DOUBLE STRUCTURES AND ALGEBROIDS

Janusz Grabowski
(Polish Academy of Sciences)

May 30, 2021

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algehroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Plan of the talk

- Double vector bundles
- n-fold graded bundles
- Canonical examples
- Canonical isomorphism
- Graded-linear bundles
- Lie algebroids
- General algebroids
- Non-holonomic reduction
- Groupoids
- Lie groupoids and their Lie algebroids
- Examples: Pair and Ehresmann groupoids
- Home work

Double vector bundles

In geometry and applications one often encounters double vector bundles, i.e. manifolds equipped with two vector bundle structures which are compatible in a categorical sense. They were defined by Pradines and studied by Mackenzie, Konieczna (Grabowska), and Urbański as vector bundles in the category of vector bundles.
A double vector bundle $(D ; A, B ; M)$ is a system of four vector bundle

structures

in which D has two vector bundles structures, on bases A and B. The latter are themselves vector bundles on M, such that each of the four structure maps of each vector bundle structure on D (namely the bundle projection, zero section, addition and scalar multiplication) is a morphism of vector bundles with respect to the other structures.

Double vector bundles

In geometry and applications one often encounters double vector bundles, i.e. manifolds equipped with two vector bundle structures which are compatible in a categorical sense. They were defined by Pradines and studied by Mackenzie, Konieczna (Grabowska), and Urbański as vector bundles in the category of vector bundles. More precisely:

Definition

A double vector bundle $(D ; A, B ; M)$ is a system of four vector bundle structures

in which D has two vector bundles structures, on bases A and B. The latter are themselves vector bundles on M, such that each of the four structure maps of each vector bundle structure on D (namely the bundle projection, zero section, addition and scalar multiplication) is a morphism of vector bundles with respect to the other structures.

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0_{m}^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$.
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and A, with $\tilde{0}^{A}: A \rightarrow D, a \mapsto \tilde{0}_{a}^{A}$, for the zero-section.
- Similarly, in the horizontal bundle structure on D with base B we write $+_{B}$ and B, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{0}_{b}^{B}$, for the zero-section.
- The two structures on D, namely $\left(D, q_{B}^{D}, B\right)$ and $\left(D, q_{A}^{D}, A\right)$ will also be denoted, respectively, by \tilde{D}_{B} and \tilde{D}_{A}, and called the horizontal bundle structure and the vertical bundle structure.

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and A, with $\tilde{0}^{A}: A \rightarrow D, a \mapsto \tilde{0}_{a}^{A}$, for the zero-section.
- Similarly, in the horizontal bundle structure on D with base B we write $+_{B}$ and ${ }_{B}$, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{O}_{b}^{B}$, for the zero-section
- The two structures on D, namely $\left(D, q_{B}^{D}, B\right)$ and $\left(D, q_{A}^{D}, A\right)$ will also be denoted, respectively, by \tilde{D}_{B} and \tilde{D}_{A}, and called the horizontal bundle structure and the vertical bundle structure.

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0_{m}^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and A, with $\tilde{0}^{A}: A \rightarrow D, a \mapsto \tilde{0}_{a}^{A}$ for the zero-section
- Similarly in the horizontal bundle structure on D with base B we write $+_{B}$ and B, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{O}_{b}^{B}$, for the zero-section.
- The two structures on D, namely $\left(D, q_{B}^{D}, B\right)$ and $\left(D, q_{A}^{D}, A\right)$ will also be denoted, respectively, by \tilde{D}_{B} and \tilde{D}_{A}, and called the horizontal bundle structure and the vertical bundle structure

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0_{m}^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$.
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and A, with $\tilde{0}^{A}: A \rightarrow D, a \mapsto \tilde{0}_{a}^{A}$ for the zero-section
- Similarly, in the horizontal bundle structure on D with base B we write $+_{B}$ and B, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{O}_{b}^{B}$, for the zero-section - The two structures on D, namely $\left(D, a_{B}^{D}, B\right)$ and $\left(D, a_{A}^{D}, A\right)$ will also be denoted, respectively, by \tilde{D}_{B} and \tilde{D}_{A}, and called the horizontal bundle structure and the vertical bundle structure.

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0_{m}^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$.
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and A_{A}, with $\tilde{0}^{A}: A \rightarrow D$, $a \mapsto \tilde{0}_{a}^{A}$, for the zero-section.
- Similarly, in the horizontal bundle structure on D with base B we
write $+_{B}$ and B, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{0}_{b}^{B}$, for the zero-section
 be denoted, respectively, by \tilde{D}_{B} and \tilde{D}_{A}, and called the horizontal bundle structure and the vertical bundle structure

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0_{m}^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$.
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and $\cdot A$, with $\tilde{0}^{A}: A \rightarrow D, a \mapsto \tilde{0}_{a}^{A}$, for the zero-section.
- Similarly, in the horizontal bundle structure on D with base B we write $+_{B}$ and $\cdot B$, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{0}_{b}^{B}$, for the zero-section.

The structure of double vector bundles

- In the above figure, we refer to A and B as the side bundles of D, and to M as the double base.
- In the two side bundles, the addition and scalar multiplication are denoted by the usual symbols + and juxtaposition, respectively.
- We distinguish the two zero-sections, writing $0^{A}: M \rightarrow A, m \mapsto 0_{m}^{A}$, and $0^{B}: M \rightarrow B, m \mapsto 0_{m}^{B}$.
- In the vertical bundle structure on D with base A, the vector bundle operations are denoted by $+_{A}$ and $\cdot A$, with $\tilde{0}^{A}: A \rightarrow D, a \mapsto \tilde{0}_{a}^{A}$, for the zero-section.
- Similarly, in the horizontal bundle structure on D with base B we write $+_{B}$ and ${ }_{B}$, with $\tilde{0}^{B}: B \rightarrow D, b \mapsto \tilde{0}_{b}^{B}$, for the zero-section.
- The two structures on D, namely $\left(D, q_{B}^{D}, B\right)$ and $\left(D, q_{A}^{D}, A\right)$ will also be denoted, respectively, by \tilde{D}_{B} and \tilde{D}_{A}, and called the horizontal bundle structure and the vertical bundle structure.

Double vector bundles - compatibility conditions

The condition that each vector bundle operation in D is a morphism with respect to the other is equivalent to the following conditions, known as the interchange laws:

$$
\begin{aligned}
& \left(\begin{array}{lll}
d_{1} & +_{B} & d_{2}
\end{array}\right)+_{A}\left(\begin{array}{lll}
d_{3} & +_{B} & d_{4}
\end{array}\right)=\left(\begin{array}{lll}
d_{1} & +_{A} & d_{3}
\end{array}\right)+_{B}\left(d_{2}+_{A} d_{4}\right), \\
& t \cdot{ }_{A}\left(d_{1}+B d_{2}\right)=t \cdot{ }_{A} d_{1}+B t \cdot{ }_{A} d_{2}, \\
& t \cdot B\left(d_{1}+A d_{2}\right)=t \cdot B d_{1}+A t \cdot B d_{2}, \\
& t \cdot A(s \cdot B d)=s \cdot B\left(t \cdot A_{A} d\right) \text {, } \\
& \tilde{0}_{a_{1}+a_{2}}^{A}=\tilde{0}_{a_{1}}^{A}+B \tilde{0}_{a_{2}}^{A}, \\
& \tilde{0}_{t a}^{A}=t \cdot B \tilde{0}_{a}^{A}, \\
& \tilde{0}_{b_{1}+b_{2}}^{B}=\tilde{0}_{b_{1}}^{B}+{ }_{A} \tilde{0}_{b_{2}}^{A}, \\
& \tilde{0}_{t b}^{B}=t \cdot A \tilde{0}_{b}^{B} .
\end{aligned}
$$

The core

We denote by C the intersection of the two kernels:

$$
C=\left\{c \in D \mid \exists m \in M \text { such that } q_{B}^{D}(c)=0_{m}^{B}, \quad q_{A}^{D}(c)=0_{m}^{A}\right\},
$$

which is called the core, and together with the map $q_{c}: c \mapsto m$, $\left(C, q_{C}, M\right)$ is also a vector bundle over M.
Eventually we can write the diagram below to emphasis the core of the relevant double vector bundle.

The core

We denote by C the intersection of the two kernels:

$$
C=\left\{c \in D \mid \exists m \in M \text { such that } q_{B}^{D}(c)=0_{m}^{B}, \quad q_{A}^{D}(c)=0_{m}^{A}\right\},
$$

which is called the core, and together with the map $q_{c}: c \mapsto m$, $\left(C, q_{C}, M\right)$ is also a vector bundle over M.
Eventually we can write the diagram below to emphasis the core of the relevant double vector bundle.

Double vector bundles - reference example

- Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
- Consider the manifold

$$
D=A \times_{M} B \times M C .
$$

- D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections
$a_{A}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto a_{m} \in A, \quad a_{B}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto b_{m} \in B$ obvious embeddings
$\tilde{0}^{A}: A \ni a_{m} \mapsto\left(a_{m}, 0_{m}^{B}, 0_{m}^{C}\right) \in D, \quad \tilde{0}^{B}: B \ni b_{m} \mapsto\left(0_{m}^{A}, b_{m}, 0_{m}^{C}\right) \in D$,
and obvious vector space structures in fibers:

$$
\left(a_{m}, b_{m}, c_{m}\right)+{ }_{A}\left(a_{m}, b_{m}^{\prime}, c_{m}^{\prime}\right)=\left(a_{m}, b_{m}+b_{m}^{\prime}, c_{m}+c_{m}^{\prime}\right), \text { etc. }
$$

- Actually, every double vector bundle is locally of this form.
- In particular, any Whitney direct sum $A \oplus_{M} B$, identified with $\simeq A \times M B$, can be given a double vector bundle structure,

Double vector bundles - reference example

- Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
- Consider the manifold

$$
D=A \times_{M} B \times_{M} C .
$$

- D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections $q_{A}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto a_{m} \in A, \quad q_{B}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto b_{m} \in B$ obvious embeddings

and obvious vector space structures in fibers:

$$
\left(a_{m}, b_{m}, c_{m}\right)+_{A}\left(a_{m}, b_{m}^{\prime}, c_{m}^{\prime}\right)=\left(a_{m}, b_{m}+b_{m}^{\prime}, c_{m}+c_{m}^{\prime}\right),
$$

- Actually, every double vector bundle is locally of this form.
- In particular, any Whitney direct sum $A \oplus_{M} B$, identified with $\simeq A \times_{M} B$, can be given a double vector bundle structure.

