform is a pass from the Lagrange to the Hamilton description of the dynamics: we try to describe the Lagrangian phase dynamics as a Hamiltonian phase dynamics.
- It is easy in the case of hyperregular Lagrangians (the Legendre map $(q, p) \mapsto \lambda_{L}(q, \dot{q})=(q, p)$ is a diffeomorhism).
- In this case the Lagrangian phase dynamics D_{L} is simultaneously Hamiltonian with the Hamiltonian function

$$
\begin{aligned}
H(q, p) & =\dot{q}^{a} p_{a}-L(q, \dot{q}) \\
(q, \dot{q}) & =\lambda_{L}^{-1}(q, p)
\end{aligned}
$$

- In other words, the Lagrangian submanifolds $\mathrm{d} L(\mathrm{TM}) \subset \mathrm{T}^{*} \mathrm{TM}$ and $\mathrm{d} H\left(\mathrm{~T}^{*} M\right) \subset \mathrm{T}^{*} \mathrm{~T}^{*} M$ are related by the canonical isomorphism $\mathcal{R}_{\tau_{M}}$.

Euler-Lagrange equations

- The Euler-Lagrange equation for a curve $\underline{\gamma}: \mathbb{R} \rightarrow M$ takes in this model the form

$$
\mathrm{t}\left(\lambda_{L} \circ \gamma\right)=\mathcal{T} L \circ \gamma,
$$

where $\mathcal{T} L=\varepsilon \circ \mathrm{d} L$ is the Tulczyjew differential and $\gamma=\mathrm{t}(\underline{\gamma})$ is the tangent prolongation of $\underline{\gamma}$.

- In this sense, the Euler-Lagrange equation can be viewed as a first-order differential equation on curves γ in TM:
- The equation just tells that the curve $\mathcal{T} L \circ \gamma$ is admissible, i.e. that it is a tangent prolongation of a curve (it must be $\lambda_{L} \circ \gamma$) on the phase space, $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$

Euler-Lagrange equations

- The Euler-Lagrange equation for a curve $\underline{\gamma}: \mathbb{R} \rightarrow M$ takes in this model the form

$$
\mathrm{t}\left(\lambda_{L} \circ \gamma\right)=\mathcal{T} L \circ \gamma
$$

where $\mathcal{T} L=\varepsilon \circ \mathrm{d} L$ is the Tulczyjew differential and $\gamma=\mathrm{t}(\underline{\gamma})$ is the tangent prolongation of $\underline{\gamma}$.

- In this sense, the Euler-Lagrange equation can be viewed as a first-order differential equation on curves γ in TM:

- The equation just tells that the curve $\mathcal{T} L \circ \gamma$ is admissible, i.e. that it is a tangent prolongation of a curve (it must be $\lambda_{L} \circ \gamma$) on the phase space, $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Euler-Lagrange equations

- The Euler-Lagrange equation for a curve $\underline{\gamma}: \mathbb{R} \rightarrow M$ takes in this model the form

$$
\mathrm{t}\left(\lambda_{L} \circ \gamma\right)=\mathcal{T} L \circ \gamma
$$

where $\mathcal{T} L=\varepsilon \circ \mathrm{d} L$ is the Tulczyjew differential and $\gamma=\mathrm{t}(\underline{\gamma})$ is the tangent prolongation of $\underline{\gamma}$.

- In this sense, the Euler-Lagrange equation can be viewed as a first-order differential equation on curves γ in TM:

- The equation just tells that the curve $\mathcal{T} L \circ \gamma$ is admissible, i.e. that it is a tangent prolongation of a curve (it must be $\lambda_{L} \circ \gamma$) on the phase space, $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Euler-Lagrange equations (continued)

- In local coordinates,

$$
\mathcal{T} L(q, \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}(q, \dot{q}), \dot{q}, \frac{\partial L}{\partial q}(q, \dot{q})\right) .
$$

For $\gamma(t)=(q(t), \dot{q}(t))$ this implies the equations

$$
\dot{q}(t)=\frac{\mathrm{d} q}{\mathrm{~d} t}(t), \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t))=\frac{\partial L}{\partial q}(q(t), \dot{q}(t)) .
$$

- These equations are second-order equations for curves $q=q(t)$ in
- Regularity of the Lagrangian is completely irrelevant for this formalism. Singular Lagrangians just produce complicated and implicit dynamics, but the geometric model is the same.

Euler-Lagrange equations (continued)

- In local coordinates,

$$
\mathcal{T} L(q, \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}(q, \dot{q}), \dot{q}, \frac{\partial L}{\partial q}(q, \dot{q})\right) .
$$

For $\gamma(t)=(q(t), \dot{q}(t))$ this implies the equations

$$
\dot{q}(t)=\frac{\mathrm{d} q}{\mathrm{~d} t}(t), \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t))=\frac{\partial L}{\partial q}(q(t), \dot{q}(t)) .
$$

- These equations are second-order equations for curves $q=q(t)$ in M.
- Regularity of the Lagrangian is completely irrelevant for this formalism. Singular Lagrangians just produce complicated and implicit dynamics, but the geometric model is the same.

