GRADED BUNDLES

Janusz Grabowski

(Polish Academy of Sciences)

May 30, 2021

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of ($\mathbb{R}, \cdot)$ (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of ($\mathbb{R}, \cdot)$ (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of ($\mathbb{R}, \cdot)$ (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of ($\mathbb{R}, \cdot)$ (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

Plan of the talk

- Multiplication by reals is enough
- Smooth actions of (\mathbb{R}, \cdot) (homogeneity structures)
- Graded spaces (not graded vector spaces)
- Vector bundles and graded bundles (not graded vector bundles)
- Graded bundle=homogeneity structure
- Transition functions and the tower
- Splitting graded bundles
- Lifts of graded structures
- Some references
- Home work

What is a vector space?

- A (real) vector space is a set E with a distinguished element 0^{E}, equipped with two operations:

1. an addition

$$
+: E \times E \rightarrow E, \quad(u, v) \mapsto u+v,
$$

2. and a multiplication by scalars

$$
h: \mathbb{R} \times E \rightarrow E, \quad h(t, v)=h_{t}(v)=t \cdot v=t v
$$

satisfying a list of axioms.

- For instance, $(E,+)$ is a commutative group with 0^{E} being the neutral element, the homotheties h_{t} satisfy

$$
h_{t} \circ h_{s}=h_{t s},
$$

and $h_{0}(v)=0^{E}$ for all $v \in E$.

What is a vector space?

- A (real) vector space is a set E with a distinguished element 0^{E}, equipped with two operations:

1. an addition

$$
+: E \times E \rightarrow E, \quad(u, v) \mapsto u+v,
$$

2. and a multiplication by scalars
satisfying a list of axioms.

- For instance, $(E,+)$ is a commutative group with 0^{E} being the neutral element, the homotheties h_{t} satisfy
and $h_{0}(v)=0^{E}$ for all $v \in E$.

What is a vector space?

- A (real) vector space is a set E with a distinguished element 0^{E}, equipped with two operations:

1. an addition

$$
+: E \times E \rightarrow E, \quad(u, v) \mapsto u+v,
$$

2. and a multiplication by scalars

$$
h: \mathbb{R} \times E \rightarrow E, \quad h(t, v)=h_{t}(v)=t \cdot v=t v,
$$

satisfying a list of axioms.

- For instance, $(E,+)$ is a commutative group with 0^{E} being the neutral element, the homotheties h_{t} satisfy
and $h_{0}(v)=0^{E}$ for all $v \in E$.

What is a vector space?

- A (real) vector space is a set E with a distinguished element 0^{E}, equipped with two operations:

1. an addition

$$
+: E \times E \rightarrow E, \quad(u, v) \mapsto u+v,
$$

2. and a multiplication by scalars

$$
h: \mathbb{R} \times E \rightarrow E, \quad h(t, v)=h_{t}(v)=t \cdot v=t v
$$

satisfying a list of axioms.

- For instance, $(E,+)$ is a commutative group with 0^{E} being the neutral element, the homotheties h_{t} satisfy

$$
h_{t} \circ h_{s}=h_{t s}
$$

and $h_{0}(v)=0^{E}$ for all $v \in E$.

One operation is enough

- To distinguish finite-dimensional real vector spaces among differentiable manifolds, a single operation of the above two is enough.
- If we know the addition, we get the multiplication by natural numbers in the obvious way:

$$
n v=v+\cdots+v,
$$

and we easily extend it to integers by $(-n) v=n(-v)$. The multiplication by rational numbers, $(m / n) v$ we obtain as the solution of the equation $n x=m v$.
Assuming differentiability (in fact, continuity) of h, we extend this multiplication to all reals uniquely.

- If we know the multiplication by reals h instead, we use a version of Euler's Homogeneous Function Theorem: any differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is homogeneous of degree 1, i.e.

$$
f(t \cdot x)=t \cdot f(x)
$$

if and only if f is linear.

One operation is enough

- To distinguish finite-dimensional real vector spaces among differentiable manifolds, a single operation of the above two is enough.
- If we know the addition, we get the multiplication by natural numbers in the obvious way:
and we easily extend it to integers by $(-n) v=n(-v)$. The multiplication by rational numbers, $(m / n) v$ we obtain as the solution of the equation $n x=m v$
Assuming differentiability (in fact, continuity) of h, we extend this multiplication to all reals uniquely.
- If we know the multiplication by reals h instead, we use a version of Euler's Homogeneous Function Theorem: any differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is homogeneous of degree 1 , i.e.

$$
f(t \cdot x)=t \cdot f(x)
$$

[^0]
One operation is enough

- To distinguish finite-dimensional real vector spaces among differentiable manifolds, a single operation of the above two is enough.
- If we know the addition, we get the multiplication by natural numbers in the obvious way:

$$
n v=v+\cdots+v,
$$

and we easily extend it to integers by $(-n) v=n(-v)$. The multiplication by rational numbers, $(m / n) v$ we obtain as the solution of the equation $n x=m v$.
Assuming differentiability (in fact, continuity) of h, we extend this multiplication to all reals uniquely.

- If we know the multiplication by reals h instead, we use a version of Euler's Homogeneous Function Theorem: any differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is homogeneous of degree 1, i.e.

[^1]
One operation is enough

- To distinguish finite-dimensional real vector spaces among differentiable manifolds, a single operation of the above two is enough.
- If we know the addition, we get the multiplication by natural numbers in the obvious way:

$$
n v=v+\cdots+v
$$

and we easily extend it to integers by $(-n) v=n(-v)$. The multiplication by rational numbers, $(m / n) v$ we obtain as the solution of the equation $n x=m v$.
Assuming differentiability (in fact, continuity) of h, we extend this multiplication to all reals uniquely.

- If we know the multiplication by reals h instead, we use a version of Euler's Homogeneous Function Theorem: any differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is homogeneous of degree 1, i.e.

$$
f(t \cdot x)=t \cdot f(x)
$$

if and only if f is linear.

Homogeneous Function Theorem

- Indeed, $t \cdot f(x)=f(t \cdot x)$ and differentiability gives

$$
f(x)=\frac{\partial f}{\partial x^{i}}(t \cdot x) \cdot x^{i}
$$

Putting $t=0$ we obtain further

$$
f(x)=\frac{\partial f}{\partial x^{i}}(0) \cdot x^{i}
$$

which means that f is linear. The other implication is obvious.

- Thus from the multinlication by reals on F we get the dual snace E^{*} where the addition is well defined, and consequently the addition on $E=\left(E^{*}\right)^{*}$.
- All this can be reformulated for a vector bundle $\tau: E \rightarrow M$: the multiplication by reals h in E (homotheties) uniquely determines E with the projection $\tau=h_{0}$.

Homogeneous Function Theorem

- Indeed, $t \cdot f(x)=f(t \cdot x)$ and differentiability gives

$$
f(x)=\frac{\partial f}{\partial x^{i}}(t \cdot x) \cdot x^{i}
$$

Putting $t=0$ we obtain further

$$
f(x)=\frac{\partial f}{\partial x^{i}}(0) \cdot x^{i}
$$

which means that f is linear. The other implication is obvious.

- Thus, from the multiplication by reals on E we get the dual space E where the addition is well defined, and consequently the addition on $E=\left(E^{*}\right)^{*}$
- All this can be reformulated for a vector bundle $\tau: E \rightarrow M$: the multiplication by reals h in E (homotheties) uniquely determines E with the projection $\tau=h_{0}$.