Double vector bundles - reference example

- Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
- Consider the manifold

$$
D=A \times_{M} B \times_{M} C .
$$

- D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections $a_{\Lambda}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto a_{m} \in A, \quad a_{B}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto b_{m} \in B$ obvious embeddings

and obvious vector space structures in fibers:

$$
\left(a_{m}, b_{m}, c_{m}\right)+A\left(a_{m}, b_{m}^{\prime}, c_{m}^{\prime}\right)=\left(a_{m}, b_{m}+b_{m}^{\prime}, c_{m}+c_{m}^{\prime}\right),
$$

- Actually, every double vector bundle is locally of this form.
- In particular, any Whitney direct sum $A \oplus M B$, identified with $\simeq A \times{ }_{M} B$

Double vector bundles - reference example

- Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
- Consider the manifold

$$
D=A \times_{M} B \times_{M} C .
$$

- D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections
$q_{A}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto a_{m} \in A, \quad q_{B}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto b_{m} \in B$, obvious embeddings
$\tilde{0}^{A}: A \ni a_{m} \mapsto\left(a_{m}, 0_{m}^{B}, 0_{m}^{C}\right) \in D, \quad \tilde{0}^{B}: B \ni b_{m} \mapsto\left(0_{m}^{A}, b_{m}, 0_{m}^{C}\right) \in D$,
and obvious vector space structures in fibers:

$$
\left(a_{m}, b_{m}, c_{m}\right)+_{A}\left(a_{m}, b_{m}^{\prime}, c_{m}^{\prime}\right)=\left(a_{m}, b_{m}+b_{m}^{\prime}, c_{m}+c_{m}^{\prime}\right), \text { etc. }
$$

- Actually, every double vector bundle is locally of this form.
- In particular, any Whitney direct sum $A \oplus_{M} B$, identified with

Double vector bundles - reference example

- Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
- Consider the manifold

$$
D=A \times_{M} B \times_{M} C .
$$

- D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections
$q_{A}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto a_{m} \in A, \quad q_{B}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto b_{m} \in B$, obvious embeddings
$\tilde{0}^{A}: A \ni a_{m} \mapsto\left(a_{m}, 0_{m}^{B}, 0_{m}^{C}\right) \in D, \quad \tilde{0}^{B}: B \ni b_{m} \mapsto\left(0_{m}^{A}, b_{m}, 0_{m}^{C}\right) \in D$,
and obvious vector space structures in fibers:

$$
\left(a_{m}, b_{m}, c_{m}\right)+_{A}\left(a_{m}, b_{m}^{\prime}, c_{m}^{\prime}\right)=\left(a_{m}, b_{m}+b_{m}^{\prime}, c_{m}+c_{m}^{\prime}\right), \text { etc. }
$$

- Actually, every double vector bundle is locally of this form.

Double vector bundles - reference example

- Let $q_{A}: A \rightarrow M, q_{B}: B \rightarrow M, q_{C}: C \rightarrow M$ be vector bundles.
- Consider the manifold

$$
D=A \times_{M} B \times_{M} C .
$$

- D is a double vector bundle (with side bundles A and B, and the core C) with respect to the obvious projections
$q_{A}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto a_{m} \in A, \quad q_{B}^{D}: D \ni\left(a_{m}, b_{m}, c_{m}\right) \mapsto b_{m} \in B$, obvious embeddings
$\tilde{0}^{A}: A \ni a_{m} \mapsto\left(a_{m}, 0_{m}^{B}, 0_{m}^{C}\right) \in D, \quad \tilde{0}^{B}: B \ni b_{m} \mapsto\left(0_{m}^{A}, b_{m}, 0_{m}^{C}\right) \in D$,
and obvious vector space structures in fibers:

$$
\left(a_{m}, b_{m}, c_{m}\right)+_{A}\left(a_{m}, b_{m}^{\prime}, c_{m}^{\prime}\right)=\left(a_{m}, b_{m}+b_{m}^{\prime}, c_{m}+c_{m}^{\prime}\right), \text { etc. }
$$

- Actually, every double vector bundle is locally of this form.
- In particular, any Whitney direct sum $A \oplus_{M} B$, identified with $\simeq A \times_{M} B$, can be given a double vector bundle structure.

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines to double graded bundles.
- However, thanks to our simple description in terms of a homogeneity structure, the 'diagrammatic' definition of Pradines can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:

Definition (Grabowski-Rotkiewicz)

A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R} \text {. }
$$

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines to double graded bundles.
- However, thanks to our simple description in terms of a homogeneity structure, the 'diagrammatic' definition of Pradines can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:

Definition (Grabowski-Rotkiewicz)

A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines to double graded bundles.
- However, thanks to our simple description in terms of a homogeneity structure, the 'diagrammatic' definition of Pradines can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:

Definition (Grabowski-Rotkiewicz)

A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

Double Graded Bundles

- We can extend the concept of a double vector bundle of Pradines to double graded bundles.
- However, thanks to our simple description in terms of a homogeneity structure, the 'diagrammatic' definition of Pradines can be substantially simplified.
- As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:

Definition (Grabowski-Rotkiewicz)

A double graded bundle is a manifold equipped with two homogeneity structures h^{1}, h^{2} which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

n-fold Graded Bundles

- The above condition can also be formulated as commutation of the corresponding weight vector fields, $\left[\nabla^{1}, \nabla^{2}\right]=0$.
- For vector bundles this is equivalent to the concept of a double vector bundle in the sense of Pradines and Mackenzie.

Theorem (Grabowski Petkiewiez)

The concept of a double vector bundle, understood as a particular double graded bundle in the above sense, coincides with that of Pradines.

- All this can be extended to n-fold graded bundles in the obvious way:

Definition

A n-fold gracled bundle is a manifold equipped with n homogeneity
structures h^{1}, \ldots, h^{n} which are compatible in the sense that

n-fold Graded Bundles

- The above condition can also be formulated as commutation of the corresponding weight vector fields, $\left[\nabla^{1}, \nabla^{2}\right]=0$.
- For vector bundles this is equivalent to the concept of a double vector bundle in the sense of Pradines and Mackenzie.

- All this can be extended to n-fold graded bundles in the obvious way:

Definition

A n-fold graded bundle is a manifold equipped with n homogeneity
structures h^{1}, \ldots, h^{n} which are compatible in the sense that

n-fold Graded Bundles

- The above condition can also be formulated as commutation of the corresponding weight vector fields, $\left[\nabla^{1}, \nabla^{2}\right]=0$.
- For vector bundles this is equivalent to the concept of a double vector bundle in the sense of Pradines and Mackenzie.

Theorem (Grabowski-Rotkiewicz)

The concept of a double vector bundle, understood as a particular double graded bundle in the above sense, coincides with that of Pradines.

- All this can be extended to n-fold graded bundles in the obvious way:

Definition

A n-fold araded bundle is a manifold equipped with n homogeneity structures h^{1}, \ldots, h^{n} which are compatible in the sense that

n-fold Graded Bundles

- The above condition can also be formulated as commutation of the corresponding weight vector fields, $\left[\nabla^{1}, \nabla^{2}\right]=0$.
- For vector bundles this is equivalent to the concept of a double vector bundle in the sense of Pradines and Mackenzie.

Theorem (Grabowski-Rotkiewicz)

The concept of a double vector bundle, understood as a particular double graded bundle in the above sense, coincides with that of Pradines.

- All this can be extended to n-fold graded bundles in the obvious way:

Definition

A n-fold graded bundle is a manifold equipped with n homogeneity structures h^{1}, \ldots, h^{n} which are compatible in the sense that

$$
h_{t}^{i} \circ h_{s}^{j}=h_{s}^{j} \circ h_{t}^{i} \quad \text { for all } s, t \in \mathbb{R} \quad \text { and } \quad i, j=1, \ldots, n .
$$

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE.

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE.

$$
\begin{aligned}
& \tau: E \longrightarrow M \\
& \left(x^{a}, y^{i}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE.

$$
\begin{aligned}
& \tau: E \longrightarrow M \\
& \left(x^{a}, y^{i}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{M}: \text { TM } \longrightarrow M \\
& \left(x^{a}, \dot{x}^{b}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE.

$$
\begin{aligned}
& \tau: E \longrightarrow M \\
& \left(x^{a}, y^{i}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{M}: \text { TM } \longrightarrow M \\
& \left(x^{a}, \dot{x}^{b}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE.

$$
\begin{aligned}
& \tau: E \longrightarrow M \\
& \left(x^{a}, y^{i}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{M}: \text { TM } \longrightarrow M \\
& \left(x^{a}, \dot{x}^{b}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

Double graded bundles - examples

Proposition

The tangent and phase lifts of graded bundles are compatible with the vector bundle structures of the tangent (resp., cotangent) bundle.

First example: TE.

$$
\begin{aligned}
& \tau: E \longrightarrow M \\
& \left(x^{a}, y^{i}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{M}: \text { TM } \longrightarrow M \\
& \left(x^{a}, \dot{x}^{b}\right) \longmapsto\left(x^{a}\right)
\end{aligned}
$$

$$
\begin{gathered}
\nabla^{1}=\dot{x}^{a} \partial_{\dot{x}^{a}}+\dot{y}^{i} \partial_{\dot{y}^{i}} \\
\nabla^{2}=\mathrm{d}_{\mathrm{T}}\left(y^{i} \partial_{y^{i}}\right)=y^{i} \partial_{y^{i}}+\dot{y}^{j} \partial_{\dot{y}^{j}}
\end{gathered}
$$

Double graded bundles - examples

Second example: $T^{*} E^{*}$.

Double graded bundles - examples

Second example: $T^{*} E^{*}$.

$$
\begin{aligned}
& \pi_{E^{*}}: \mathrm{T}^{*} E^{*} \longrightarrow E^{*} \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, \xi_{i}\right)
\end{aligned}
$$

Double graded bundles - examples

Second example: $\mathrm{T}^{*} E^{*}$.

$$
\begin{aligned}
& \pi_{E^{*}}: \mathrm{T}^{*} E^{*} \longrightarrow E^{*} \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, \xi_{i}\right) \\
& \zeta: \mathrm{T}^{*} E^{*} \longrightarrow E \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, y^{j}\right)
\end{aligned}
$$

Double graded bundles - examples

Second example: $T^{*} E^{*}$.

$$
\begin{aligned}
& \pi_{E^{*}}: \mathrm{T}^{*} E^{*} \longrightarrow E^{*} \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, \xi_{i}\right) \\
& \zeta: \mathrm{T}^{*} E^{*} \longrightarrow E \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, y^{j}\right)
\end{aligned}
$$

Double graded bundles - examples

Second example: $T^{*} E^{*}$.

$$
\begin{aligned}
& \pi_{E^{*}}: \mathrm{T}^{*} E^{*} \longrightarrow E^{*} \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, \xi_{i}\right) \\
& \zeta: \mathrm{T}^{*} E^{*} \longrightarrow E \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, y^{j}\right)
\end{aligned}
$$

Double graded bundles - examples

Second example: $T^{*} E^{*}$.

$$
\begin{aligned}
& \pi_{E^{*}}: \mathrm{T}^{*} E^{*} \longrightarrow E^{*} \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, \xi_{i}\right) \\
& \zeta: \mathrm{T}^{*} E^{*} \longrightarrow E \\
& \left(x^{a}, \xi_{i}, p_{b}, y^{j}\right) \longmapsto\left(x^{a}, y^{j}\right)
\end{aligned}
$$

$$
\nabla^{1}=p_{a} \partial_{p_{a}}+y^{i} \partial_{y^{i}}, \quad \nabla^{2}=p_{a} \partial_{p_{a}}+\xi_{i} \partial_{\xi_{i}}
$$

Canonical isomorphism

Canonical isomorphism: $\mathrm{T}^{*} E^{*} \simeq \mathrm{~T}^{*} E$.