Euler-Lagrange equations (continued)

- In local coordinates,

$$
\mathcal{T} L(q, \dot{q})=\left(q, \frac{\partial L}{\partial \dot{q}}(q, \dot{q}), \dot{q}, \frac{\partial L}{\partial q}(q, \dot{q})\right) .
$$

For $\gamma(t)=(q(t), \dot{q}(t))$ this implies the equations

$$
\dot{q}(t)=\frac{\mathrm{d} q}{\mathrm{~d} t}(t), \quad \frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t))=\frac{\partial L}{\partial q}(q(t), \dot{q}(t)) .
$$

- These equations are second-order equations for curves $q=q(t)$ in M.
- Regularity of the Lagrangian is completely irrelevant for this formalism. Singular Lagrangians just produce complicated and implicit dynamics, but the geometric model is the same.

Algebroid setting

The Euler-Lagrange equations read $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset \mathrm{~T}^{*} \mathrm{~F}^{*} \quad \mathcal{D}=\Pi^{\#}\left(\mathrm{dH}\left(\mathrm{F}^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

The Euler-Lagrange equations read $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D} \mu \subset \mathrm{T}^{*} \mathrm{E}^{*} \quad \mathcal{D}=\Pi^{\#}\left(\mathrm{~d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

The Euler-Lagrange equations read $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Algebroid setting

$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset T^{*} E^{*}$
$\mathcal{D}=\Pi^{\#}\left(\mathrm{~d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

The Euler-Lagrange equations read $\mathcal{T} L \circ \gamma=\mathrm{t}\left(\lambda_{L} \circ \gamma\right)$.

Euler-Lagrange equations for algebroids

If $\left(q^{a}\right)$ are local coordinates in M,
$\left(y^{i}\right)$ i $\left(\xi_{i}\right)$ are linear coordinates in fibers of, respectively, E and E^{*}, and

$$
\Pi=c_{i j}^{k}(q) \xi_{k} \partial_{\xi_{i}} \otimes \partial_{\xi_{j}}+\rho_{i}^{b}(q) \partial_{\xi_{i}} \otimes \partial_{q^{b}}-\sigma_{j}^{a}(q) \partial_{q^{a}} \otimes \partial_{\xi_{j}}
$$

then the Euler-Lagrange equations read

$$
\begin{aligned}
(1) \frac{\mathrm{d} q^{a}}{\mathrm{~d} t} & =\rho_{k}^{a}(q) y^{k} \\
\text { (2) } \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{j}}\right)(q, y) & =c_{i j}^{k}(q) y^{i} \frac{\partial L}{\partial y^{k}}(q, y)+\sigma_{j}^{a}(q) \frac{\partial L}{\partial q^{a}}(q, y) .
\end{aligned}
$$

They are first-order differential equations (!) but for admissible curves in E, i.e. for curves satisfying (1). For $E=T M$, they are exactly the tangent prolongations of curves in M, for which the equation is second-order.

Euler-Lagrange equations for algebroids

If $\left(q^{a}\right)$ are local coordinates in M,
$\left(y^{i}\right)$ i $\left(\xi_{i}\right)$ are linear coordinates in fibers of, respectively, E and E^{*}, and

$$
\Pi=c_{i j}^{k}(q) \xi_{k} \partial_{\xi_{i}} \otimes \partial_{\xi_{j}}+\rho_{i}^{b}(q) \partial_{\xi_{i}} \otimes \partial_{q^{b}}-\sigma_{j}^{a}(q) \partial_{q^{a}} \otimes \partial_{\xi_{j}}
$$

then the Euler-Lagrange equations read

$$
\begin{aligned}
(1) \frac{\mathrm{d} q^{a}}{\mathrm{~d} t} & =\rho_{k}^{a}(q) y^{k} \\
\text { (2) } \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{j}}\right)(q, y) & =c_{i j}^{k}(q) y^{i} \frac{\partial L}{\partial y^{k}}(q, y)+\sigma_{j}^{a}(q) \frac{\partial L}{\partial q^{a}}(q, y) .
\end{aligned}
$$

They are first-order differential equations (!) but for admissible curves in E, i.e. for curves satisfying (1). For $E=\mathrm{TM}$, they are exactly the tangent prolongations of curves in M, for which the equation is second-order.

Euler-Poincaré equations

A particular example of the equation (2) is not only the classical Euler-Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}(q, \dot{q})=\frac{\partial L}{\partial q^{a}}(q, \dot{q}) .
$$

but also the Lagrange-Poincaré equation for G-invariant Lagrangians on principal G-bundle

and the Euler-Poincaré equations, for instance the rigid body equations,

Euler-Poincaré equations

A particular example of the equation (2) is not only the classical Euler-Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}(q, \dot{q})=\frac{\partial L}{\partial q^{a}}(q, \dot{q}) .
$$

but also the Lagrange-Poincaré equation for G-invariant Lagrangians on principal G-bundle

$$
\begin{gathered}
\left(\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}-\frac{\partial L}{\partial q^{a}}\right)(q, \dot{q}, v)-\left(B_{b a}^{k}(q) \dot{q}^{b}+D_{i a}^{k}(q) v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(q, \dot{q}, v)-\left(D_{a j}^{k}(q) \dot{q}^{a}+C_{i j}^{k} v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0,
\end{gathered}
$$

and the Euler-Poincaré equations, for instance the rigid body equations,

Euler-Poincaré equations

A particular example of the equation (2) is not only the classical Euler-Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}(q, \dot{q})=\frac{\partial L}{\partial q^{a}}(q, \dot{q}) .
$$