Homogeneous Function Theorem

- Indeed, $t \cdot f(x)=f(t \cdot x)$ and differentiability gives

$$
f(x)=\frac{\partial f}{\partial x^{i}}(t \cdot x) \cdot x^{i}
$$

Putting $t=0$ we obtain further

$$
f(x)=\frac{\partial f}{\partial x^{i}}(0) \cdot x^{i}
$$

which means that f is linear. The other implication is obvious.

- Thus, from the multiplication by reals on E we get the dual space E^{*}, where the addition is well defined, and consequently the addition on $E=\left(E^{*}\right)^{*}$.
- All this can be reformulated for a vector bundle $\tau: E \rightarrow M$: the multiplication by reals h in E (homotheties) uniquely determines E with the projection $\tau=h_{0}$.

Homogeneous Function Theorem

- Indeed, $t \cdot f(x)=f(t \cdot x)$ and differentiability gives

$$
f(x)=\frac{\partial f}{\partial x^{i}}(t \cdot x) \cdot x^{i}
$$

Putting $t=0$ we obtain further

$$
f(x)=\frac{\partial f}{\partial x^{i}}(0) \cdot x^{i}
$$

which means that f is linear. The other implication is obvious.

- Thus, from the multiplication by reals on E we get the dual space E^{*}, where the addition is well defined, and consequently the addition on $E=\left(E^{*}\right)^{*}$.
- All this can be reformulated for a vector bundle $\tau: E \rightarrow M$: the multiplication by reals h in E (homotheties) uniquely determines E with the projection $\tau=h_{0}$.

Homogeneity structures

- We can consider now a general (smooth) action $h: \mathbb{R} \times F \rightarrow F$ of the multiplicative monoid ($\mathbb{R}, \cdot)$ on a manifold $F, h_{t} \circ h_{s}=h_{t s}$. Such an action we will call a homogeneity structure. A smooth function $f: F \rightarrow \mathbb{R}$ will be called homogeneous of degree w if

$$
f\left(h_{t}(x)\right)=t^{w} f(x) \quad \text { for } \quad t \geq 0
$$

- It is a nontrivial observation (we will come to it later) that homogeneity degrees can only be non-negative integers and that we can choose local coordinates which are homogeneous (and have non-negative integers as degrees).
- Note that it is crucial that h_{t} is defined for $t=0$, since, for instance, the action $h: \mathbb{R}^{\times} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, with $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$, of the multiplicative group \mathbb{R}^{\times}on $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\}$ given by $h_{t}(x)=|t| x$ admits 'homogeneous' functions of of arbitrary degree w, namely $f(x)=x^{w}$. Here $(t x)^{w}=t^{w} x^{w}$ for $t>0$. However this is not homogeneity in the sense we consider, as the projection h_{0} is not defined.

Homogeneity structures

- We can consider now a general (smooth) action $h: \mathbb{R} \times F \rightarrow F$ of the multiplicative monoid ($\mathbb{R}, \cdot)$ on a manifold $F, h_{t} \circ h_{s}=h_{t s}$. Such an action we will call a homogeneity structure.
A smooth function $f: F \rightarrow \mathbb{R}$ will be called homogeneous of degree w if

$$
f\left(h_{t}(x)\right)=t^{w} f(x) \quad \text { for } \quad t \geq 0
$$

- It is a nontrivial observation (we will come to it later) that
homogeneity degrees can only be non-negative integers and that we can choose local coordinates which are homogeneous (and have non-negative integers as degrees)
- Note that it is crucial that h_{t} is defined for $t=0$, since, for instance, the action $h: \mathbb{R}^{\times} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, with $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$, of the multiplicative group \mathbb{R}^{\times}on $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\}$ given by $h_{t}(x)=|t| x$ admits 'homogeneous' functions of of arbitrary degree w namely $f(x)=x^{w}$. Here $(t x)^{w}=t^{w} x^{w}$ for $t>0$. However this is
not homogeneity in the sense we consider, as the projection h_{0} is not defined

Homogeneity structures

- We can consider now a general (smooth) action $h: \mathbb{R} \times F \rightarrow F$ of the multiplicative monoid (\mathbb{R}, \cdot) on a manifold $F, h_{t} \circ h_{s}=h_{t s}$. Such an action we will call a homogeneity structure.
A smooth function $f: F \rightarrow \mathbb{R}$ will be called homogeneous of degree w if

$$
f\left(h_{t}(x)\right)=t^{w} f(x) \text { for } t \geq 0 .
$$

- It is a nontrivial observation (we will come to it later) that homogeneity degrees can only be non-negative integers and that we can choose local coordinates which are homogeneous (and have non-negative integers as degrees).

not homogeneity in the sense we consider, as the projection h_{0} is not defined

Homogeneity structures

- We can consider now a general (smooth) action $h: \mathbb{R} \times F \rightarrow F$ of the multiplicative monoid ($\mathbb{R}, \cdot)$ on a manifold $F, h_{t} \circ h_{s}=h_{t s}$. Such an action we will call a homogeneity structure.
A smooth function $f: F \rightarrow \mathbb{R}$ will be called homogeneous of degree w if

$$
f\left(h_{t}(x)\right)=t^{w} f(x) \text { for } t \geq 0 .
$$

- It is a nontrivial observation (we will come to it later) that homogeneity degrees can only be non-negative integers and that we can choose local coordinates which are homogeneous (and have non-negative integers as degrees).
- Note that it is crucial that h_{t} is defined for $t=0$, since, for instance, the action $h: \mathbb{R}^{\times} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, with $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$, of the multiplicative group \mathbb{R}^{\times}on $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\}$ given by $h_{t}(x)=|t| x$ admits 'homogeneous' functions of of arbitrary degree w, namely $f(x)=x^{w}$. Here $(t x)^{w}=t^{w} x^{w}$ for $t>0$. However this is not homogeneity in the sense we consider, as the projection h_{0} is not defined.

Graded spaces

Assume now that for a homogeneity structure h on a manifold F there is a (necessary unique) point $0^{F} \in F$ such that $h_{0}(F)=\left\{0^{F}\right\}$. Such a structure we will call a graded space (they are not graded vector spaces) by the following reasons.

[^2]
Graded spaces

Assume now that for a homogeneity structure h on a manifold F there is a (necessary unique) point $0^{F} \in F$ such that $h_{0}(F)=\left\{0^{F}\right\}$. Such a structure we will call a graded space (they are not graded vector spaces) by the following reasons.

Theorem (Grabowski-Rotkiewicz)

Any graded space (F, h) is diffeomorphically equivalent (isomorphic) to a certain $\left(\mathbb{R}^{d}, h^{d}\right)$, where $d=\left(d_{1}, \ldots, d_{k}\right)$, with positive integers d_{i}, and $\mathbb{R}^{d}=\mathbb{R}^{d_{1}}[1] \times \cdots \times \mathbb{R}^{d_{k}}[k]$ is equipped with the action h^{d} of multiplicative reals given by

$$
h_{t}^{d}\left(y_{1}, \ldots, y_{k}\right)=\left(t \cdot y_{1}, \ldots, t^{k} \cdot y_{k}\right), \quad y_{i} \in \mathbb{R}^{d_{i}}
$$

In other words, F can be equipped with a system of (global) coordinates $\left(y_{i}^{j}\right), i=1 \ldots, k, j=1, \ldots, d_{i}$, such that linear coordinates y_{i}^{j} in $\mathbb{R}^{d_{i}}[i]$ are homogeneous of degree i with respect to the homogeneity structure h, i.e.

$$
y_{i}^{j} \circ h_{t}=t^{i} \cdot y_{i}^{j} .
$$

Of course, in these coordinates $0^{F}=(0, \ldots, 0)$.