$T^{*} E^{*}$ is (symplectically) isomorphic to $T^{*} E$. The graph of the canonical d.v.b. anti-symplectic isomorphism \mathcal{R} is the lagrangian submanifold generated in

Canonical isomorphism

Canonical isomorphism: $\mathrm{T}^{*} E^{*} \simeq \mathrm{~T}^{*} E$.

$$
\left(x^{a}, \xi_{i}, p_{b}, y^{j}\right)
$$

$T^{*} E^{*}$ is (symplectically) isomorphic to $T^{*} E$. The graph of the canonical d.v.b. anti-symplectic isomorphism \mathcal{R} is the lagrangian submanifold generated in

Canonical isomorphism

Canonical isomorphism: $\mathrm{T}^{*} E^{*} \simeq \mathrm{~T}^{*} E$.

$$
\left(x^{a}, \xi_{i}, p_{b}, y^{j}\right)
$$

$$
\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right)
$$

$T^{*} E^{*}$ is (symplectically) isomorphic to $T^{*} E$. The graph of the canonical d.v.b. anti-symplectic isomorphism \mathcal{R} is the lagrangian submanifold generated in

Canonical isomorphism

Canonical isomorphism: $\mathrm{T}^{*} E^{*} \simeq \mathrm{~T}^{*} E$.

$$
\left(x^{a}, \xi_{i}, p_{b}, y^{j}\right)
$$

$$
\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right)
$$

$\mathrm{T}^{*} E^{*}$ is (symplectically) isomorphic to $\mathrm{T}^{*} E$. The graph of the canonical d.v.b. anti-symplectic isomorphism \mathcal{R} is the lagrangian submanifold generated in

$$
\begin{gathered}
\mathrm{T}^{*}\left(E^{*} \times E\right) \simeq \mathrm{T}^{*} E^{*} \times \mathrm{T}^{*} E \quad \text { by } \quad E^{*} \times_{M} E \ni(\xi, y) \longmapsto \xi(y) \in \mathbb{R} . \\
\\
\mathcal{R}:\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right) \longmapsto\left(x^{a}, \xi_{i},-p_{b}, y^{j}\right) .
\end{gathered}
$$

Graded linear bundles

- A double graded bundle whose one structure is linear we will call a graded linear bundle (GrL-bundle). Canonical examples are TF and $T^{*} F$ with the lifted and the vector bundle structures. Iterated lifts, $\mathrm{TT}^{*} F \simeq \mathrm{~T}^{*} \mathrm{~T} F$ lead to triple structures of this kind.
- Example. The weight vector field of the lifted graded structure on $\mathrm{TT}^{2} M$ with coordinates $\left(x^{a}, \dot{x}^{b}, \ddot{x}^{c}, \delta x^{d}, \delta \dot{x}^{e}, \delta \ddot{x}^{f}\right)$ is

$$
\nabla^{2}=\dot{x}^{b} \partial_{\dot{x}^{b}}+2 \ddot{x}^{c} \partial_{\ddot{x}^{c}}+\delta \dot{x}^{e} \partial_{\delta \dot{x}^{e}}+2 \delta \ddot{x}^{f} \partial_{\delta \ddot{x}^{f}} .
$$

It yields a GrL-bundle with the standard Euler vector field of the tangent bundle structure $\nabla^{1}=\delta x^{d} \partial_{\delta x^{d}}+\delta \dot{x}^{e} \partial_{\delta \dot{x}^{e}}+\delta \ddot{x}^{f} \partial_{\delta \ddot{x}}$.

- Another example: if $\tau: E \rightarrow M$ is a vector bundle, then $\Lambda^{k} T E$ is canonically a GrL-bundle:

Graded linear bundles

- A double graded bundle whose one structure is linear we will call a graded linear bundle (GrL-bundle). Canonical examples are TF and $T^{*} F$ with the lifted and the vector bundle structures. Iterated lifts, $\mathrm{TT}^{*} F \simeq \mathrm{~T}^{*} \mathrm{~T} F$ lead to triple structures of this kind.

- Example. The weight vector field of the lifted graded structure on

 TT ${ }^{2} M$ with coordinates $\left(x^{a}, \dot{x}^{b}, \ddot{x}^{c}, \delta x^{d}, \delta \dot{x}^{e}, \delta \ddot{x}^{f}\right)$ is It yields a GrL-bundle with the standard Euler vector field of the tangent bundle structure canonically a GrL-bundle:

Graded linear bundles

- A double graded bundle whose one structure is linear we will call a graded linear bundle (GrL-bundle). Canonical examples are TF and $\mathrm{T}^{*} F$ with the lifted and the vector bundle structures. Iterated lifts, $\mathrm{TT}^{*} F \simeq \mathrm{~T}^{*} \mathrm{~T} F$ lead to triple structures of this kind.
- Example. The weight vector field of the lifted graded structure on $\mathrm{TT}^{2} M$ with coordinates ($x^{a}, \dot{x}^{b}, \ddot{x}^{c}, \delta x^{d}, \delta \dot{x}^{e}, \delta \ddot{x}^{f}$) is

$$
\nabla^{2}=\dot{x}^{b} \partial_{\dot{x}^{b}}+2 \ddot{x}^{c} \partial_{\ddot{x}^{c}}+\delta \dot{x}^{e} \partial_{\delta \dot{x}^{e}}+2 \delta \ddot{x}^{f} \partial_{\delta \ddot{x}^{f}} .
$$

It yields a GrL-bundle with the standard Euler vector field of the tangent bundle structure $\nabla^{1}=\delta x^{d} \partial_{\delta x^{d}}+\delta \dot{x}^{e} \partial_{\delta \dot{x}^{e}}+\delta \ddot{x}^{f} \partial_{\delta \ddot{x}}$.
canonically a GrL-bundle:

Graded linear bundles

- A double graded bundle whose one structure is linear we will call a graded linear bundle (GrL-bundle). Canonical examples are TF and $\mathrm{T}^{*} F$ with the lifted and the vector bundle structures. Iterated lifts, $\mathrm{TT}^{*} F \simeq \mathrm{~T}^{*} \mathrm{~T} F$ lead to triple structures of this kind.
- Example. The weight vector field of the lifted graded structure on $\mathrm{TT}^{2} M$ with coordinates ($x^{a}, \dot{x}^{b}, \ddot{x}^{c}, \delta x^{d}, \delta \dot{x}^{e}, \delta \ddot{x}^{f}$) is

$$
\nabla^{2}=\dot{x}^{b} \partial_{\dot{x}^{b}}+2 \ddot{x}^{c} \partial_{\ddot{x}^{c}}+\delta \dot{x}^{e} \partial_{\delta \dot{x}^{e}}+2 \delta \ddot{x}^{f} \partial_{\delta \ddot{x}^{f}} .
$$

It yields a GrL-bundle with the standard Euler vector field of the tangent bundle structure $\nabla^{1}=\delta x^{d} \partial_{\delta x^{d}}+\delta \dot{x}^{e} \partial_{\delta \dot{x}^{e}}+\delta \ddot{x}^{f} \partial_{\delta \ddot{x} f}$.

- Another example: if $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} \mathrm{~T} E$ is canonically a GrL-bundle:

Linearity

Linearity of different geometrical structures is usually related to some double vector bundle structures.

Linearity

Linearity of different geometrical structures is usually related to some double vector bundle structures.

- A bivector field Π on a vector bundle E is linear if the corresponding map

$$
\widetilde{\Pi}: \mathrm{T}^{*} E \longrightarrow \mathrm{~T} E
$$

is a morphism of double vector bundles.

Linearity

Linearity of different geometrical structures is usually related to some double vector bundle structures.

- A bivector field Π on a vector bundle E is linear if the corresponding map

$$
\tilde{\Pi}: \mathrm{T}^{*} E \longrightarrow \mathrm{~T} E
$$

is a morphism of double vector bundles.

- A two-form ω on a vector bundle E is linear if the corresponding map

$$
\widetilde{\omega}: \mathrm{T} E \longrightarrow \mathrm{~T}^{*} E
$$

is a morphism of double vector bundles.

Linearity

Linearity of different geometrical structures is usually related to some double vector bundle structures.

- A bivector field Π on a vector bundle E is linear if the corresponding map

$$
\tilde{\Pi}: \mathrm{T}^{*} E \longrightarrow \mathrm{~T} E
$$

is a morphism of double vector bundles.

- A two-form ω on a vector bundle E is linear if the corresponding map

$$
\widetilde{\omega}: \mathrm{T} E \longrightarrow \mathrm{~T}^{*} E
$$

is a morphism of double vector bundles.

- A (linear) connection on a vector bundle E is a morphisms of double vector bundles $\Gamma: E \times_{M} \mathrm{TM} \rightarrow \mathrm{T} E$, that acts as the identity on the vector bundles E and $T M$:

$$
\left(\nabla_{X} \sigma\right)^{v}=\mathrm{T} \sigma(X)-\Gamma(\sigma, X)
$$

where $\sigma^{v}=y^{i}(x) \partial_{\dot{y}^{i}}$ is the vertical lift of the section σ :

$$
M \ni x \mapsto \sigma(x)=\left(y^{i}(x)\right) \in E
$$

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual;
- $\mathcal{A}^{i}(E)=\operatorname{Sec}\left(\wedge^{i} E\right)$, for $i=0,1,2, \ldots$, the module of sections of the bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E. We use affine coordinates $\left(x^{a}, \xi_{i}\right)$ on E^{*} and the dual coordinates (x^{a}, y^{i}) on E.

Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*}, $[\Pi, \Pi]_{\text {Schouten }}=0$. In local coordinates,

$$
\Pi=\frac{1}{2} c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \wedge \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \wedge \partial_{x^{b}},
$$

where $c_{i j}^{k}(x)=-c_{j i}^{k}(x)$.