but also the Lagrange-Poincaré equation for G-invariant Lagrangians on principal G-bundle

$$
\begin{gathered}
\left(\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}^{a}}-\frac{\partial L}{\partial q^{a}}\right)(q, \dot{q}, v)-\left(B_{b a}^{k}(q) \dot{q}^{b}+D_{i a}^{k}(q) v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0, \\
\frac{d}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(q, \dot{q}, v)-\left(D_{a j}^{k}(q) \dot{q}^{a}+C_{i j}^{k} v^{i}\right) \frac{\partial L}{\partial v^{k}}(q, \dot{q}, v)=0,
\end{gathered}
$$

and the Euler-Poincaré equations, for instance the rigid body equations,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial v^{j}}(v)-C_{i j}^{k} v^{i} \frac{\partial L}{\partial v^{k}}(v)=0
$$

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes".
- Compromise: take for the space of infinitesimal pieces of motions the space of simple n-vectors, which represent first jets of n-dimensional submanifolds together with an infinitesimal volume.
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle $\wedge^{n} T M$ of n-vectors on M.

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes"
- Compromise: take for the space of infinitesimal pieces of motions the space of simple n-vectors, which represent first jets of n-dimensional submanifolds together with an infinitesimal volume.
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle $\wedge^{n} T M$ of n-vectors on M.

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes"
- Compromise: take for the space of infinitesimal pieces of motions the space of simple n-vectors, which represent first jets of n-dimensional submanifolds together with an infinitesimal volume.
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle $\wedge^{n} T M$ of n-vectors on M

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes"
- Compromise: take for the space of infinitesimal pieces of motions the space of simple n-vectors, which represent first jets of n-dimensional submanifolds together with an infinitesimal volume
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle $\wedge^{n} T M$ of n-vectors on M.

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes".
space of simple n-vectors, which represent first jets of n-dimensional
submanifolds together with an infinitesimal volume.
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes".
- Compromise: take for the space of infinitesimal pieces of motions the space of simple n-vectors, which represent first jets of n-dimensional submanifolds together with an infinitesimal volume.
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle

Digression on field theories

- The motion of a system is given by an n-dimensional submanifold in the manifold M ("space-time").
- An infinitesimal piece of the motion is the first jet of the submanifold.
- However, this model leads to essential complications even in one-dimensional case (relativistic particle).
- For instance, the infinitesimal action (Lagrangian) is not a function on first jets, but a section of certain line bundle over the first-jet manifold, a 'dual' of the bundle of "first jets with volumes".
- Compromise: take for the space of infinitesimal pieces of motions the space of simple n-vectors, which represent first jets of n-dimensional submanifolds together with an infinitesimal volume.
- It is technically convenient to extend this space to all n-vectors, i.e. to the vector bundle $\wedge^{n} \mathrm{~T} M$ of n-vectors on M.

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
I: \wedge^{2} T M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.

$$
\mathcal{D} \subset \wedge^{2} T \wedge^{2} \top^{*} M
$$

- A submanifold S in the phase space $\Lambda^{2} T^{*} M$ is a solution of \mathcal{D} if and only if its tangent space $T_{\alpha} S$ at $\alpha \in \Lambda^{2} T^{*} M$ is represented by a bivector from \mathcal{D}_{α}.
If we use a parametrization, then the tangent bivectors associated with this parametrization must belong to \mathcal{D}.

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.
- A submanifold S in the phase space $\Lambda^{2} T^{*} M$ is a solution of \mathcal{D} if and only if its tangent space $T_{\alpha} S$ at $\alpha \in \Lambda^{2} T^{*} M$ is represented by a bivector from \mathcal{D}_{α}
If we use a parametrization, then the tangent bivectors associated with this parametrization must belong to \mathcal{D}.

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.

$$
0
$$

A submanifold S in the phase space only if its tangent space $T_{\alpha} S$ at $\alpha \in$ $T^{*} M$
$2 T^{*} M$ is a solution of D if and bivector from \mathcal{D} If we use a parametrization, then the tangent bivectors associated with this parametrization must belong to \mathcal{D}.

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.

$$
\mathcal{D} \subset \wedge^{2} T \wedge^{2} T^{*} M
$$

- A submanifold S in the phase space only if its tangent space $\mathrm{T}_{\alpha} S$ at $\alpha \in \wedge^{2} \mathrm{~T}^{*} M$ is represented by a bivector from \mathcal{D}_{α} If we use a parametrization, then the tangent bivectors associated with this parametrization must belong to \mathcal{D}

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.

$$
\mathcal{D} \subset \wedge^{2} T \wedge^{2} T^{*} M
$$

- A submanifold S in the phase space $\wedge^{2} T^{*} M$ is a solution of \mathcal{D} if and only if its tangent space $\mathrm{T}_{\alpha} S$ at $\alpha \in \wedge^{2} \mathrm{~T}^{*} M$ is represented by a bivector from \mathcal{D}_{α}.
If we use a parametrization, then the tangent bivectors associated
with this parametrization must belong to \mathcal{D}.

Dynamics of strings

- An evolution of strings is represented by surfaces in M. Passing to infinitesimal parts we will view a Lagrangian L as a function

$$
L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}
$$

If L is positive homogeneous, the action functional does not depend on the parametrization of the submanifold and the corresponding Hamiltonian (if it exists) is a function on the dual vector bundle $\wedge^{2} T^{*} M$ (the phase space).