How to recognize vector spaces?

- Note that the isomorphism in the above theorem is generally non-canonical. The number k, however, is uniquely determined and called the minimal degree of the graded space. By convention, a degree of h is any natural $k^{\prime} \geq k$.
- How to recognize a vector space among graded spaces?
- Answer: Vector spaces are graded spaces of degree 1.
- Regularity condition: For any $y \in F$,

$$
\left.\frac{\mathrm{d}}{\mathrm{dt}}\right|_{t=0}\left(h_{t}(y)\right)=0 \Leftrightarrow y=0^{F}
$$

Theorem

The homogeneity structure in a graded space comes from a vector space structure if and only if it is regular. In this case, the vector space structure is uniquely determined by the homogeneity structure.

How to recognize vector spaces?

- Note that the isomorphism in the above theorem is generally non-canonical. The number k, however, is uniquely determined and called the minimal degree of the graded space. By convention, a degree of h is any natural $k^{\prime} \geq k$.
- How to recognize a vector space among graded spaces?
- Answer: Vector spaces are graded spaces of degree 1
- Regularity condition: For any $y \in F$,

> Theorem
> The homogeneity structure in a graded space comes from a vector space
> structure if and only if it is regular. In this case, the vector space structure is uniquely determined by the homogeneity structure.

How to recognize vector spaces?

- Note that the isomorphism in the above theorem is generally non-canonical. The number k, however, is uniquely determined and called the minimal degree of the graded space. By convention, a degree of h is any natural $k^{\prime} \geq k$.
- How to recognize a vector space among graded spaces?
- Answer: Vector spaces are graded spaces of degree 1 .
- Regularity condition: For any $y \in F$,

[^3]
How to recognize vector spaces?

- Note that the isomorphism in the above theorem is generally non-canonical. The number k, however, is uniquely determined and called the minimal degree of the graded space. By convention, a degree of h is any natural $k^{\prime} \geq k$.
- How to recognize a vector space among graded spaces?
- Answer: Vector spaces are graded spaces of degree 1.

[^4]
How to recognize vector spaces?

- Note that the isomorphism in the above theorem is generally non-canonical. The number k, however, is uniquely determined and called the minimal degree of the graded space. By convention, a degree of h is any natural $k^{\prime} \geq k$.
- How to recognize a vector space among graded spaces?
- Answer: Vector spaces are graded spaces of degree 1.
- Regularity condition: For any $y \in F$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}_{\mid t=0}\left(h_{t}(y)\right)=0 \Leftrightarrow y=0^{F}
$$

Theorem

The homogeneity structure in a graded space comes from a vector space structure if and only if it is regular. In this case, the vector space structure is uniquely determined by the homogeneity structure.

Weight vector field

- It is natural to call a morphism between homogeneity structures $\left(F_{a}, h^{a}\right), a=1,2$, a smooth map $\Phi: F_{1} \rightarrow F_{2}$ which intertwines the homogeneity structures: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$.
- The ($\mathbb{R}, \cdot)$-action restricted to positive reals gives a one-parameter group of diffeomorphism of F, thus is generated by a vector field ∇_{F}. It is called the weight vector field as it completely determines the homogeneity structure. For a graded space with homogeneous global coordinates $\left(y_{w}^{j}\right)$

$$
\nabla_{F}=\sum w y_{w}^{j} \partial_{y_{w}^{j}}
$$

- A function f is homogeneous of degree w if and only if $\nabla_{F}(f)=w \cdot f$, and a smooth map $\Phi: F_{1} \rightarrow F_{2}$ is a morphism of homogeneity structures iff it relates the corresponding weight vector fields.
- Note that morphisms need not to be linear, so the category of graded spaces is different from that of vector spaces. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is an automorphism of the structure, but it is nonlinear.

Weight vector field

- It is natural to call a morphism between homogeneity structures $\left(F_{a}, h^{a}\right), a=1,2$, a smooth map $\Phi: F_{1} \rightarrow F_{2}$ which intertwines the homogeneity structures: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$.

The (i®, $)$-dction restricted to positive reas gives a one-parameter group of diffeomorphism of F, thus is generated by a vector field ∇_{F} It is called the weight vector field as it completely determines the homogeneity structure. For a graded space with homogeneous global coordinates (y_{w}^{j})

- A function f is homogeneous of degree w if and only if $\nabla_{F}(f)=w$ and a smooth map $\Phi: F_{1} \rightarrow F_{2}$ is a morphism of homogeneity structures iff it relates the corresponding weight vector fields.
- Note that morphisms need not to be linear, so the category of graded spaces is different from that of vector spaces. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is an automorphism of the structure, but it is

Weight vector field

- It is natural to call a morphism between homogeneity structures $\left(F_{a}, h^{a}\right), a=1,2$, a smooth map $\Phi: F_{1} \rightarrow F_{2}$ which intertwines the homogeneity structures: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$.
- The (\mathbb{R}, \cdot)-action restricted to positive reals gives a one-parameter group of diffeomorphism of F, thus is generated by a vector field ∇_{F}. It is called the weight vector field as it completely determines the homogeneity structure. For a graded space with homogeneous global coordinates (y_{w}^{j})

$$
\nabla_{F}=\sum_{w} w y_{w}^{j} \partial_{y_{w}^{j}} .
$$

> -

A function
and a smooth map $\Phi: F_{1} \rightarrow F_{2}$ is a morphism of homogeneity structures iff it relates the corresponding weight vector fields

- Note that morphisms need not to be linear, so the category of graded spaces is different from that of vector spaces. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is an automorphism of the structure, but it is

Weight vector field

- It is natural to call a morphism between homogeneity structures $\left(F_{a}, h^{a}\right), a=1,2$, a smooth map $\Phi: F_{1} \rightarrow F_{2}$ which intertwines the homogeneity structures: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$.
- The ($\mathbb{R}, \cdot)$-action restricted to positive reals gives a one-parameter group of diffeomorphism of F, thus is generated by a vector field ∇_{F}. It is called the weight vector field as it completely determines the homogeneity structure. For a graded space with homogeneous global coordinates $\left(y_{w}^{j}\right)$

$$
\nabla_{F}=\sum_{w} w y_{w}^{j} \partial_{y_{w}^{j}} .
$$

- A function f is homogeneous of degree w if and only if $\nabla_{F}(f)=w \cdot f$, and a smooth map $\Phi: F_{1} \rightarrow F_{2}$ is a morphism of homogeneity structures iff it relates the corresponding weight vector fields.
spaces is different from that of vector spaces. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , resnectively, then the map
$(y, z) \mapsto\left(y, z+y^{2}\right)$ is an automorphism of the structure, but it is

Weight vector field

- It is natural to call a morphism between homogeneity structures $\left(F_{a}, h^{a}\right), a=1,2$, a smooth map $\Phi: F_{1} \rightarrow F_{2}$ which intertwines the homogeneity structures: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$.
- The ($\mathbb{R}, \cdot)$-action restricted to positive reals gives a one-parameter group of diffeomorphism of F, thus is generated by a vector field ∇_{F}. It is called the weight vector field as it completely determines the homogeneity structure. For a graded space with homogeneous global coordinates (y_{w}^{j})

$$
\nabla_{F}=\sum_{w} w y_{w}^{j} \partial_{y_{w}^{j}} .
$$

- A function f is homogeneous of degree w if and only if $\nabla_{F}(f)=w \cdot f$, and a smooth map $\Phi: F_{1} \rightarrow F_{2}$ is a morphism of homogeneity structures iff it relates the corresponding weight vector fields.
- Note that morphisms need not to be linear, so the category of graded spaces is different from that of vector spaces. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is an automorphism of the structure, but it is nonlinear.