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual; bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\oplus_{i \in \mathbb{N}} \mathcal{A}^{\prime}(E)$ the Grassmann algebra of multi-sections of E.

We use affine coordinates $\left(x^{a}, \xi_{i}\right)$ on E^{*} and the dual coordinates $\left(x^{a}, y^{i}\right)$

 on E.
Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*}. $[\Pi, \Pi]_{\text {Schouten }}=0$. In local coordinates,

$$
\Pi=\frac{1}{2} c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \wedge \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \wedge \partial_{x^{b}},
$$

where $c_{i j}^{k}(x)=-c_{j i}^{k}(x)$.

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual;
- $\mathcal{A}^{i}(E)=\operatorname{Sec}\left(\wedge^{i} E\right)$, for $i=0,1,2, \ldots$, the module of sections of the bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E. We use affine coordinates $\left(x^{a}, \xi_{i}\right)$ on E^{*} and the dual coordinates $\left(x^{a}, y^{i}\right)$

Definition
A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*} $[\Pi, \Pi]_{\text {Schouten }}=0$. In local coordinates,

$$
\Pi=\frac{1}{2} c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \wedge \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \wedge \partial_{x^{b}},
$$

where $c_{i j}^{k}(x)=-c_{j i}^{k}(x)$.

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual;
- $\mathcal{A}^{i}(E)=\operatorname{Sec}\left(\wedge^{i} E\right)$, for $i=0,1,2, \ldots$, the module of sections of the bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E.

Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*} $\lceil\Pi, \Pi]_{\text {Schouten }}=0$. In local coordinates,

$$
\Pi=\frac{1}{2} c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \wedge \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \wedge \partial_{x^{b}}
$$

where $c_{i j}^{k}(x)=-c_{j i}^{k}(x)$.

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual;
- $\mathcal{A}^{i}(E)=\operatorname{Sec}\left(\wedge^{i} E\right)$, for $i=0,1,2, \ldots$, the module of sections of the bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E.

We use affine coordinates $\left(x^{a}, \xi_{i}\right)$ on E^{*} and the dual coordinates $\left(x^{a}, y^{i}\right)$ on E.

Definition
A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*} $[\Pi, \Pi]_{\text {Schouten }}=0$. In local coordinates,

$$
\Pi=\frac{1}{2} c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \wedge \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \wedge \partial_{x^{b}}
$$

where $c_{i j}^{k}(x)=-c_{j i}^{k}(x)$.

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual;
- $\mathcal{A}^{i}(E)=\operatorname{Sec}\left(\wedge^{i} E\right)$, for $i=0,1,2, \ldots$, the module of sections of the bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E.

We use affine coordinates $\left(x^{a}, \xi_{i}\right)$ on E^{*} and the dual coordinates $\left(x^{a}, y^{i}\right)$ on E.

Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*}, $[\Pi, \Pi]_{\text {Schouten }}=0$.
\square

Lie algebroids

- $\tau: E \rightarrow M$ is a rank- n vector bundle over an m-dimensional manifold M, and $\pi: E^{*} \rightarrow M$ its dual;
- $\mathcal{A}^{i}(E)=\operatorname{Sec}\left(\wedge^{i} E\right)$, for $i=0,1,2, \ldots$, the module of sections of the bundle $\wedge^{i} E$.
- $\mathcal{A}(E)=\bigoplus_{i \in \mathbb{N}} \mathcal{A}^{i}(E)$ the Grassmann algebra of multi-sections of E.

We use affine coordinates $\left(x^{a}, \xi_{i}\right)$ on E^{*} and the dual coordinates $\left(x^{a}, y^{i}\right)$ on E.

Definition

A Lie algebroid structure on E is given by a linear Poisson tensor Π on E^{*}, $[\Pi, \Pi]_{\text {Schouten }}=0$. In local coordinates,

$$
\Pi=\frac{1}{2} c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \wedge \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \wedge \partial_{x^{b}}
$$

where $c_{i j}^{k}(x)=-c_{j i}^{k}(x)$.

Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket $\{\cdot, \cdot\} \sqcap$ on the algebra $C^{\infty}\left(E^{*}\right)$ of smooth functions on E^{*} by $\{\phi, \psi\} \Pi=\langle\Pi, \mathrm{d} \phi \wedge \mathrm{d} \psi\rangle$.

Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket $\{\cdot, \cdot\}_{\Pi}$ on the algebra $C^{\infty}\left(E^{*}\right)$ of smooth functions on E^{*} by $\{\phi, \psi\} \Pi=\langle\Pi, \mathrm{d} \phi \wedge \mathrm{d} \psi\rangle$.

Theorem

A Lie algebroid structure (E, Π) can be equivalently defined as

Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket $\{\cdot, \cdot\}_{\Pi}$ on the algebra $C^{\infty}\left(E^{*}\right)$ of smooth functions on E^{*} by $\{\phi, \psi\}_{\square}=\langle\Pi, \mathrm{d} \phi \wedge \mathrm{d} \psi\rangle$.

Theorem

A Lie algebroid structure (E, Π) can be equivalently defined as

- a Lie bracket $[\cdot, \cdot]_{п}$ on the space $\operatorname{Sec}(E)$, together with a vector bundle morphisms $\rho: E \rightarrow$ TM (the anchor), such that $[X, f Y]_{\sqcap}=\rho(X)(f) Y+f[X, Y]_{\sqcap}$

Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket $\{\cdot, \cdot\}_{\Pi}$ on the algebra $C^{\infty}\left(E^{*}\right)$ of smooth functions on E^{*} by $\{\phi, \psi\}_{\square}=\langle\Pi, \mathrm{d} \phi \wedge \mathrm{d} \psi\rangle$.

Theorem

A Lie algebroid structure (E, Π) can be equivalently defined as

- a Lie bracket $[\cdot, \cdot]_{\Pi}$ on the space $\operatorname{Sec}(E)$, together with a vector bundle morphisms $\rho: E \rightarrow$ TM (the anchor), such that

$$
\begin{equation*}
[X, f Y]_{\Pi}=\rho(X)(f) Y+f[X, Y]_{\Pi} \tag{1}
\end{equation*}
$$

for all $f \in C^{\infty}(M), X, Y \in \operatorname{Sec}(E)$,

- or as a homological derivation d" of degree 1 in the Grassmann algebra $\mathcal{A}\left(E^{*}\right)$ (de Rham derivative). The latter is a map and that, for $\alpha \in \mathcal{A}^{a}\left(E^{*}\right), \beta \in \mathcal{A}^{b}\left(E^{*}\right)$ we have

Lie algebroids - equivalent definitions

The bivector field Π defines a Poisson bracket $\{\cdot, \cdot\}_{\Pi}$ on the algebra $C^{\infty}\left(E^{*}\right)$ of smooth functions on E^{*} by $\{\phi, \psi\}_{\square}=\langle\Pi, \mathrm{d} \phi \wedge \mathrm{d} \psi\rangle$.

Theorem

A Lie algebroid structure (E, Π) can be equivalently defined as

- a Lie bracket $[\cdot, \cdot]_{\Pi}$ on the space $\operatorname{Sec}(E)$, together with a vector bundle morphisms $\rho: E \rightarrow$ TM (the anchor), such that

$$
\begin{equation*}
[X, f Y]_{\Pi}=\rho(X)(f) Y+f[X, Y]_{\Pi} \tag{1}
\end{equation*}
$$

for all $f \in C^{\infty}(M), X, Y \in \operatorname{Sec}(E)$,

- or as a homological derivation $\mathrm{d}^{П}$ of degree 1 in the Grassmann algebra $\mathcal{A}\left(E^{*}\right)$ (de Rham derivative). The latter is a map $\mathrm{d}^{\Pi}: \mathcal{A}\left(E^{*}\right) \rightarrow \mathcal{A}\left(E^{*}\right)$ such that $\mathrm{d}^{\Pi}: \mathcal{A}^{i}\left(E^{*}\right) \rightarrow \mathcal{A}^{i+1}\left(E^{*}\right),\left(\mathrm{d}^{\Pi}\right)^{2}=0$, and that, for $\alpha \in \mathcal{A}^{a}\left(E^{*}\right), \beta \in \mathcal{A}^{b}\left(E^{*}\right)$ we have

$$
\begin{equation*}
\mathrm{d}^{\Pi}(\alpha \wedge \beta)=\mathrm{d}^{\Pi} \alpha \wedge \beta+(-1)^{a} \alpha \wedge \mathrm{~d}^{\Pi} \beta \tag{2}
\end{equation*}
$$

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\iota\left([X, Y]_{\Pi}\right)=\{\iota(X), \iota(Y)\}_{\Pi},
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form
$\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten
bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi},
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi} \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(d^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form
$\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten
bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E
and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(\mathrm{d}^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle$, μ^{v} is the natural vertical lift of a k-form
bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(\mathrm{d}^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*},
and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(d^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields.
and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(\mathrm{d}^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(d^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

$$
\left[e_{i}, e_{j}\right]_{\Pi}(x)=c_{i j}^{k}(x) e_{k},
$$

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(d^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right]_{\Pi}(x) } & =c_{i j}^{k}(x) e_{k} \\
\rho\left(e_{i}\right)(x) & =\rho_{i}^{a}(x) \partial_{x^{a}}
\end{aligned}
$$

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(d^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right]_{\Pi}(x) } & =c_{i j}^{k}(x) e_{k} \\
\rho\left(e_{i}\right)(x) & =\rho_{i}^{a}(x) \partial_{x^{a}} \\
d^{\Pi} f(x) & =\rho_{i}^{a}(x) \frac{\partial f}{\partial x^{a}}(x) e^{i}
\end{aligned}
$$

Lie algebroids - equivalent definitions

These objects are related to Π according to the formulae

$$
\begin{aligned}
\iota\left([X, Y]_{\Pi}\right) & =\{\iota(X), \iota(Y)\}_{\Pi}, \\
\pi^{*}(\rho(X)(f)) & =\left\{\iota(X), \pi^{*} f\right\}_{\Pi}, \\
\left(d^{\square} \mu\right)^{v} & =\left[\Pi, \mu^{v}\right]_{S} .
\end{aligned}
$$

where $\iota(X)\left(e_{p}^{*}\right)=\left\langle X(p), e_{p}^{*}\right\rangle, \mu^{v}$ is the natural vertical lift of a k-form $\mu \in \mathcal{A}^{k}\left(E^{*}\right)$ to a vertical k-vector field on E^{*}, and $[\cdot, \cdot]_{S}$ is the Schouten bracket of multivector fields. In a local basis of sections $\left\{e_{1}, \ldots, e_{n}\right\}$ of E and the corresponding local coordinates,

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right]_{\Pi}(x) } & =c_{i j}^{k}(x) e_{k} \\
\rho\left(e_{i}\right)(x) & =\rho_{i}^{a}(x) \partial_{x^{a}} \\
d^{\sqcap} f(x) & =\rho_{i}^{a}(x) \frac{\partial f}{\partial x^{a}}(x) e^{i} \\
d^{\sqcap} e^{i}(x) & =c_{l k}^{i}(x) e^{k} \wedge e^{l}
\end{aligned}
$$

Lie algebroids - examples

- A Lie algebroid over a single point, with the zero anchor, is a Lie algebra.
- The tangent bundle, TM, of a manifold M, with bracket the Lie bracket of vector fields and with anchor the identity of $T M$, is a Lie algebroid over M. Any integrable sub-bundle of TM, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.
- If (M, Λ) is a Poisson manifold, then the cotangent bundle $T^{*} M$ is a Lie algebroid over M. The anchor is the map $\Lambda^{\#}: T^{*} M \rightarrow T M$ The Lie bracket $[,]_{\Lambda}$ of differential 1 -forms satisfies $[\mathrm{d} f, \mathrm{~d} g]_{\wedge}=\mathrm{d}\{f, g\}_{\wedge}$.
- If P is a principal bundle with structure group G, base M and projection p, the G-invariant vector fields on P are the sections of a vector bundle with base M, denoted $E=T P / G$, and called the Atiyah algebroid of the principal bundle P. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of G-invariant vector fields on P, and with surjective anchor induced by Tp: TP \rightarrow TM.