- The dynamics should be an equation (in general, implicit) for 2-dimensional submanifolds in the phase space, i.e.

$$
\mathcal{D} \subset \wedge^{2} T \wedge^{2} T^{*} M
$$

- A submanifold S in the phase space $\wedge^{2} T^{*} M$ is a solution of \mathcal{D} if and only if its tangent space $\mathrm{T}_{\alpha} S$ at $\alpha \in \wedge^{2} \mathrm{~T}^{*} M$ is represented by a bivector from \mathcal{D}_{α}.
If we use a parametrization, then the tangent bivectors associated with this parametrization must belong to \mathcal{D}.

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2 -form on $\wedge^{2} T^{*} M$:

$$
\theta_{M}^{2}=\frac{1}{2} p_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}, p_{\mu \nu}=-p_{\nu \mu}
$$

- the canonical multisymplectic form

$$
\omega_{M}^{2}=\mathrm{d} \theta_{M}^{2}=\frac{1}{2} \mathrm{~d} p_{\mu \nu} \wedge \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

- the vector bundle morphism

$$
\beta_{M}^{2}: \wedge^{2} T \wedge^{2} T^{*} M \rightarrow T^{*} \wedge^{2} T^{*} M, \quad: u \mapsto i_{u} \omega_{M}^{2}
$$

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2 -form on $\wedge^{2} T^{*} M$:

- the canonical multisymplectic form

- the vector bundle morphism

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2-form on $\wedge^{2} T^{*} M$:
- the canonical multisymplectic form

- the vector bundle morphism

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2-form on $\wedge^{2} T^{*} M$:

$$
\theta_{M}^{2}=\frac{1}{2} p_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}, p_{\mu \nu}=-p_{\nu \mu}
$$

- the canonical multisymplectic form

- the vector bundle morphism

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2-form on $\wedge^{2} T^{*} M$:

$$
\theta_{M}^{2}=\frac{1}{2} p_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}, p_{\mu \nu}=-p_{\nu \mu}
$$

- the canonical multisymplectic form

$$
\omega_{M}^{2}=\mathrm{d} \theta_{M}^{2}=\frac{1}{2} \mathrm{~d} p_{\mu \nu} \wedge \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

- the vector bundle morphism

The Hamiltonian side for multivector bundles

Recall that $\wedge^{2} T \wedge^{2} T^{*} M$ is a double graded bundle (actually a GrL-bundle)

We have:

- the canonical Liouville 2-form on $\wedge^{2} T^{*} M$:

$$
\theta_{M}^{2}=\frac{1}{2} p_{\mu \nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}, p_{\mu \nu}=-p_{\nu \mu}
$$

- the canonical multisymplectic form

$$
\omega_{M}^{2}=\mathrm{d} \theta_{M}^{2}=\frac{1}{2} \mathrm{~d} p_{\mu \nu} \wedge \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}
$$

- the vector bundle morphism

$$
\beta_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T}^{*} M, \quad: u \mapsto i_{u} \omega_{M}^{2}
$$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,

$$
\alpha_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

(of double graded bundles over $\wedge^{2} T M$ and $\Lambda^{2} T^{*} M$).
In local coordinates,

$$
\alpha_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right)=\left(x^{\mu}, \dot{x}^{\nu \sigma}, y_{\eta \rho}^{\eta}, p_{\lambda \kappa}\right)
$$

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism

$$
\kappa_{M}^{2}: T \Lambda^{2} T M \rightarrow \Lambda^{2} T T M
$$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right) .
$$

Using the canonical isomorphism of double vector bundles

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,
(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism

$$
\kappa_{M}^{2}: \top \Lambda^{2} T M \rightarrow \Lambda^{2} T T M .
$$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,
(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism
$\kappa_{M}^{2}: T \Lambda^{2} T M \rightarrow \Lambda^{2} T T M$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,
(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism
$\kappa_{M}^{2}: T \Lambda^{2} T M \rightarrow \Lambda^{2} T T M$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,

$$
\alpha_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M,
$$

(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism
$\kappa_{M}^{2}: T \wedge^{2} T M \rightarrow \wedge^{2} \top T M$

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,

$$
\alpha_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M,
$$

(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism
$\kappa_{M}^{2}: T \Lambda^{2} T M \rightarrow \wedge^{2} T T M$.

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,

$$
\alpha_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M,
$$

(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

$$
\alpha_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right)=\left(x^{\mu}, \dot{x}^{\nu \sigma}, y_{\eta \rho}^{\eta}, p_{\lambda \kappa}\right)
$$

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism

The Lagrangian side for multivector bundles

In local coordinates,

$$
\beta_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma, \delta, \epsilon, \zeta}\right)=\left(x^{\mu}, p_{\lambda \kappa},-y_{\eta \rho}^{\eta}, \dot{x}^{\nu \sigma}\right)
$$

Using the canonical isomorphism of double vector bundles

$$
\mathcal{R}: \mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

we can define $\alpha_{M}^{2}=\mathcal{R} \circ \beta_{M}^{2}$, which is another double graded bundle morphism,

$$
\alpha_{M}^{2}: \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M,
$$

(of double graded bundles over $\wedge^{2} T M$ and $\wedge^{2} T^{*} M$).
In local coordinates,

$$
\alpha_{M}^{2}\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right)=\left(x^{\mu}, \dot{x}^{\nu \sigma}, y_{\eta \rho}^{\eta}, p_{\lambda \kappa}\right) .
$$