Vector bundles classically

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \operatorname{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 , and 'linear coordinates' y have degree 1 . Linearity of changes of coordinates is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear (homogeneous) in fibres.

Vector bundles classically

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 , and 'linear coordinates' y have degree 1 . Linearity of changes of coordinates is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear (homogeneous) in fibres.

Vector bundles classically

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 , and 'linear coordinates' y have degree 1 . Linearity of changes of coordinates is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear (homogeneous) in fibres

Vector bundles classically

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \operatorname{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 , and 'linear coordinates' y have degree 1. Linearity of changes of coordinates is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear (homogeneous) in fibres.

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ of rank d, with a local trivialization by $U \times \mathbb{R}^{d}$, and with the difference that the transition functions of local trivializations:

$$
U \cap V \times \mathbb{R}^{d} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{d}
$$

respect the weights of coordinates $\left(y^{1}, \ldots, y^{|d|}\right)$ in the fibres. In other words, a graded bundle of rank d is a locally trivial fibration with fibers modelled on the graded space \mathbb{R}^{d}.

Theorem

A(x.v) must be polynomial in homogeneous fiber coordinates y's, i.e. any graded bundle is a polynomial bundle.

- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.
- In the above terminology, vector bundles are just graded bundles of degree 1 .

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ of rank d, with a local trivialization by $U \times \mathbb{R}^{d}$, and with the difference that the transition functions of local trivializations:

$$
U \cap V \times \mathbb{R}^{d} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{d}
$$

respect the weights of coordinates $\left(y^{1}, \ldots, y^{|d|}\right)$ in the fibres. In other words, a graded bundle of rank d is a locally trivial fibration with fibers modelled on the graded space \mathbb{R}^{d}.
\square

- As these polynomials need not to be linear, graded bundles do not
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.
- In the above terminology, vector bundles are just graded bundles of

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ of rank d, with a local trivialization by $U \times \mathbb{R}^{d}$, and with the difference that the transition functions of local trivializations:

$$
U \cap V \times \mathbb{R}^{d} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{d}
$$

respect the weights of coordinates $\left(y^{1}, \ldots, y^{|d|}\right)$ in the fibres. In other words, a graded bundle of rank d is a locally trivial fibration with fibers modelled on the graded space \mathbb{R}^{d}.

Theorem

A(x,y) must be polynomial in homogeneous fiber coordinates y's, i.e. any graded bundle is a polynomial bundle.

- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.
- If all $m i<r$ we say that the graded bundle is of degree r.
- In the above terminology, vector bundles are just graded bundles of

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ of rank d, with a local trivialization by $U \times \mathbb{R}^{d}$, and with the difference that the transition functions of local trivializations:

$$
U \cap V \times \mathbb{R}^{d} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{d}
$$

respect the weights of coordinates $\left(y^{1}, \ldots, y^{|d|}\right)$ in the fibres. In other words, a graded bundle of rank d is a locally trivial fibration with fibers modelled on the graded space \mathbb{R}^{d}.

Theorem

$A(x, y)$ must be polynomial in homogeneous fiber coordinates y 's, i.e. any graded bundle is a polynomial bundle.

- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.
- In the above terminology, vector bundles are just graded bundles of degree 1.

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ of rank d, with a local trivialization by $U \times \mathbb{R}^{d}$, and with the difference that the transition functions of local trivializations:

$$
U \cap V \times \mathbb{R}^{d} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{d}
$$

respect the weights of coordinates $\left(y^{1}, \ldots, y^{|d|}\right)$ in the fibres. In other words, a graded bundle of rank d is a locally trivial fibration with fibers modelled on the graded space \mathbb{R}^{d}.

Theorem

A(x,y) must be polynomial in homogeneous fiber coordinates y's, i.e. any graded bundle is a polynomial bundle.

- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.
- In the above terminology, vector bundles are just graded bundles of

Graded bundles

- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ of rank d, with a local trivialization by $U \times \mathbb{R}^{d}$, and with the difference that the transition functions of local trivializations:

$$
U \cap V \times \mathbb{R}^{d} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{d}
$$

respect the weights of coordinates $\left(y^{1}, \ldots, y^{|d|}\right)$ in the fibres. In other words, a graded bundle of rank d is a locally trivial fibration with fibers modelled on the graded space \mathbb{R}^{d}.

Theorem

$A(x, y)$ must be polynomial in homogeneous fiber coordinates y 's, i.e. any graded bundle is a polynomial bundle.

- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.
- In the above terminology, vector bundles are just graded bundles of degree 1.

Graded bundles - examples

- Note that, according to our convention, any differential manifold M can be viewed as a graded bundle of degree 0 .
- A trivial example is of course

$$
F=M \times \mathbb{R}^{d}=M \times\left(\mathbb{R}^{d_{1}}[1] \oplus \cdots \oplus \mathbb{R}^{d_{k}}[k]\right)
$$

- Another trivial example, is a split graded bundle, i.e. a graded vector bundle $\quad F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]$ where E^{i} are vector bundles over M and $E^{i}[i]$ is E_{i} with bundle linear coordinates of degree i.
- For vector bundles E^{0}, E^{1} over M, we can consider the vector bundle $E=E^{0}[0] \oplus E^{1}[1]$ as a vector bundle over E^{0}. The wedge product $\wedge^{2} E=\wedge^{2} E^{0} \oplus\left(E^{0} \otimes E^{1}\right) \oplus \wedge^{2} E^{1}$ can be then viewed as a graded vector bundle over $\wedge^{2} E^{0}$ of degree 2, with $\left(E^{0} \otimes E^{1}\right)$ being its part of degree 1 and $\wedge^{2} E^{1}$ being of degree 2 .
- Note that objects similar to graded bundles have been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, during this course we will work exclusively with classical purely even manifolds.

Graded bundles - examples

- Note that, according to our convention, any differential manifold M can be viewed as a graded bundle of degree 0 .
- A trivial example is of course
- Another trivial example, is a split graded bundle, i.e. a graded vector bundle $\quad F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]$ where E^{i} are vector bundles over M and $E^{i}[i]$ is E_{i} with bundle linear coordinates of degree
- For vector bundles E^{0}, E^{1} over M, we can consider the vector bundle $E=E^{0}[0] \oplus E^{1}[1]$ as a vector bundle over E^{0}. The wedge product $\wedge^{2} E=\wedge^{2} E^{0} \oplus\left(E^{0} \otimes E^{1}\right) \oplus \wedge^{2} E^{1}$ can be then viewed as a graded vector bundle over $\wedge^{2} E^{0}$ of degree 2, with $\left(E^{0} \otimes E^{1}\right)$ being its part of degree 1 and $\wedge^{2} E^{1}$ being of degree 2 .
- Note that objects similar to graded bundles have been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, during this course we will work exclusively with classical purely even manifolds.