Lie algebroids - examples

- A Lie algebroid over a single point, with the zero anchor, is a Lie algebra.
- The tangent bundle, TM, of a manifold M, with bracket the Lie bracket of vector fields and with anchor the identity of $T M$, is a Lie algebroid over M. Any integrable sub-bundle of TM, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.
- If (M, Λ) is a Poisson manifold, then the cotangent bundle $T^{*} M$ is a Lie algebroid over M. The anchor is the map $\Lambda^{\#}: T^{*} M \rightarrow T M$ The Lie bracket $[,]_{\wedge}$ of differential 1 -forms satisfies $[\mathrm{d} f, \mathrm{dg}]_{\wedge}=\mathrm{d}\{f, g\}_{\wedge}$
- If P is a principal bundle with structure group G, base M and projection p, the G-invariant vector fields on P are the sections of a vector bundle with base M, denoted $E=T P / G$, and called the Atiyah algebroid of the principal bundle P. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of G-invariant vector fields on P, and with surjective anchor induced by Tp:TP \rightarrow TM

Lie algebroids - examples

- A Lie algebroid over a single point, with the zero anchor, is a Lie algebra.
- The tangent bundle, TM, of a manifold M, with bracket the Lie bracket of vector fields and with anchor the identity of TM, is a Lie algebroid over M. Any integrable sub-bundle of TM, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.

Lie algebroid over M. The anchor is the map $\Lambda^{\#}: T^{*} M \rightarrow T M$ The Lie bracket $[,]_{\wedge}$ of differential 1-forms satisfies $[\mathrm{d} f, \mathrm{~d} g]_{\wedge}=\mathrm{d}\{f, g\}_{\wedge}$

- If P is a principal bundle with structure group G, base M and projection p, the G-invariant vector fields on P are the sections of a vector bundle with base M, denoted $E=\mathrm{T} P / G$, and called the Atiyah algebroid of the principal bundle P. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of G-invariant vector fields on P, and with surjective anchor induced by

Lie algebroids - examples

- A Lie algebroid over a single point, with the zero anchor, is a Lie algebra.
- The tangent bundle, TM, of a manifold M, with bracket the Lie bracket of vector fields and with anchor the identity of TM, is a Lie algebroid over M. Any integrable sub-bundle of TM, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.
- If (M, Λ) is a Poisson manifold, then the cotangent bundle $T^{*} M$ is a Lie algebroid over M. The anchor is the map $\Lambda^{\#}: \mathrm{T}^{*} M \rightarrow \mathrm{TM}$ The Lie bracket $[,]_{\Lambda}$ of differential 1-forms satisfies $[\mathrm{d} f, \mathrm{~d} g]_{\Lambda}=\mathrm{d}\{f, g\}_{\Lambda}$.

Lie algebroids - examples

- A Lie algebroid over a single point, with the zero anchor, is a Lie algebra.
- The tangent bundle, TM, of a manifold M, with bracket the Lie bracket of vector fields and with anchor the identity of TM, is a Lie algebroid over M. Any integrable sub-bundle of TM, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.
- If (M, Λ) is a Poisson manifold, then the cotangent bundle $T^{*} M$ is a Lie algebroid over M. The anchor is the map $\Lambda^{\#}: \mathrm{T}^{*} M \rightarrow \mathrm{TM}$ The Lie bracket $[,]_{\Lambda}$ of differential 1-forms satisfies $[\mathrm{d} f, \mathrm{~d} g]_{\Lambda}=\mathrm{d}\{f, g\}_{\Lambda}$.
- If P is a principal bundle with structure group G, base M and projection p, the G-invariant vector fields on P are the sections of a vector bundle with base M, denoted $E=\mathrm{T} P / G$, and called the Atiyah algebroid of the principal bundle P. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of G-invariant vector fields on P, and with surjective anchor induced by $\mathrm{T} p: \mathrm{T} P \rightarrow \mathrm{~T} M$.

General algebroids

- We know that the linear bivector field Π on E^{*} induces a morphism of double vector bundles $\Pi^{\#}: \mathrm{T}^{*} E^{*} \rightarrow T E^{*}$, covering the identity on E^{*}. Composing it with the canonical isomorphism $\mathcal{R}: T^{*} E \rightarrow T^{*} E^{*}$, we get a morphism of double vector bundles $\varepsilon_{\Pi}: T^{*} E \rightarrow T E^{*}$ covering the identity on E^{*}
- A general algebroid is a double vector bundle morphism covering the identity on E^{*} :

General algebroids

- We know that the linear bivector field Π on E^{*} induces a morphism of double vector bundles $\Pi^{\#}: T^{*} E^{*} \rightarrow T E^{*}$, covering the identity on E^{*}. Composing it with the canonical isomorphism $\mathcal{R}: \mathrm{T}^{*} E \rightarrow \mathrm{~T}^{*} E^{*}$, we get a morphism of double vector bundles $\varepsilon_{\square}: T^{*} E \rightarrow T E^{*}$ covering the identity on E^{*}.
- A general alge
identity on E^{*}

General algebroids

- We know that the linear bivector field Π on E^{*} induces a morphism of double vector bundles $\Pi^{\#}: T^{*} E^{*} \rightarrow T E^{*}$, covering the identity on E^{*}. Composing it with the canonical isomorphism $\mathcal{R}: \mathrm{T}^{*} E \rightarrow \mathrm{~T}^{*} E^{*}$, we get a morphism of double vector bundles $\varepsilon_{\Pi}: T^{*} E \rightarrow T E^{*}$ covering the identity on E^{*}.
- A general algebroid is a double vector bundle morphism covering the identity on E^{*} :

In local coordinates,

$$
\varepsilon\left(x^{a}, y^{i}, p_{b}, \xi_{j}\right)=\left(x^{a}, \xi_{i}, \rho_{k}^{b}(x) y^{k}, c_{i j}^{k}(x) y^{i} \xi_{k}+\sigma_{j}^{a}(x) p_{a}\right) .
$$

Algebroids

Any such morphism is associated with a linear tensor field on E^{*},

$$
\Pi_{\varepsilon}=c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \otimes \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \otimes \partial_{x^{b}}-\sigma_{j}^{a}(x) \partial_{x^{a}} \otimes \partial_{\xi_{j}} .
$$

We speak about a skew algebroid (resp., Lie algebroid) if the tensor Π_{ε} is skew-symmetric (resp., Poisson tensor).

Algebroids

Any such morphism is associated with a linear tensor field on E^{*},

$$
\Pi_{\varepsilon}=c_{i j}^{k}(x) \xi_{k} \partial_{\xi_{i}} \otimes \partial_{\xi_{j}}+\rho_{i}^{b}(x) \partial_{\xi_{i}} \otimes \partial_{x^{b}}-\sigma_{j}^{a}(x) \partial_{x^{a}} \otimes \partial_{\xi_{j}}
$$

We speak about a skew algebroid (resp., Lie algebroid) if the tensor Π_{ε} is skew-symmetric (resp., Poisson tensor).

Theorem

An algebroid structure (E, ε) can be equivalently defined as a bilinear bracket $[\cdot, \cdot]_{\varepsilon}$ on sections of $\tau: E \rightarrow M$, together with vector bundle morphisms $a_{l}^{\varepsilon}, a_{r}^{\varepsilon}: E \rightarrow$ TM (left and right anchors), such that

$$
[f X, g Y]_{\varepsilon}=f\left(a_{l}^{\varepsilon} \circ X\right)(g) Y-g\left(a_{r}^{\varepsilon} \circ Y\right)(f) X+f g[X, Y]_{\varepsilon}
$$

for $f, g \in \mathcal{C}^{\infty}(M), X, Y \in \operatorname{Sec}(E)$.
For skew-algebroids the bracket is skew-symmetric, thus $a_{l}^{\varepsilon}=a_{r}^{\varepsilon}=\rho^{\varepsilon}$, and for Lie algebroids it satisfies the Jacobi identity,

$$
\left[[X, Y]_{\varepsilon}, Z\right]_{\varepsilon}=\left[X,[Y, Z]_{\varepsilon}\right]_{\varepsilon}-\left[Y,[X, Z]_{\varepsilon}\right]_{\varepsilon}
$$

Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated with the tensor Π_{ε}. We assume additionally that the vector bundle is Riemannian, i.e. E is equipped with a tensor which defines scalar products on fibers of E. For a linear subbundle D in E, supported on the whole M.
consider a decomposition
and the associated projection $p: E \rightarrow D$. With such a decomposition we can associate a skew-algebroid structure on D. The projection P induces a map on sections: $p: \operatorname{Sec}(E) \rightarrow \operatorname{Sec}(D)$ and thus a bracket

on sections of D - the nonholonomic restriction of $[\cdot, \cdot]$ along p. This is a skew algebroid bracket with the original anchor.
A particular case of this construction can be applied to a vector subbundle
D of $T M$, for M equipped with a Riemannian structure, e.g.
nonholonomic systems with mechanical Lagrangians.

Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated with the tensor Π_{ε}. We assume additionally that the vector bundle is Riemannian, i.e. E is equipped with a tensor which defines scalar products on fibers of E. For a linear subbundle D in E, supported on the whole M, consider a decomposition

$$
\begin{equation*}
E=D \oplus_{M} D^{\perp} \tag{3}
\end{equation*}
$$

and the associated projection $p: E \rightarrow D$. With such a decomposition we can associate a skew-algebroid structure on D.

Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated with the tensor Π_{ε}. We assume additionally that the vector bundle is Riemannian, i.e. E is equipped with a tensor which defines scalar products on fibers of E. For a linear subbundle D in E, supported on the whole M, consider a decomposition

$$
\begin{equation*}
E=D \oplus_{M} D^{\perp} \tag{3}
\end{equation*}
$$

and the associated projection $p: E \rightarrow D$. With such a decomposition we can associate a skew-algebroid structure on D. The projection P induces a map on sections: $p: \operatorname{Sec}(E) \rightarrow \operatorname{Sec}(D)$ and thus a bracket

$$
\begin{equation*}
[X, Y]_{\varepsilon_{p}}=p[X, Y]_{\varepsilon} \tag{4}
\end{equation*}
$$

on sections of D - the nonholonomic restriction of $[\cdot, \cdot]$ along p. skew algebroid bracket with the original anchor.
A particular case of this construction can be applied to a vector subbundle D of $T M$, for M equipped with a Riemannian structure, e.g nonholonomic systems with mechanical Lagrangians.

Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated with the tensor Π_{ε}. We assume additionally that the vector bundle is Riemannian, i.e. E is equipped with a tensor which defines scalar products on fibers of E. For a linear subbundle D in E, supported on the whole M, consider a decomposition

$$
\begin{equation*}
E=D \oplus_{M} D^{\perp} \tag{3}
\end{equation*}
$$

and the associated projection $p: E \rightarrow D$. With such a decomposition we can associate a skew-algebroid structure on D. The projection P induces a map on sections: $p: \operatorname{Sec}(E) \rightarrow \operatorname{Sec}(D)$ and thus a bracket

$$
\begin{equation*}
[X, Y]_{\varepsilon_{p}}=p[X, Y]_{\varepsilon} \tag{4}
\end{equation*}
$$

on sections of D - the nonholonomic restriction of $[\cdot, \cdot]$ along p. This is a skew algebroid bracket with the original anchor.
A particular case of this construction can be applied to a vector subbundle D of $T M$, for M equipped with a Riemannian structure, e.g nonholonomic systems with mechanical I agrangians

Non-holonomic reduction

Let ε be a Lie algebroid structure on a vector bundle E over M associated with the tensor Π_{ε}. We assume additionally that the vector bundle is Riemannian, i.e. E is equipped with a tensor which defines scalar products on fibers of E. For a linear subbundle D in E, supported on the whole M, consider a decomposition

$$
\begin{equation*}
E=D \oplus_{M} D^{\perp} \tag{3}
\end{equation*}
$$

and the associated projection $p: E \rightarrow D$. With such a decomposition we can associate a skew-algebroid structure on D. The projection P induces a map on sections: $p: \operatorname{Sec}(E) \rightarrow \operatorname{Sec}(D)$ and thus a bracket

$$
\begin{equation*}
[X, Y]_{\varepsilon_{p}}=p[X, Y]_{\varepsilon} \tag{4}
\end{equation*}
$$

on sections of D - the nonholonomic restriction of $[\cdot, \cdot]$ along p. This is a skew algebroid bracket with the original anchor.
A particular case of this construction can be applied to a vector subbundle D of TM, for M equipped with a Riemannian structure, e.g. nonholonomic systems with mechanical Lagrangians.

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \xlongequal{\text { def }}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g)) g=g=g \epsilon(\beta(g))$;
- (inverses) $g g^{-1}=\epsilon(\alpha(g))$ and $g^{-1} g=\epsilon(\beta(g))$

The elements of Γ_{2} are sometimes referred to as composable (or
admissible) pairs.
A groupoid Γ over a set Γ_{0} will be denoted $\Gamma \rightrightarrows \Gamma_{0}$

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \stackrel{\text { def }}{=}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$;
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g)) g=g=\sigma \in(\beta(g))$.
- (inverses) $g g^{-1}=\epsilon(\alpha(g))$ and $g^{-1} g=\epsilon(\beta(g))$

The elements of Γ_{2} are sometimes referred to as composable (or
admissible) pairs.
A groupoid 「over a set $\Gamma 0$ will be denoted $\Gamma \longrightarrow \Gamma \Gamma_{0}$
J.Grabowski (IMPAN) \quad Graded bundles in geometry and mechanics \quad May 30, 2021 $22 / 30$

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \stackrel{\text { def }}{=}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$;
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;

The elements of Γ_{2} are sometimes referred to as composable (or
admissible) pairs.
A groupoid Γ over a set Γ_{0} will be denoted $\Gamma \rightrightarrows \Gamma_{0}$.

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \stackrel{\text { def }}{=}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$;
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g)) g=g=g \epsilon(\beta(g))$;

The elements of Γ_{2} are sometimes referred to as composable (or
admissible) pairs.
A groupoid Γ over a set Γ_{0} will be denoted $\Gamma \rightrightarrows \Gamma_{0}$.

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \stackrel{\text { def }}{=}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$;
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g)) g=g=g \epsilon(\beta(g))$;
- (inverses) $g g^{-1}=\epsilon(\alpha(g))$ and $g^{-1} g=\epsilon(\beta(g))$.

The elements of Γ_{2} are sometimes referred to as composable (or
admissible) pairs.
A orounoid Γ over a set Γ_{0} will be denoted $\Gamma ~ \Gamma 0$.

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \xlongequal{\text { def }}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$;
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g)) g=g=g \epsilon(\beta(g))$;
- (inverses) $g g^{-1}=\epsilon(\alpha(g))$ and $g^{-1} g=\epsilon(\beta(g))$.

The elements of Γ_{2} are sometimes referred to as composable (or admissible) pairs.

Groupoids

Definition

A groupoid over a set Γ_{0} is a set Γ equipped with source and target mappings $\alpha, \beta: \Gamma \rightarrow \Gamma_{0}$, a multiplication map m from $\Gamma_{2} \stackrel{\text { def }}{=}\{(g, h) \in \Gamma \times \Gamma \mid \beta(g)=\alpha(h)\}$ to Γ, an injective map $\epsilon: \Gamma_{0} \rightarrow \Gamma$, and an involution $\iota: \Gamma \rightarrow \Gamma$, satisfying the following properties (where we write $g h$ for $m(g, h)$ and g^{-1} for $\left.\iota(g)\right)$:

- (anchor) $\alpha(g h)=\alpha(g)$ and $\beta(g h)=\beta(h)$;
- (associativity) $g(h k)=(g h) k$ in the sense that, if one side of the equation is defined, so is the other, and then they are equal;
- (identities) $\epsilon(\alpha(g)) g=g=g \epsilon(\beta(g))$;
- (inverses) $g g^{-1}=\epsilon(\alpha(g))$ and $g^{-1} g=\epsilon(\beta(g))$.

The elements of Γ_{2} are sometimes referred to as composable (or admissible) pairs.
A groupoid Γ over a set Γ_{0} will be denoted $\Gamma \rightrightarrows \Gamma_{0}$.

Groupoids: α - and β-fibers

- We can regard Γ_{0} as a subset in Γ, and thus ϵ as the identity, that simplifies the picture, since α, β become just projections in Γ.
- The inverse images of points under the source and target maps we call α - and β-fibres. The fibres through a point g, will be denoted by $\mathcal{F}^{\alpha}(g)$ and $\mathcal{F}^{\beta}(g)$, respectively.

- Another approach to groupoids is that of Zakrzewski:
in the definition of a group just replace maps with relations.

Groupoids: α - and β-fibers

- We can regard Γ_{0} as a subset in Γ, and thus ϵ as the identity, that simplifies the picture, since α, β become just projections in Γ.
- The inverse images of points under the source and target maps we call α - and β-fibres. The fibres through a point g, will be denoted by $\mathcal{F}^{\alpha}(g)$ and $\mathcal{F}^{\beta}(g)$, respectively.

- Another approach to groupoids is that of Zakrzewski:
in the definition of a group just replace maps with relations, छ

Groupoids: α - and β-fibers

- We can regard Γ_{0} as a subset in Γ, and thus ϵ as the identity, that simplifies the picture, since α, β become just projections in Γ.
- The inverse images of points under the source and target maps we call α - and β-fibres. The fibres through a point g, will be denoted by $\mathcal{F}^{\alpha}(g)$ and $\mathcal{F}^{\beta}(g)$, respectively.

- Another approach to groupoids is that of Zakrzewski:

Groupoids: α - and β-fibers

- We can regard Γ_{0} as a subset in Γ, and thus ϵ as the identity, that simplifies the picture, since α, β become just projections in Γ.
- The inverse images of points under the source and target maps we call α - and β-fibres. The fibres through a point g, will be denoted by $\mathcal{F}^{\alpha}(g)$ and $\mathcal{F}^{\beta}(g)$, respectively.

- Another approach to groupoids is that of Zakrzewski: in the definition of a group just replace maps with relations.

Groupoid as a small category

- The full information about the groupoid is contained in the multiplication relation:

$$
\Gamma_{3}=\left\{(x, y, z) \in \Gamma \times \Gamma \times \Gamma \mid(x, y) \in \Gamma_{2} \text { and } z=x y\right\}
$$

- Alternatively, a groupoid $\Gamma \rightrightarrows \Gamma_{0}$ is defined as a small category, i.e. a category whose objects form a set Γ_{0}, in which every morphism is an isomorphism. Elements of Γ represent morphisms in this category.

- Any group G is a groupoid over its neutral element, $G \rightrightarrows\{e\}$. Here, any morphism is an automorphism.

Groupoid as a small category

- The full information about the groupoid is contained in the multiplication relation:

$$
\Gamma_{3}=\left\{(x, y, z) \in \Gamma \times \Gamma \times \Gamma \mid(x, y) \in \Gamma_{2} \text { and } z=x y\right\}
$$

- Alternatively, a groupoid $\Gamma \rightrightarrows \Gamma_{0}$ is defined as a small category, i.e. a category whose objects form a set Γ_{0}, in which every morphism is an isomorphism. Elements of Γ represent morphisms in this category.

- Any group G is a groupoid over its neutral element, $G \rightrightarrows\{e\}$. Here, any morphism is an automorphism.

Groupoid as a small category

- The full information about the groupoid is contained in the multiplication relation:

$$
\Gamma_{3}=\left\{(x, y, z) \in \Gamma \times \Gamma \times \Gamma \mid(x, y) \in \Gamma_{2} \text { and } z=x y\right\}
$$

- Alternatively, a groupoid $\Gamma \rightrightarrows \Gamma_{0}$ is defined as a small category, i.e. a category whose objects form a set Γ_{0}, in which every morphism is an isomorphism. Elements of Γ represent morphisms in this category.

- Any group G is a groupoid over its neutral element, $G \rightrightarrows\{e\}$. Here, any morphism is an automorphism.