The map α_{M}^{2} can also be obtained as the dual of the canonical isomorphism

$$
\kappa_{M}^{2}: \mathrm{T} \wedge^{2} \mathrm{~T} M \rightarrow \wedge^{2} \mathrm{TT} M
$$

The Tulczyjew triple for strings

Combining the maps β_{M}^{2} and α_{M}^{2}, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

The way of obtaining the implicit phase dynamics D, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \Lambda^{2} T M \rightarrow \mathbb{R}$ or from a Hamiltonian $H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}$ is now standard.

The Tulczyjew triple for strings

Combining the maps β_{M}^{2} and α_{M}^{2}, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

> The way of obtaining the implicit phase dynamics D, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \Lambda^{2} T M \rightarrow \mathbb{R}$ or from a Hamiltonian $H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}$ is now standard.

The Tulczyjew triple for strings

Combining the maps β_{M}^{2} and α_{M}^{2}, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

The way of obtaining the implicit phase dynamics D, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \Lambda^{2} T M \rightarrow \mathbb{R}$ or from a Hamiltonian $H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}$ is now standard.

The Tulczyjew triple for strings

Combining the maps β_{M}^{2} and α_{M}^{2}, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

The way of obtaining the implicit phase dynamics D, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \wedge^{2} T M \rightarrow \mathbb{R}$ or from a Hamiltonian $H: \wedge^{2} \top^{*} M \rightarrow \mathbb{R}$ is now standard.

The phase dynamics - Lagrangian side

$\wedge^{2} T M$ - (kinematic) configurations, $L: \wedge^{2} T M \rightarrow \mathbb{R}$ - Lagrangian

The phase dynamics - Lagrangian side

$\wedge^{2} T M$ - (kinematic) configurations, $\wedge^{2} T M \rightarrow \mathbb{R}$ - Lagrangian

$\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right)$

The phase dynamics - Lagrangian side

$\wedge^{2} \mathrm{~T} M$ - (kinematic) configurations, $L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}$ - Lagrangian
$\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right)$

The phase dynamics - Lagrangian side

$\wedge^{2} \mathrm{~T} M$ - (kinematic) configurations, $L: \wedge^{2} T M \rightarrow \mathbb{R}$ - Lagrangian

$\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right)$

The phase dynamics - Lagrangian side

$\wedge^{2} \mathrm{~T} M$ - (kinematic) configurations, $L: \wedge^{2} T M \rightarrow \mathbb{R}$ - Lagrangian

$$
\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right)
$$

Thus we get Lagrange (phase) equations.

The phase dynamics - Lagrangian side

$\wedge^{2} \mathrm{~T} M$ - (kinematic) configurations, $L: \wedge^{2} T M \rightarrow \mathbb{R}$ - Lagrangian

$$
\begin{gathered}
\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right) \\
\mathcal{D}=\left\{\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right): \quad y_{\eta \rho}^{\eta}=\frac{\partial L}{\partial x^{\rho}}, \quad p_{\lambda \kappa}=\frac{\partial L}{\partial \dot{x}^{\lambda \kappa}}\right\} .
\end{gathered}
$$

Thus we get Lagrange (phase) equations.

The phase dynamics - Lagrangian side

$\wedge^{2} \mathrm{~T} M$ - (kinematic) configurations, $L: \wedge^{2} \mathrm{~T} M \rightarrow \mathbb{R}$ - Lagrangian

$$
\begin{gathered}
\left.\mathcal{D}=\left(\alpha_{M}^{2}\right)^{-1}\left(\mathrm{~d} L\left(\wedge^{2} \mathrm{~T} M\right)\right)\right) \\
\mathcal{D}=\left\{\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right): \quad y_{\eta \rho}^{\eta}=\frac{\partial L}{\partial x^{\rho}}, \quad p_{\lambda \kappa}=\frac{\partial L}{\partial \dot{x}^{\lambda \kappa}}\right\} .
\end{gathered}
$$

Thus we get Lagrange (phase) equations.

The phase dynamics - Hamiltonian side

$\mathcal{D}=\left(\beta_{M}^{2}\right)^{-1}\left(\mathrm{~d} H\left(\wedge^{2} \mathrm{~T}^{*} M\right)\right)$

Thus we get Hamilton equations.

The phase dynamics - Hamiltonian side

$$
H: \wedge^{2} \top^{*} M \rightarrow \mathbb{R}
$$

Thus we get Hamilton equations.

The phase dynamics - Hamiltonian side

$$
H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}
$$

$$
\mathcal{D}=\left(\beta_{M}^{2}\right)^{-1}\left(\mathrm{~d} H\left(\wedge^{2} \mathrm{~T}^{*} M\right)\right)
$$

Thus we get Hamilton equations.

The phase dynamics - Hamiltonian side

$$
H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}
$$

$$
\mathcal{D}=\left(\beta_{M}^{2}\right)^{-1}\left(\mathrm{~d} H\left(\wedge^{2} \mathrm{~T}^{*} M\right)\right)
$$

Thus we get Hamilton equations.