Graded bundles - examples

- Note that, according to our convention, any differential manifold M can be viewed as a graded bundle of degree 0 .
- A trivial example is of course

$$
F=M \times \mathbb{R}^{d}=M \times\left(\mathbb{R}^{d_{1}}[1] \oplus \cdots \oplus \mathbb{R}^{d_{k}}[k]\right)
$$

- Another trivial example, is a split graded bundle, i.e. a graded vector bundle $\quad F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]$, where E^{i} are vector bundles over M and $E^{i}[i]$ is E_{i} with bundle linear coordinates of degree
- For vector bundles E^{0}, E^{1} over M, we can consider the vector bundle $E=E^{0}[0] \oplus E^{1}[1]$ as a vector bundle over E^{0}. The wedge product $\wedge^{2} E=\wedge^{2} E^{0} \oplus\left(E^{0} \otimes E^{1}\right) \oplus \wedge^{2} E^{1}$ can be then viewed as a graded vector bundle over $\wedge^{2} E^{0}$ of degree 2, with $\left(E^{0} \otimes E^{1}\right)$ being its part of degree 1 and $\wedge^{2} E^{1}$ being of degree 2 .
- Note that objects similar to graded bundles have been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, during this course we will work exclusively with classical purely even manifolds.

Graded bundles - examples

- Note that, according to our convention, any differential manifold M can be viewed as a graded bundle of degree 0 .
- A trivial example is of course

$$
F=M \times \mathbb{R}^{d}=M \times\left(\mathbb{R}^{d_{1}}[1] \oplus \cdots \oplus \mathbb{R}^{d_{k}}[k]\right)
$$

- Another trivial example, is a split graded bundle, i.e. a graded vector bundle $F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]$, where E^{i} are vector bundles over M and $E^{i}[i]$ is E_{i} with bundle linear coordinates of degree i.

\square
with classical nurely even manifolds

Graded bundles - examples

- Note that, according to our convention, any differential manifold M can be viewed as a graded bundle of degree 0 .
- A trivial example is of course

$$
F=M \times \mathbb{R}^{d}=M \times\left(\mathbb{R}^{d_{1}}[1] \oplus \cdots \oplus \mathbb{R}^{d_{k}}[k]\right)
$$

- Another trivial example, is a split graded bundle, i.e. a graded vector bundle $\quad F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]$, where E^{i} are vector bundles over M and $E^{i}[i]$ is E_{i} with bundle linear coordinates of degree i.
- For vector bundles E^{0}, E^{1} over M, we can consider the vector bundle $E=E^{0}[0] \oplus E^{1}[1]$ as a vector bundle over E^{0}. The wedge product $\wedge^{2} E=\wedge^{2} E^{0} \oplus\left(E^{0} \otimes E^{1}\right) \oplus \wedge^{2} E^{1}$ can be then viewed as a graded vector bundle over $\wedge^{2} E^{0}$ of degree 2, with $\left(E^{0} \otimes E^{1}\right)$ being its part of degree 1 and $\wedge^{2} E^{1}$ being of degree 2 .
Note that objects similar to graded bundles have been used in
supergeometry by Ševera, Voronov, Roytenberg et al. under the name
N-manifolds. However, during this course we will work exclusively
with classical purely even manifolds.

Graded bundles - examples

- Note that, according to our convention, any differential manifold M can be viewed as a graded bundle of degree 0 .
- A trivial example is of course

$$
F=M \times \mathbb{R}^{d}=M \times\left(\mathbb{R}^{d_{1}}[1] \oplus \cdots \oplus \mathbb{R}^{d_{k}}[k]\right)
$$

- Another trivial example, is a split graded bundle, i.e. a graded vector bundle $\quad F=E^{1}[1] \oplus_{M} \cdots \oplus_{M} E^{k}[k]$, where E^{i} are vector bundles over M and $E^{i}[i]$ is E_{i} with bundle linear coordinates of degree i.
- For vector bundles E^{0}, E^{1} over M, we can consider the vector bundle $E=E^{0}[0] \oplus E^{1}[1]$ as a vector bundle over E^{0}. The wedge product $\wedge^{2} E=\wedge^{2} E^{0} \oplus\left(E^{0} \otimes E^{1}\right) \oplus \wedge^{2} E^{1}$ can be then viewed as a graded vector bundle over $\wedge^{2} E^{0}$ of degree 2, with $\left(E^{0} \otimes E^{1}\right)$ being its part of degree 1 and $\wedge^{2} E^{1}$ being of degree 2 .
- Note that objects similar to graded bundles have been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N -manifolds. However, during this course we will work exclusively with classical purely even manifolds.

Homogeneity structure of a graded bundle

- Note that the homogeneity structure in the typical fiber of a graded bundle F, i.e. the action $h: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, is preserved under the transition functions, that defines a globally defined homogeneity structure $h: \mathbb{R} \times F \rightarrow F$.
- In local homogeneous coordinates,

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right) .
$$

- We call a function $f: F \rightarrow \mathbb{R}$ homogeneous of degree (weight) w if

$$
f \circ h_{t}=t^{w} f
$$

- The whole information about the degree of homogeneity is contained in the weight vector field (called for vector bundles the Euler vector field)

- A function $f: F \rightarrow \mathbb{R}$ is homogeneous of degree w if and only if

$$
\nabla_{F}(f)=w^{\prime} f
$$

Homogeneity structure of a graded bundle

- Note that the homogeneity structure in the typical fiber of a graded bundle F, i.e. the action $h: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, is preserved under the transition functions, that defines a globally defined homogeneity structure $h: \mathbb{R} \times F \rightarrow F$.
- In local homogeneous coordinates,
- We call a function $f: F \rightarrow \mathbb{R}$ homogeneous of degree (weight) w if
- The whole information about the degree of homogeneity is contained in the weight vector field (called for vector bundles the Euler vector field)

- A function $f: F \rightarrow \mathbb{R}$ is homogeneous of degree w if and only if
\square

Homogeneity structure of a graded bundle

- Note that the homogeneity structure in the typical fiber of a graded bundle F, i.e. the action $h: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, is preserved under the transition functions, that defines a globally defined homogeneity structure $h: \mathbb{R} \times F \rightarrow F$.
- In local homogeneous coordinates,

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

- We call a function f

- The whole information about the degree of homogeneity is contained in the weight vector field (called for vector bundles the Euler vector field)

- A function $f: F \rightarrow \mathbb{R}$ is homogeneous of degree w if and only if
\square

Homogeneity structure of a graded bundle

- Note that the homogeneity structure in the typical fiber of a graded bundle F, i.e. the action $h: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, is preserved under the transition functions, that defines a globally defined homogeneity structure $h: \mathbb{R} \times F \rightarrow F$.
- In local homogeneous coordinates,

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

- We call a function $f: F \rightarrow \mathbb{R}$ homogeneous of degree (weight) w if

$$
f \circ h_{t}=t^{w} f
$$

- The whole information about the degree of homogeneity is contained in the weight vector field (called for vector bundles the Euler vector field)

- A function $f: F \rightarrow \mathbb{R}$ is homogeneous of degree w if and only if
\square