Groupoid as a small category

- The full information about the groupoid is contained in the multiplication relation:

$$
\Gamma_{3}=\left\{(x, y, z) \in \Gamma \times \Gamma \times \Gamma \mid(x, y) \in \Gamma_{2} \text { and } z=x y\right\}
$$

- Alternatively, a groupoid $\Gamma \rightrightarrows \Gamma_{0}$ is defined as a small category, i.e. a category whose objects form a set Γ_{0}, in which every morphism is an isomorphism. Elements of Γ represent morphisms in this category.

- Any group G is a groupoid over its neutral element, $G \rightrightarrows\{e\}$. Here, any morphism is an automorphism.

Lie groupoids

- In differential geometry we consider differentiable (Lie) groupoids (introduced by Ehresmann), i.e. groupoids $G \rightrightarrows M$, where G, G_{2}, G_{3}, M are smooth manifolds, α, β are smooth submersions, \in is an immersion and ι is a diffeomorphism.
- The anchor property implies that each element g of G determines the left and right translation maps

$$
I_{g}: \mathcal{F}^{\alpha}(\beta(g)) \rightarrow \mathcal{F}^{\alpha}(\alpha(g)), \quad r_{g}: \mathcal{F}^{\beta}(\alpha(g)) \rightarrow \mathcal{F}^{\beta}(\beta(g)),
$$

- Let us consider the vector bundle $\tau: A(G) \rightarrow M$, whose fiber at a point $x \in M$ is $A_{x} G=V_{\epsilon(x)} \alpha=\operatorname{Ker}\left(T_{\epsilon(x)} \alpha\right)$.
- With any sections X of $\tau, X \in \operatorname{Sec}(\tau)$, there is canonically associated a left-invariant vector field \bar{X} on G, the left prolongation of X, namely,

$$
\overleftarrow{X}(g)=\left(T_{\epsilon(\beta(g))} I_{g}\right)(X(\beta(g)))
$$

for $g \in G$. It is, by definition, tangent to α-fibers.

Lie groupoids

- In differential geometry we consider differentiable (Lie) groupoids (introduced by Ehresmann), i.e. groupoids $G \rightrightarrows M$, where G, G_{2}, G_{3}, M are smooth manifolds, α, β are smooth submersions, ϵ is an immersion and ι is a diffeomorphism.
- The anchor property implies that each element g of G determines the left and right translation maps
- Let us consider the vector bundle $\tau: A(G) \rightarrow M$, whose fiber at a point $x \in M$ is $A_{x} G=V_{\epsilon(x)} \alpha=\operatorname{Ker}\left(T_{\epsilon(x)} \alpha\right)$.
- With any sections X of $\tau, X, \operatorname{Sec}(\tau)$, there is canonically associated a left-invariant vector field X on G, the left prolongation of X, namely,

$$
\overleftarrow{X}(g)=\left(T_{\epsilon(\beta(g))} I_{g}\right)(X(\beta(g)))
$$

for $g \in G$. It is, by definition, tangent to α-fibers.

Lie groupoids

- In differential geometry we consider differentiable (Lie) groupoids (introduced by Ehresmann), i.e. groupoids $G \rightrightarrows M$, where G, G_{2}, G_{3}, M are smooth manifolds, α, β are smooth submersions, ϵ is an immersion and ι is a diffeomorphism.
- The anchor property implies that each element g of G determines the left and right translation maps

$$
I_{g}: \mathcal{F}^{\alpha}(\beta(g)) \rightarrow \mathcal{F}^{\alpha}(\alpha(g)), \quad r_{g}: \mathcal{F}^{\beta}(\alpha(g)) \rightarrow \mathcal{F}^{\beta}(\beta(g))
$$

- Let us consider the vector bundle $\tau: A(G) \rightarrow M$, whose fiber at a
- With any sections X of $\tau, X \in \operatorname{Sec}(\tau)$, there is canonically associated a left-invariant vector field X on G, the left prolongation of X, namely,

$$
\overleftarrow{X}(g)=\left(T_{\epsilon(\beta(g))} I_{g}\right)(X(\beta(g)))
$$

for $g \in G$. It is, by definition, tangent to α-fibers.

Lie groupoids

- In differential geometry we consider differentiable (Lie) groupoids (introduced by Ehresmann), i.e. groupoids $G \rightrightarrows M$, where G, G_{2}, G_{3}, M are smooth manifolds, α, β are smooth submersions, ϵ is an immersion and ι is a diffeomorphism.
- The anchor property implies that each element g of G determines the left and right translation maps

$$
I_{g}: \mathcal{F}^{\alpha}(\beta(g)) \rightarrow \mathcal{F}^{\alpha}(\alpha(g)), \quad r_{g}: \mathcal{F}^{\beta}(\alpha(g)) \rightarrow \mathcal{F}^{\beta}(\beta(g))
$$

- Let us consider the vector bundle $\tau: A(G) \rightarrow M$, whose fiber at a point $x \in M$ is $A_{x} G=V_{\epsilon(x)} \alpha=\operatorname{Ker}\left(T_{\epsilon(x)} \alpha\right)$.
a left-invariant vector field X on G, the left prolongation of X,
namely,
$\overleftarrow{X}(g)=\left(T_{\epsilon(\beta(g))} I_{g}\right)(X(\beta(g)))$
for $g \in G$. It is, by definition, tangent to α-fibers.

Lie groupoids

- In differential geometry we consider differentiable (Lie) groupoids (introduced by Ehresmann), i.e. groupoids $G \rightrightarrows M$, where G, G_{2}, G_{3}, M are smooth manifolds, α, β are smooth submersions, ϵ is an immersion and ι is a diffeomorphism.
- The anchor property implies that each element g of G determines the left and right translation maps

$$
I_{g}: \mathcal{F}^{\alpha}(\beta(g)) \rightarrow \mathcal{F}^{\alpha}(\alpha(g)), \quad r_{g}: \mathcal{F}^{\beta}(\alpha(g)) \rightarrow \mathcal{F}^{\beta}(\beta(g))
$$

- Let us consider the vector bundle $\tau: A(G) \rightarrow M$, whose fiber at a point $x \in M$ is $A_{x} G=V_{\epsilon(x)} \alpha=\operatorname{Ker}\left(T_{\epsilon(x)} \alpha\right)$.
- With any sections X of $\tau, X \in \operatorname{Sec}(\tau)$, there is canonically associated a left-invariant vector field \overleftarrow{X} on G, the left prolongation of X, namely,

$$
\overleftarrow{X}(g)=\left(T_{\epsilon(\beta(g))} I_{g}\right)(X(\beta(g)))
$$

for $g \in G$. It is, by definition, tangent to α-fibers.

Lie algebroid of a Lie groupoid

- We can now introduce a Lie algebroid structure $([\cdot, \cdot], \rho)$ on $A(G)$, which is defined by

$$
\begin{equation*}
\left.\overleftarrow{[X, Y]}=r^{t} X, \boxed{Y}\right], \quad p(X)(x)=\left(T_{\epsilon(x)} \beta\right)(X(x)) \tag{5}
\end{equation*}
$$

for $X, Y \in \Gamma(\tau)$ and $x \in M$.

- We recall that a Lie algebroid A over a manifold M is a real vector bundle $\tau: A \rightarrow M$ together with a skew-symmetric bracket $[\cdot, \cdot]$ on the space $\Gamma(\tau)$ of sections of $\tau: A \rightarrow M$ and a bundle map, called the anchor map, such that

$$
[X, f Y]=f[X, Y]+\rho(X)(f) Y
$$

for $X, Y \in \Gamma(\tau)$ and $f \in C^{\infty}(M)$. Here we denoted by ρ also the map induced by ρ on sections.

Theorem

For any groupoid $G \rightrightarrows M$, the formulae (5) define on $\tau: A(G) \rightarrow M$ the structure of a Lie algebroid.

Lie algebroid of a Lie groupoid

- We can now introduce a Lie algebroid structure $([\cdot, \cdot], \rho)$ on $A(G)$, which is defined by

$$
\begin{equation*}
\overleftarrow{[X, Y]}=[\overleftarrow{X}, \overleftarrow{Y}], \quad \rho(X)(x)=\left(T_{\epsilon(x)} \beta\right)(X(x)) \tag{5}
\end{equation*}
$$

for $X, Y \in \Gamma(\tau)$ and $x \in M$.
We recall that a Lie algebroid A over a manifold M is a real vector bundle $\tau: A \rightarrow M$ together with a skew-symmetric bracket $[\cdot, \cdot]$ on the space $\Gamma(\tau)$ of sections of $\tau: A \rightarrow M$ and a bundle map, called the anchor map, such that

for $X, Y \in \Gamma(\tau)$ and $f \in C^{\infty}(M)$. Here we denoted by ρ also the map induced by ρ on sections.

Theorem

For any groupoid $G \rightrightarrows M$, the formulae (5) define on $\tau: A(G) \rightarrow M$ the structure of a Lie algebroid.

Lie algebroid of a Lie groupoid

- We can now introduce a Lie algebroid structure ($[\cdot, \cdot], \rho$) on $A(G)$, which is defined by

$$
\begin{equation*}
\overleftarrow{[X, Y}]=[\overleftarrow{X}, \overleftarrow{Y}], \quad \rho(X)(x)=\left(T_{\epsilon(x)} \beta\right)(X(x)) \tag{5}
\end{equation*}
$$

for $X, Y \in \Gamma(\tau)$ and $x \in M$.

- We recall that a Lie algebroid A over a manifold M is a real vector bundle $\tau: A \rightarrow M$ together with a skew-symmetric bracket $[\cdot, \cdot]$ on the space $\Gamma(\tau)$ of sections of $\tau: A \rightarrow M$ and a bundle map, called the anchor map, such that

$$
[X, f Y]=f[X, Y]+\rho(X)(f) Y,
$$

for $X, Y \in \Gamma(\tau)$ and $f \in C^{\infty}(M)$. Here we denoted by ρ also the map induced by ρ on sections.

Lie algebroid of a Lie groupoid

- We can now introduce a Lie algebroid structure $([\cdot, \cdot], \rho)$ on $A(G)$, which is defined by

$$
\begin{equation*}
\overleftarrow{[X, Y]}=[\overleftarrow{X}, \overleftarrow{Y}], \quad \rho(X)(x)=\left(T_{\epsilon(x)} \beta\right)(X(x)) \tag{5}
\end{equation*}
$$

for $X, Y \in \Gamma(\tau)$ and $x \in M$.