The phase dynamics - Hamiltonian side

$H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}$

$$
\begin{gathered}
\mathcal{D}=\left(\beta_{M}^{2}\right)^{-1}\left(\mathrm{~d} H\left(\wedge^{2} \mathrm{~T}^{*} M\right)\right) \\
\mathcal{D}=\left\{\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right): \quad y_{\eta \rho}^{\eta}=-\frac{\partial H}{\partial x^{\rho}}, \quad \dot{x}^{\nu \sigma}=\frac{\partial H}{\partial p_{\nu \sigma}}\right\} .
\end{gathered}
$$

Thus we get Hamilton equations.

The phase dynamics - Hamiltonian side

$H: \wedge^{2} \top^{*} M \rightarrow \mathbb{R}$

$$
\begin{gathered}
\mathcal{D}=\left(\beta_{M}^{2}\right)^{-1}\left(\mathrm{~d} H\left(\wedge^{2} \mathrm{~T}^{*} M\right)\right) \\
\mathcal{D}=\left\{\left(x^{\mu}, p_{\lambda \kappa}, \dot{x}^{\nu \sigma}, y_{\theta \rho}^{\eta}, \dot{p}_{\gamma \delta \epsilon \zeta}\right): \quad y_{\eta \rho}^{\eta}=-\frac{\partial H}{\partial x^{\rho}}, \quad \dot{x}^{\nu \sigma}=\frac{\partial H}{\partial p_{\nu \sigma}}\right\} .
\end{gathered}
$$

Thus we get Hamilton equations.

The Euler-Lagrange and Hamilton equations

For a surface in $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}(s, t)\right),
$$

the Euler-Lagrange equations read

As for the Hamilton equations, we have

The Euler-Lagrange and Hamilton equations

For a surface in $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}(s, t)\right),
$$

the Euler-Lagrange equations read

As for the Hamilton equations, we have

The Euler-Lagrange and Hamilton equations

For a surface in $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}(s, t)\right)
$$

the Euler-Lagrange equations read

$$
\begin{aligned}
\dot{x}^{\mu \nu} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
\frac{\partial L}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial s}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)-\frac{\partial x^{\mu}}{\partial s} \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right) .
\end{aligned}
$$

As for the Hamilton equations, we have

The Euler-Lagrange and Hamilton equations

For a surface in $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}(s, t)\right)
$$

the Euler-Lagrange equations read

$$
\begin{aligned}
\dot{x}^{\mu \nu} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
\frac{\partial L}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial s}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)-\frac{\partial x^{\mu}}{\partial s} \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right) .
\end{aligned}
$$

As for the Hamilton equations, we have

$$
\begin{aligned}
\frac{\partial H}{\partial p_{\mu \nu}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
-\frac{\partial H}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial p_{\mu \sigma}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial p_{\mu \sigma}}{\partial t}
\end{aligned}
$$

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} T M$, where M is the space time with the Lorentz metric g. This metric induces a scalar product h in fibers of $\Lambda^{2} T M$: for

$$
w=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}, \quad u=\frac{1}{2} \dot{x}^{\prime \mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}
$$

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda}
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

$$
L(w)=\sqrt{(w \mid w)}=\sqrt{h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\kappa \lambda}}
$$

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} T M$, where M is the space time with the Lorentz metric g.

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda},
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} T M$, where M is the space time with the Lorentz metric g. This metric induces a scalar product h in fibers of $\wedge^{2} \mathrm{~T} M$:

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda},
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} T M$, where M is the space time with the Lorentz metric g. This metric induces a scalar product h in fibers of $\wedge^{2} \mathrm{~T} M$: for

$$
w=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}, \quad u=\frac{1}{2} \dot{x}^{\prime \mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}
$$

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda}
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} T M$, where M is the space time with the Lorentz metric g. This metric induces a scalar product h in fibers of $\wedge^{2} T M$: for

$$
w=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}, \quad u=\frac{1}{2} \dot{x}^{\prime \mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}
$$

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda}
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

An example

In the relativistic dynamics of strings, the manifold of infinitesimal configurations is $\wedge^{2} \mathrm{~T} M$, where M is the space time with the Lorentz metric g. This metric induces a scalar product h in fibers of $\wedge^{2} T M$: for

$$
w=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}, \quad u=\frac{1}{2} \dot{x}^{\prime \mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}
$$

we have

$$
(u \mid w)=h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\prime \kappa \lambda}
$$

where

$$
h_{\mu \nu \kappa \lambda}=g_{\mu \kappa} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \kappa}
$$

The Lagrangian is a function of the volume with respect to this metric, the so called Nambu-Goto Lagrangian,

$$
L(w)=\sqrt{(w \mid w)}=\sqrt{h_{\mu \nu \kappa \lambda} \dot{x}^{\mu \nu} \dot{x}^{\kappa \lambda}}
$$

which is defined on the open submanifold of positive bivectors.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} T \wedge^{2} T^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} T M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{a \nu}^{a}= & \frac{1}{2 \rho} \frac{\partial h_{\mu k} \lambda \sigma}{\partial x^{\nu}} \dot{x}^{\mu k} \dot{x}^{\lambda \sigma}, \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda k} \dot{x}^{\lambda k},
\end{aligned}
$$

where

$$
\rho=\sqrt{h_{\mu \nu \lambda \kappa} \dot{x}^{\mu \nu} \dot{x}^{\lambda \kappa}} .
$$