Homogeneity structure of a graded bundle

- Note that the homogeneity structure in the typical fiber of a graded bundle F, i.e. the action $h: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, is preserved under the transition functions, that defines a globally defined homogeneity structure $h: \mathbb{R} \times F \rightarrow F$.
- In local homogeneous coordinates,

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

- We call a function $f: F \rightarrow \mathbb{R}$ homogeneous of degree (weight) w if

$$
f \circ h_{t}=t^{w} f
$$

- The whole information about the degree of homogeneity is contained in the weight vector field (called for vector bundles the Euler vector field)

$$
\nabla_{F}=\sum_{a} w y_{w}^{a} \partial_{y_{w}^{a}}
$$

- A function $f: F \rightarrow \mathbb{R}$ is homogeneous of degree w if and only if

Homogeneity structure of a graded bundle

- Note that the homogeneity structure in the typical fiber of a graded bundle F, i.e. the action $h: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, is preserved under the transition functions, that defines a globally defined homogeneity structure $h: \mathbb{R} \times F \rightarrow F$.
- In local homogeneous coordinates,

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

- We call a function $f: F \rightarrow \mathbb{R}$ homogeneous of degree (weight) w if

$$
f \circ h_{t}=t^{w} f
$$

- The whole information about the degree of homogeneity is contained in the weight vector field (called for vector bundles the Euler vector field)

$$
\nabla_{F}=\sum w y_{w}^{a} \partial_{y_{w}^{a}}
$$

- A function $f: F \rightarrow \mathbb{R}$ is homogeneous of degree w if and only if

$$
\nabla_{F}(f)=w f
$$

The category of graded bundles

Mimicking the definition of a vector bundle morphism, we get the following.

Definition

Morphisms in the category of graded bundles are represented by commutative diagram of smooth maps

which are morphisms of graded spaces in fibers, i.e. which locally preserve the weight of homogeneous coordinates.

The category of graded bundles

Mimicking the definition of a vector bundle morphism, we get the following.

Definition

Morphisms in the category of graded bundles are represented by commutative diagram of smooth maps

which are morphisms of graded spaces in fibers, i.e. which locally preserve the weight of homogeneous coordinates.

One can equivalently say that the fiber bundle morphism Φ is a smooth map which relates the weight vector fields $\nabla_{F^{1}}$ and $\nabla_{F^{2}}$. Example. Morphisms $\Phi: F \rightarrow F$, for $F=\mathbb{R} \times \mathbb{R}^{(1,1)}$ with local coordinates (x, y, z) of degrees $(0,1,2)$, respectively, are of the form $\Phi(x, y, z)=\left(\phi(x), a(x) y, b(x) z+d(x) y^{2}\right)$.

Graded bundle $=$ homogeneity structure

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

Theorem

Associating the homogeneity structure with a graded bundle is an isomorphism of categories. In particular, for any homogeneity structure h on a manifold F, there is a smooth submanifold $M=h_{0}(F) \subset F$ and a non-negative integer $k \in \mathbb{N}$ such that $h_{0}: F \rightarrow M$ is canonically a graded bundle of degree k whose homogeneity structure coincides with h. In other words, there is an atlas on F consisting of local homogeneous functions.

Since morphisms of two homogeneity structures are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$, this describes also morphism of graded bundles.

Consequently, a graded subbundle of a graded bundle F is a smooth submanifold S of F which is invariant with respect to homotheties, $h_{t}(S) \subset S$ for all $t \in \mathbb{R}$

Graded bundle = homogeneity structure

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

Theorem

Associating the homogeneity structure with a graded bundle is an isomorphism of categories. In particular, for any homogeneity structure h on a manifold F, there is a smooth submanifold $M=h_{0}(F) \subset F$ and a non-negative integer $k \in \mathbb{N}$ such that $h_{0}: F \rightarrow M$ is canonically a graded bundle of degree k whose homogeneity structure coincides with h. In other words, there is an atlas on F consisting of local homogeneous functions.

Since morphisms of two homogeneity structures are defined as smooth
$\operatorname{maps} \Phi: F_{1} \rightarrow F_{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$, this describes also morphism of graded bundles.

Consequently, a graded subbundle of a graded bundle F is a smooth submanifold S of F which is invariant with respect to homotheties,
\square

Graded bundle $=$ homogeneity structure

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

Theorem

Associating the homogeneity structure with a graded bundle is an isomorphism of categories. In particular, for any homogeneity structure h on a manifold F, there is a smooth submanifold $M=h_{0}(F) \subset F$ and a non-negative integer $k \in \mathbb{N}$ such that $h_{0}: F \rightarrow M$ is canonically a graded bundle of degree k whose homogeneity structure coincides with h. In other words, there is an atlas on F consisting of local homogeneous functions.

Since morphisms of two homogeneity structures are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$, this describes also morphism of graded bundles.

> Consequently, a graded subbundle of a graded bundle F is a smooth submanifold S of F which is invariant with respect to homotheties,

\square

Graded bundle $=$ homogeneity structure

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

Theorem

Associating the homogeneity structure with a graded bundle is an isomorphism of categories. In particular, for any homogeneity structure h on a manifold F, there is a smooth submanifold $M=h_{0}(F) \subset F$ and a non-negative integer $k \in \mathbb{N}$ such that $h_{0}: F \rightarrow M$ is canonically a graded bundle of degree k whose homogeneity structure coincides with h. In other words, there is an atlas on F consisting of local homogeneous functions.

Since morphisms of two homogeneity structures are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the \mathbb{R}-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$, this describes also morphism of graded bundles.

Consequently, a graded subbundle of a graded bundle F is a smooth submanifold S of F which is invariant with respect to homotheties, $h_{t}(S) \subset S$ for all $t \in \mathbb{R}$.

Consequences for vector bundles

Vector bundles can be recognized as graded bundles $\tau: F \rightarrow M$ of degree 1, i.e. satisfying the following regularity condition:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} h_{t}(p)=0 \Leftrightarrow p \in M
$$

The principle multiplication by reals is enough has now the following consequences for vector bundles.

Corollamy
A smooth map $\Phi: E_{1} \rightarrow E_{2}$ between the total spaces of two vector
if it intertwines the multiplications by reals.

In this case the $\operatorname{map} \phi=\Phi_{\mid M_{1}}$ is a smooth map between the base manifolds covered by Φ

Consequences for vector bundles

Vector bundles can be recognized as graded bundles $\tau: F \rightarrow M$ of degree 1 , i.e. satisfying the following regularity condition:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} h_{t}(p)=0 \Leftrightarrow p \in M
$$

The principle multiplication by reals is enough has now the following consequences for vector bundles.

Corollary

A smooth map $\Phi: E_{1} \rightarrow E_{2}$ between the total spaces of two vector bundles $\pi_{i}: E_{i} \rightarrow M_{i}, i=1,2$ is a morphism of vector bundles if and only if it intertwines the multiplications by reals:

$$
\Phi(t \cdot v)=t \cdot \Phi(v)
$$

In this case the map $\phi=\Phi_{\mid M_{1}}$ is a smooth map between the base manifolds covered by Φ.