- We recall that a Lie algebroid A over a manifold M is a real vector bundle $\tau: A \rightarrow M$ together with a skew-symmetric bracket $[\cdot, \cdot]$ on the space $\Gamma(\tau)$ of sections of $\tau: A \rightarrow M$ and a bundle map, called the anchor map, such that

$$
[X, f Y]=f[X, Y]+\rho(X)(f) Y
$$

for $X, Y \in \Gamma(\tau)$ and $f \in C^{\infty}(M)$. Here we denoted by ρ also the map induced by ρ on sections.

Theorem

For any groupoid $G \rightrightarrows M$, the formulae (5) define on $\tau: A(G) \rightarrow M$ the structure of a Lie algebroid.

Pair groupoid

Example

- Let M be a set and $\Gamma=M \times M$. define the source and target maps as

$$
\alpha(u, v)=u, \quad \beta(u, v)=v .
$$

- Then, $M \times M$ is a groupoid over M with the units mapping $\epsilon(u)=(u, u)$, and the partial composition by $(u, v)(v, z)=(u, z)$. In other words,
- Note that M can be viewed as embedded into $M \times M$ as the diagonal.
- If M is a manifold, we deal with a Lie groupoid. We can identify α-fibers as

$$
\mathcal{F}^{\alpha}(u, u)=\{(u, v) \mid v \in M\} \simeq M
$$

so $A(\Gamma)$ with TM. The left invariant vector field \bar{X} tangent to α-fibers in Γ and corresponding to $X \in \mathcal{X}(M)$ is, under this identification, $\bar{X}(u, v) \simeq X(v)$. In consequence, the Lie algebroid of Γ is TM with the bracket of vector fields.

Pair groupoid

Example

- Let M be a set and $\Gamma=M \times M$. define the source and target maps as

$$
\alpha(u, v)=u, \quad \beta(u, v)=v .
$$

- Then, $M \times M$ is a groupoid over M with the units mapping $\epsilon(u)=(u, u)$, and the partial composition by $(u, v)(v, z)=(u, z)$. In other words,

$$
\Gamma_{3}=\{(u, v, v, z, u, z) \in \Gamma \times \Gamma \times \Gamma \mid u, v, z \in M\}
$$

- Note that M can be viewed as embedded into $M \times M$ as the diagonal.
- If M is a manifold, we deal with a Lie groupoid. We can identify α-fibers as
$\mathcal{F}^{\alpha}(u, u)=\{(u, v) \mid v \in M\} \simeq M$
so $A(\Gamma)$ with TM. The left invariant vector field X tangent to α-fibers in Γ and corresponding to $X \in \mathcal{X}(M)$ is, under this identification, $X(u, v) \simeq X(v)$. In consequence, the Lie algebroid of Γ is $T M$ with the bracket of vector fields.

Pair groupoid

Example

- Let M be a set and $\Gamma=M \times M$. define the source and target maps as

$$
\alpha(u, v)=u, \quad \beta(u, v)=v .
$$

- Then, $M \times M$ is a groupoid over M with the units mapping $\epsilon(u)=(u, u)$, and the partial composition by $(u, v)(v, z)=(u, z)$. In other words,

$$
\Gamma_{3}=\{(u, v, v, z, u, z) \in \Gamma \times \Gamma \times \Gamma \mid u, v, z \in M\} .
$$

- Note that M can be viewed as embedded into $M \times M$ as the diagonal.
- If M is a manifold, we deal with a Lie groupoid. We can identify α-fibers as
so $A(\Gamma)$ with TM. The left invariant vector field X tangent to α-fibers in Γ and corresponding to $X \in \mathcal{X}(M)$ is, under this identification, $X(u, v) \simeq X(v)$. In consequence, the Lie algebroid of Γ is $T M$ with the bracket of vector fields.

Pair groupoid

Example

- Let M be a set and $\Gamma=M \times M$. define the source and target maps as

$$
\alpha(u, v)=u, \quad \beta(u, v)=v .
$$

- Then, $M \times M$ is a groupoid over M with the units mapping $\epsilon(u)=(u, u)$, and the partial composition by $(u, v)(v, z)=(u, z)$. In other words,

$$
\Gamma_{3}=\{(u, v, v, z, u, z) \in \Gamma \times \Gamma \times \Gamma \mid u, v, z \in M\}
$$

- Note that M can be viewed as embedded into $M \times M$ as the diagonal.
- If M is a manifold, we deal with a Lie groupoid. We can identify α-fibers as

$$
\mathcal{F}^{\alpha}(u, u)=\{(u, v) \mid v \in M\} \simeq M
$$

so $A(\Gamma)$ with TM . The left invariant vector field \overleftarrow{X} tangent to α-fibers in Γ and corresponding to $X \in \mathcal{X}(M)$ is, under this identification, $\overleftarrow{X}(u, v) \simeq X(v)$. In consequence, the Lie algebroid of Γ is $T M$ with the bracket of vector fields.

Ehresmann gauge groupoid

Example

- For $p: P \rightarrow M$ being a principal bundle with the structure group G, consider the set $\Gamma=(P \times P) / G$ of G-orbits, where G acts on $P \times P$ diagonally, $(v, u) g=(v g, u g)$.
- For the coset $\langle v \mid u\rangle$ of (v, u), define the source and target maps
and the (partial) multiplication $\langle w \mid v\rangle\langle v \mid u\rangle=\langle w \mid u\rangle$
- It is wall defined, as
and
$\langle w \mid v\rangle\langle v g \mid u g\rangle=\langle w g \mid v g\rangle\langle v g \mid u g\rangle=\langle w g \mid u g\rangle=\langle w \mid u\rangle=\langle w \mid v\rangle\langle v \mid u\rangle$
In this way we obtained a Lie groupoid $\Gamma=(P \times P) / G \rightrightarrows M=M$, the Ehresmann gauge groupoid of P
- The Lie algebroid of Γ is the Atyiah algebroid TP/G

Ehresmann gauge groupoid

Example

- For $p: P \rightarrow M$ being a principal bundle with the structure group G, consider the set $\Gamma=(P \times P) / G$ of G-orbits, where G acts on $P \times P$ diagonally, $(v, u) g=(v g, u g)$.
- For the coset $\langle v \mid u\rangle$ of (v, u), define the source and target maps

$$
\alpha\langle v \mid u\rangle=p(u) \quad \beta\langle v \mid u\rangle=p(v),
$$

and the (partial) multiplication $\langle w \mid v\rangle\langle v \mid u\rangle=\langle w \mid u\rangle$.

- It is well defined, as
and
$\langle w \mid v\rangle\langle v g \mid u g\rangle=\langle w g \mid v g\rangle\langle v g \mid u g\rangle=\langle w g \mid u g\rangle=\langle w \mid u\rangle=\langle w \mid v\rangle\langle v \mid u\rangle$ In this way we obtained a Lie groupoid $\Gamma=(P \times P) / G \rightrightarrows M=M$, the Ehresmann gauge groupoid of P
- The Lie algebroid of Γ is the Atviah algebroid TP/G

Ehresmann gauge groupoid

Example

- For $p: P \rightarrow M$ being a principal bundle with the structure group G, consider the set $\Gamma=(P \times P) / G$ of G-orbits, where G acts on $P \times P$ diagonally, $(v, u) g=(v g, u g)$.
- For the coset $\langle v \mid u\rangle$ of (v, u), define the source and target maps

$$
\alpha\langle v \mid u\rangle=p(u) \quad \beta\langle v \mid u\rangle=p(v),
$$

and the (partial) multiplication $\langle w \mid v\rangle\langle v \mid u\rangle=\langle w \mid u\rangle$.

- It is well defined, as

$$
\alpha\langle w \mid v\rangle=\beta\left\langle v^{\prime} \mid u^{\prime}\right\rangle \Leftrightarrow v^{\prime}=v g
$$

and

$$
\langle w \mid v\rangle\langle v g \mid u g\rangle=\langle w g \mid v g\rangle\langle v g \mid u g\rangle=\langle w g \mid u g\rangle=\langle w \mid u\rangle=\langle w \mid v\rangle\langle v \mid u\rangle .
$$

In this way we obtained a Lie groupoid $\Gamma=(P \times P) / G \rightrightarrows M=M$, the Ehresmann gauge groupoid of P.

Ehresmann gauge groupoid

Example

- For $p: P \rightarrow M$ being a principal bundle with the structure group G, consider the set $\Gamma=(P \times P) / G$ of G-orbits, where G acts on $P \times P$ diagonally, $(v, u) g=(v g, u g)$.
- For the coset $\langle v \mid u\rangle$ of (v, u), define the source and target maps

$$
\alpha\langle v \mid u\rangle=p(u) \quad \beta\langle v \mid u\rangle=p(v),
$$

and the (partial) multiplication $\langle w \mid v\rangle\langle v \mid u\rangle=\langle w \mid u\rangle$.

- It is well defined, as

$$
\alpha\langle w \mid v\rangle=\beta\left\langle v^{\prime} \mid u^{\prime}\right\rangle \Leftrightarrow v^{\prime}=v g
$$

and

$$
\langle w \mid v\rangle\langle v g \mid u g\rangle=\langle w g \mid v g\rangle\langle v g \mid u g\rangle=\langle w g \mid u g\rangle=\langle w \mid u\rangle=\langle w \mid v\rangle\langle v \mid u\rangle .
$$

In this way we obtained a Lie groupoid $\Gamma=(P \times P) / G \rightrightarrows M=M$, the Ehresmann gauge groupoid of P.

- The Lie algebroid of Γ is the Atyiah algebroid TP/G.

Homework 2

- Problem 1. Prove that the tangent and cotangent bundles of a double graded bundle are canonically triple graded bundles.
- Problem 2. On the space of curves $\gamma: \mathbb{R} \rightarrow M$ in a manifold M, consider the (\mathbb{R}, \cdot)-action $\hat{h}_{t}(\gamma)(s)=\gamma(t s)$.
Prove that this action induces the canonical homogeneity structure on the space $T^{2} M$ of second jets of curves in M.
- Problem 3. Show that the second tangent lift of a homogeneity structure h on F, defined by $\left(\mathrm{T}^{2} h\right)_{t}=\mathrm{T}^{2}\left(h_{t}\right)$, is a homogeneity structure on $T^{2} F$. Here $T^{2} \phi: T^{2} M \rightarrow T^{2} N$ denotes the obvious second-jet prolongation of $\phi: M \rightarrow N$ to the second tangent bundles.
- Problem 4. Prove that the lifted homogeneity structure $T^{2} h$ from the previous problem is compatible with the canonical homogeneity structure on the second tangent bundle $\mathrm{T}^{2} F$.
- Problem 5. Show that the anchor map induces, for any Lie algebroid E, a homomorphism of the Lie algebroid bracket into the Lie bracket of vector fields:

$$
\rho\left([X, Y]_{\varepsilon}\right)=[\rho(X), \rho(Y)]_{v f} .
$$

THANK YOU FOR YOUR ATTENTION!