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

$$
(p, r) \mapsto r(\sqrt{(p \mid p)}-1) .
$$

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} T \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} \mathrm{~T} M\right)$ and it is described by the Lagrange (phase) equations

where

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} T \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} \mathrm{~T} M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{\alpha \nu}^{\alpha}= & \frac{1}{2 \rho} \frac{\partial h_{\mu \kappa \lambda \sigma}}{\partial x^{\nu}} \dot{x}^{\mu \kappa} \dot{x}^{\lambda \sigma}, \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda \kappa} \dot{x}^{\lambda \kappa},
\end{aligned}
$$

where

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} T \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} \mathrm{~T} M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{\alpha \nu}^{\alpha}= & \frac{1}{2 \rho} \frac{\partial h_{\mu \kappa \lambda \sigma}}{\partial x^{\nu}} \dot{x}^{\mu \kappa} \dot{x}^{\lambda \sigma} \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda \kappa} \dot{x}^{\lambda \kappa}
\end{aligned}
$$

where

$$
\rho=\sqrt{h_{\mu \nu \lambda \kappa} \dot{x}^{\mu \nu} \dot{x}^{\lambda \kappa}} .
$$

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} \mathrm{~T} M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{\alpha \nu}^{\alpha}= & \frac{1}{2 \rho} \frac{\partial h_{\mu \kappa \lambda \sigma}}{\partial x^{\nu}} \dot{x}^{\mu \kappa} \dot{x}^{\lambda \sigma} \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda \kappa} \dot{x}^{\lambda \kappa}
\end{aligned}
$$

where

$$
\rho=\sqrt{h_{\mu \nu \lambda \kappa} \dot{x}^{\mu \nu} \dot{x}^{\lambda \kappa}} .
$$

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

In the case of minimal surface, i.e. the Plateau problem, we replace the

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} T \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} T M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{\alpha \nu}^{\alpha}= & \frac{1}{2 \rho} \frac{\partial h_{\mu \kappa \lambda \sigma}}{\partial x^{\nu}} \dot{x}^{\mu \kappa} \dot{x}^{\lambda \sigma} \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda \kappa} \dot{x}^{\lambda \kappa}
\end{aligned}
$$

where

$$
\rho=\sqrt{h_{\mu \nu \lambda \kappa} \dot{x}^{\mu \nu} \dot{x}^{\lambda \kappa}} .
$$

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

$$
\begin{aligned}
H & : \wedge^{2} \mathrm{~T}^{*} M \times \mathbb{R}_{+} \rightarrow \mathbb{R} \\
& :(p, r) \mapsto r(\sqrt{(p \mid p)}-1)
\end{aligned}
$$

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Nambu-Goto dynamics

The dynamics $\mathcal{D} \subset \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M$ is the inverse image by α_{M}^{2} of the image $\mathrm{d} L\left(\wedge^{2} T M\right)$ and it is described by the Lagrange (phase) equations

$$
\begin{aligned}
y_{\alpha \nu}^{\alpha}= & \frac{1}{2 \rho} \frac{\partial h_{\mu \kappa \lambda \sigma}}{\partial x^{\nu}} \dot{x}^{\mu \kappa} \dot{x}^{\lambda \sigma} \\
p_{\mu \nu} & =\frac{1}{\rho} h_{\mu \nu \lambda \kappa} \dot{x}^{\lambda \kappa}
\end{aligned}
$$

where

$$
\rho=\sqrt{h_{\mu \nu \lambda \kappa} \dot{x}^{\mu \nu} \dot{x}^{\lambda \kappa}} .
$$

The dynamics \mathcal{D} is also the inverse image by β_{M}^{2} of the lagrangian submanifold in $T^{*} \wedge^{2} T^{*} M$, generated by the Morse family

$$
\begin{aligned}
H & : \wedge^{2} \mathrm{~T}^{*} M \times \mathbb{R}_{+} \rightarrow \mathbb{R} \\
& :(p, r) \mapsto r(\sqrt{(p \mid p)}-1) .
\end{aligned}
$$

In the case of minimal surface, i.e. the Plateau problem, we replace the Lorentz metric with a positively defined one.

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the Lagrangian reads

The Euler-Lagrange equation for surfaces, being graphs of maps $(x, y) \mapsto(x, y, z(x, y))$, provides the well-known equation for minimal surfaces, found already by Lagrange

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the Lagrangian reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces, being graphs of maps $(x, y) \mapsto(x, y, z(x, y))$, provides the well-known equation for minimal surfaces, found already by Lagrange

In another form:

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the Lagrangian reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces, being graphs of maps $(x, y) \mapsto(x, y, z(x, y))$, provides the well-known equation for minimal surfaces, found already by Lagrange :

In another form:

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the Lagrangian reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces, being graphs of maps $(x, y) \mapsto(x, y, z(x, y))$, provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the Lagrangian reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces, being graphs of maps $(x, y) \mapsto(x, y, z(x, y))$, provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

A generalization

We have a straightforward generalization for all integer $n \geq 1$ replacing 2 :

The map

$$
\beta_{M}^{n}: \wedge^{n} \mathrm{~T} \wedge^{n} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{n} \mathrm{~T}^{*} M
$$

comes from the canonical multisymplectic $(n+1)$-form ω_{M}^{n} on $\wedge^{n} T^{*} M$, being the differential of the canonical Liouville n-form

$$
\theta_{M}^{\pi}=p_{\mu_{1} \mu_{2} \ldots \mu_{n}} d x^{1} \Lambda d x^{2} \cdots \Delta d x^{n}
$$

The map α_{M}^{n} is just the composition of β_{M}^{n} with the canonical isomorphism of double vector bundles $T^{*} \wedge^{n} T^{*} M$ and $T^{*} \wedge^{n} T M$.