Graded bundles - further examples

- Example. Consider the second-order tangent bundle $T^{2} M$, i.e. the bundle of second jets of smooth maps $(\mathbb{R}, 0) \rightarrow M$. Writing paths in local coordinates $\left(x^{A}\right)$ on M :

$$
x^{A}(t)=x^{A}(0)+\dot{x}^{A}(0) t+\ddot{x}^{A}(0) \frac{t^{2}}{2}+o\left(t^{2}\right)
$$

we get local coordinates $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ on $T^{2} M$, which transform

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C}
\end{aligned}
$$

- This shows that associating with $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ the weights $0,1,2$, respectively, will give us a graded bundle structure of degree 2 on $T^{2} M$. Due to the quadratic terms above, this is not a vector bundle!

Graded bundles - further examples

- Example. Consider the second-order tangent bundle $T^{2} M$, i.e. the bundle of second jets of smooth maps $(\mathbb{R}, 0) \rightarrow M$.
Writing paths in local coordinates $\left(x^{A}\right)$ on M :

$$
x^{A}(t)=x^{A}(0)+\dot{x}^{A}(0) t+\ddot{x}^{A}(0) \frac{t^{2}}{2}+o\left(t^{2}\right)
$$

we get local coordinates $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ on $T^{2} M$, which transform

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B}, \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

- This shows that associating with $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ the weights $0,1,2$, respectively, will give us a graded bundle structure of degree 2 on

Graded bundles - further examples

- Example. Consider the second-order tangent bundle $T^{2} M$, i.e. the bundle of second jets of smooth maps $(\mathbb{R}, 0) \rightarrow M$. Writing paths in local coordinates $\left(x^{A}\right)$ on M :

$$
x^{A}(t)=x^{A}(0)+\dot{x}^{A}(0) t+\ddot{x}^{A}(0) \frac{t^{2}}{2}+o\left(t^{2}\right)
$$

we get local coordinates $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ on $T^{2} M$, which transform

$$
\begin{aligned}
x^{\prime A} & =x^{\prime A}(x) \\
\dot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \dot{x}^{B} \\
\ddot{x}^{\prime A} & =\frac{\partial x^{\prime A}}{\partial x^{B}}(x) \ddot{x}^{B}+\frac{\partial^{2} x^{\prime A}}{\partial x^{B} \partial x^{C}}(x) \dot{x}^{B} \dot{x}^{C} .
\end{aligned}
$$

- This shows that associating with $\left(x^{A}, \dot{x}^{B}, \ddot{x}^{C}\right)$ the weights $0,1,2$, respectively, will give us a graded bundle structure of degree 2 on $\mathrm{T}^{2} \mathrm{M}$. Due to the quadratic terms above, this is not a vector bundle!

Graded bundles - further example

- n-vectors on a vector bundle If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{2} T E$ is canonically a graded bundle of degree 2 with respect to the projection

$$
\Lambda^{2} \mathrm{~T} \tau: \Lambda^{2} \mathrm{~T} E \rightarrow \Lambda^{2} \mathrm{~T} M
$$

- The adapted coordinates $\left(x^{\rho}, y^{a}, \dot{x}^{\mu \nu}, y^{\sigma b}, z^{c d}\right)$ on $\wedge^{2} E$, with $\dot{x}^{\mu \nu}=-\dot{x}^{\nu \mu}, z^{c d}=-z^{d c}$, coming from the decomposition of a bivector

are of degrees $0,1,0,1,2$, respectively.
- All this can be generalized to a graded bundle structure of degree r on $\wedge^{r} T E$:

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M
$$

- We want to built a framework for generating (first-order) dynamics for higher dimensional objects, being motivated by the study of dynamics of one-dimensional ones (curves).

Graded bundles - further example

- n-vectors on a vector bundle If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{2} T E$ is canonically a graded bundle of degree 2 with respect to the projection

$$
\wedge^{2} \mathrm{~T} \tau: \wedge^{2} \mathrm{~T} E \rightarrow \wedge^{2} \mathrm{~T} M .
$$

- The adapted coordinates $\left(x^{\rho}, y^{a}, \dot{x}^{\mu \nu}, y^{\sigma b}, z^{c d}\right)$ on $\wedge^{2} E$, with $\dot{x}^{\mu \nu}=-\dot{x}^{\nu \mu}, z^{c d}=-z^{d c}$, coming from the decomposition of a bivector

are of degrees $0,1,0,1,2$, respectively.
- All this can be generalized to a graded bundle structure of degree r on $\wedge^{r} T E$:

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M .
$$

- We want to built a framework for generating (first-order) dynamics for higher dimensional objects, being motivated by the study of dynamics of one-dimensional ones (curves).

Graded bundles - further example

- n-vectors on a vector bundle If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{2} T E$ is canonically a graded bundle of degree 2 with respect to the projection

$$
\wedge^{2} \mathrm{~T} \tau: \wedge^{2} \mathrm{~T} E \rightarrow \wedge^{2} \mathrm{~T} M
$$

- The adapted coordinates $\left(x^{\rho}, y^{a}, \dot{x}^{\mu \nu}, y^{\sigma b}, z^{c d}\right)$ on $\wedge^{2} E$, with $\dot{x}^{\mu \nu}=-\dot{x}^{\nu \mu}, z^{c d}=-z^{d c}$, coming from the decomposition of a bivector
are of degrees $0,1,0,1,2$, respectively.
- All this can be generalized to a graded bundle structure of degree r on $\wedge^{r} T E$:
- We want to built a framework for generating (first-order) dynamics for higher dimensional objects, being motivated by the study of dynamics of one-dimensional ones (curves)

Graded bundles - further example

- n-vectors on a vector bundle If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{2} T E$ is canonically a graded bundle of degree 2 with respect to the projection

$$
\wedge^{2} \mathrm{~T} \tau: \wedge^{2} \mathrm{~T} E \rightarrow \wedge^{2} \mathrm{~T} M .
$$

- The adapted coordinates $\left(x^{\rho}, y^{a}, \dot{x}^{\mu \nu}, y^{\sigma b}, z^{c d}\right)$ on $\wedge^{2} E$, with $\dot{x}^{\mu \nu}=-\dot{x}^{\nu \mu}, z^{c d}=-z^{d c}$, coming from the decomposition of a bivector

$$
\wedge^{2} T E \ni u=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}+y^{\sigma b} \frac{\partial}{\partial x^{\sigma}} \wedge \frac{\partial}{\partial y^{b}}+\frac{1}{2} z^{c d} \frac{\partial}{\partial y^{c}} \wedge \frac{\partial}{y^{d}},
$$

are of degrees $0,1,0,1,2$, respectively.

- All this can be generalized to a graded bundle structure of degree r on
- We want to built a framework for generating (first-order) dynamics for higher dimensional objects, being motivated by the study of dynamics of one-dimensional ones (curves)

Graded bundles - further example

- n-vectors on a vector bundle If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{2} T E$ is canonically a graded bundle of degree 2 with respect to the projection

$$
\wedge^{2} \mathrm{~T} \tau: \wedge^{2} \mathrm{~T} E \rightarrow \wedge^{2} \mathrm{~T} M .
$$

- The adapted coordinates $\left(x^{\rho}, y^{a}, \dot{x}^{\mu \nu}, y^{\sigma b}, z^{c d}\right)$ on $\wedge^{2} E$, with $\dot{x}^{\mu \nu}=-\dot{x}^{\nu \mu}, z^{c d}=-z^{d c}$, coming from the decomposition of a bivector

$$
\wedge^{2} \mathrm{~T} E \ni u=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}+y^{\sigma b} \frac{\partial}{\partial x^{\sigma}} \wedge \frac{\partial}{\partial y^{b}}+\frac{1}{2} z^{c d} \frac{\partial}{\partial y^{c}} \wedge \frac{\partial}{y^{d}},
$$

are of degrees $0,1,0,1,2$, respectively.