A generalization

We have a straightforward generalization for all integer $n \geq 1$ replacing 2 :

The map

comes from the canonical multisymplectic $(n+1)$-form ω_{M}^{n} on $\wedge^{n} T^{*} M$, being the differential of the canonical Liouville n-form

The map α_{M}^{n} is just the composition of β_{M}^{n} with the canonical isomorphism of double vector bundles $T^{*} \wedge^{n} T^{*} M$ and $T^{*} \wedge^{n} T M$

A generalization

We have a straightforward generalization for all integer $n \geq 1$ replacing 2 :

The map
comes from the canonical multisymplectic $(n+1)$-form ω_{M}^{n} on $\wedge^{n} \top^{*} M$, being the differential of the canonical Liouville n-form

The map α_{M}^{n} is just the composition of β_{M}^{n} with the canonical isomorphism of double vector bundles $T^{*} \wedge^{n} T^{*} M$ and $T^{*} \wedge^{n} T M$.

A generalization

We have a straightforward generalization for all integer $n \geq 1$ replacing 2 :

The map

$$
\beta_{M}^{n}: \wedge^{n} \mathrm{~T} \wedge^{n} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{n} \mathrm{~T}^{*} M
$$

comes from the canonical multisymplectic $(n+1)$-form ω_{M}^{n} on $\wedge^{n} T^{*} M$, being the differential of the canonical Liouville n-form

$$
\theta_{M}^{n}=p_{\mu_{1} \mu_{2} \ldots \mu_{n}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \cdots \wedge \mathrm{~d} x^{n}
$$

The map α_{M}^{n} is just the composition of β_{M}^{n} with the canonical
isomorphism of double vector bundles T

A generalization

We have a straightforward generalization for all integer $n \geq 1$ replacing 2 :

The map

$$
\beta_{M}^{n}: \wedge^{n} \mathrm{~T} \wedge^{n} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} \wedge^{n} \mathrm{~T}^{*} M
$$

comes from the canonical multisymplectic ($n+1$)-form ω_{M}^{n} on $\wedge^{n} T^{*} M$, being the differential of the canonical Liouville n-form

$$
\theta_{M}^{n}=p_{\mu_{1} \mu_{2} \ldots \mu_{n}} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \cdots \wedge \mathrm{~d} x^{n}
$$

The map α_{M}^{n} is just the composition of β_{M}^{n} with the canonical isomorphism of double vector bundles $T^{*} \wedge^{n} T^{*} M$ and $T^{*} \wedge^{n} T M$.

Some References

- A.J. Bruce, K. Grabowska \& J. Grabowski, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 3, 559-575.
- J. Grabowski, M. de León, J. C. Marrero \&
D. Martín de Diego, Nonholonomic constraints: a new viewpoint, J. Math. Phys. 50 (2009), no. 1, 013520, 17 pp.
- K. Grabowska \& J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A 41 (2008), no. 17, 175204, 25 pp.
- K. Grabowska, J. Grabowski \& P. Urbański, Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings, J. Geom. Mech. 6 (2014), 503-526.
- J. Grabowski\& M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys. 59 (2009), 1285-1305.
- J. Grabowski \& M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), 21-36.

Homework 3

- Problem 1. Find the phase dynamics $\mathcal{D} \subset \mathrm{TT}^{*} \mathbb{R}^{3}$ corresponding to the Lagrangian on $T \mathbb{R}^{3}$:

$$
L(x, \dot{x})=\frac{1}{2} \sum_{i=1}^{3} x_{i}^{2}+V(x) .
$$

- Problem 2. Find the Legendre transformation $\lambda_{:}: \mathbb{R}^{3} \rightarrow T^{*} \mathbb{R}^{3}$ for the above Lagrangian.
- Problem 3. Find the phase dynamics $\mathcal{D} \subset \mathrm{TT}^{*} \mathbb{R}$ corresponding to the Lagrangian on TR :

$$
L(x, \dot{x})=\dot{x}+V(x)
$$

- Problem 4. Find the Legendre map $\lambda_{L}: T \mathbb{R} \rightarrow T^{*} \mathbb{R}$ for the Lagrangian from Problem 3. Is λ_{L} a diffeomorphism?
- Problem 5. Let

$$
\Pi=\xi \partial_{\xi} \otimes \partial \eta+2 \eta \partial_{\xi} \otimes \partial_{\xi}
$$

be a linear tensor on $\left(\mathbb{R}^{2}\right)^{*}=\{(\xi, \eta)\}$. Find the bracket on \mathbb{R}^{2} induced by Π, the phase dynamics $\mathcal{D} \subset T\left(\mathbb{R}^{2}\right)^{*}$, corresponding to the Lagrangian $L=\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)$, and the Euler-Lagrange equations.

THANK YOU FOR YOUR ATTENTION!