- All this can be generalized to a graded bundle structure of degree r on $\wedge^{r} \mathrm{~T} E$:

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M
$$

- We want to built a framework for generating (first-order) dynamics for higher dimensional objects, being motivated by the study of dynamics of one-dimensional ones (curves)

Graded bundles - further example

- n-vectors on a vector bundle If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{2} T E$ is canonically a graded bundle of degree 2 with respect to the projection

$$
\wedge^{2} \mathrm{~T} \tau: \wedge^{2} \mathrm{~T} E \rightarrow \wedge^{2} \mathrm{~T} M .
$$

- The adapted coordinates $\left(x^{\rho}, y^{a}, \dot{x}^{\mu \nu}, y^{\sigma b}, z^{c d}\right)$ on $\wedge^{2} E$, with $\dot{x}^{\mu \nu}=-\dot{x}^{\nu \mu}, z^{c d}=-z^{d c}$, coming from the decomposition of a bivector

$$
\wedge^{2} \mathrm{~T} E \ni u=\frac{1}{2} \dot{x}^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \wedge \frac{\partial}{\partial x^{\nu}}+y^{\sigma b} \frac{\partial}{\partial x^{\sigma}} \wedge \frac{\partial}{\partial y^{b}}+\frac{1}{2} z^{c d} \frac{\partial}{\partial y^{c}} \wedge \frac{\partial}{y^{d}},
$$

are of degrees $0,1,0,1,2$, respectively.

- All this can be generalized to a graded bundle structure of degree r on $\wedge^{r} \mathrm{~T} E$:

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M
$$

- We want to built a framework for generating (first-order) dynamics for higher dimensional objects, being motivated by the study of dynamics of one-dimensional ones (curves).

Transition functions for graded bundles

- Let us go back to graded bundles. For a graded bundle F one can pick an atlas of F consisting of charts for which we have homogeneous local coordinates $\left(x^{A}, y_{w}^{a}\right)$ with weight deg, where $\operatorname{deg}\left(x^{A}\right)=0$ and $\operatorname{deg}\left(y_{w}^{a}\right)=w$ with $1 \leq w \leq k$, where k is the degree of the graded bundle. Here, a should be considered as a 'generalised index' running over all the possible weights. The label w in this respect is somewhat redundant, but it will come in very useful.
where $T_{b}{ }^{a}$ are invertible and $T_{b_{0} \cdots b_{1}} \stackrel{a}{a}$ are symmetric in indices b.
- In particular, the transition functions of coordinates of degree r involve only coordinates of degree $\leq r$, defining a reduced graded
bundle F_{r} of degree r (we simply 'forget' coordinates of degrees

Transition functions for graded bundles

- Let us go back to graded bundles. For a graded bundle F one can pick an atlas of F consisting of charts for which we have homogeneous local coordinates $\left(x^{A}, y_{w}^{a}\right)$ with weight deg, where $\operatorname{deg}\left(x^{A}\right)=0$ and $\operatorname{deg}\left(y_{w}^{a}\right)=w$ with $1 \leq w \leq k$, where k is the degree of the graded bundle. Here, a should be considered as a 'generalised index' running over all the possible weights. The label w in this respect is somewhat redundant, but it will come in very useful.
- The local changes of coordinates are of the form

$$
\begin{align*}
x^{\prime A} & =x^{\prime A}(x), \tag{1}\\
y_{w}^{\prime a} & =y_{w}^{b} T_{b}{ }^{a}(x)+\sum_{\substack{1<n \\
w_{1}+\cdots+w_{n}=w}} \frac{1}{n!} y_{w_{1}}^{b_{1}} \cdots y_{w_{n}}^{b_{n}} T_{b_{n} \cdots b_{1}}^{a}(x),
\end{align*}
$$

where $T_{b}{ }^{a}$ are invertible and $T_{b_{n} \cdots b_{1}} \stackrel{a}{a}$ are symmetric in indices b.

Transition functions for graded bundles

- Let us go back to graded bundles. For a graded bundle F one can pick an atlas of F consisting of charts for which we have homogeneous local coordinates $\left(x^{A}, y_{w}^{a}\right)$ with weight deg, where $\operatorname{deg}\left(x^{A}\right)=0$ and $\operatorname{deg}\left(y_{w}^{a}\right)=w$ with $1 \leq w \leq k$, where k is the degree of the graded bundle. Here, a should be considered as a 'generalised index' running over all the possible weights. The label w in this respect is somewhat redundant, but it will come in very useful.
- The local changes of coordinates are of the form

$$
\begin{align*}
x^{\prime A} & =x^{\prime A}(x), \tag{1}\\
y_{w}^{\prime a} & =y_{w}^{b} T_{b}{ }^{a}(x)+\sum_{\substack{1<n \\
w_{1}+\cdots+w_{n}=w}} \frac{1}{n!} y_{w_{1}}^{b_{1}} \cdots y_{w_{n}}^{b_{n}} T_{b_{n} \cdots b_{1}}^{a}(x),
\end{align*}
$$

where $T_{b}{ }^{a}$ are invertible and $T_{b_{n} \cdots b_{1}} \stackrel{a}{a}$ are symmetric in indices b.

- In particular, the transition functions of coordinates of degree r involve only coordinates of degree $\leq r$, defining a reduced graded bundle F_{r} of degree r (we simply 'forget' coordinates of degrees $>r$).

The tower of affine fibrations

- Transformations for the canonical projection $F_{r} \rightarrow F_{r-1}$ are linear modulo a shift by a polynomial in variables of degrees $<r$,

so the fibrations $F_{r} \rightarrow F_{r-1}$ are affine. The linear part of F_{r} corresponds to a vector subbundle \bar{F}_{r} over M (we put $y_{w,}^{a}$, with $0<w<r$, equal to 0).
- In this way we get for any graded bundle F of degree k, like for jet bundles, a tower of affine fibrations

- Example. In the case of the canonical graded bundle $F=T^{k} M$, we get exactly the tower of projections of jet bundles

The tower of affine fibrations

- Transformations for the canonical projection $F_{r} \rightarrow F_{r-1}$ are linear modulo a shift by a polynomial in variables of degrees $<r$,

$$
y_{r}^{\prime a}=y_{r}^{b} T_{b}^{a}(x)+\sum_{\substack{1<n \\ w_{1}+\cdots+w_{n}=r}} \frac{1}{n!} y_{w_{1}}^{b_{1}} \cdots y_{w_{n}}^{b_{n}} T_{b_{n} \cdots b_{1}}^{a}(x)
$$

so the fibrations $F_{r} \rightarrow F_{r-1}$ are affine. The linear part of F_{r} corresponds to a vector subbundle \bar{F}_{r} over M (we put y_{w}^{a}, with $0<w<r$, equal to 0).

- In this way we get for any graded bundle F of degree k, like for jet bundles, a tower of affine fibrations
- Example. In the case of the canonical graded bundle $F=T^{k} M$, we get exactly the tower of projections of jet bundles

The tower of affine fibrations

- Transformations for the canonical projection $F_{r} \rightarrow F_{r-1}$ are linear modulo a shift by a polynomial in variables of degrees $<r$,

$$
y_{r}^{\prime a}=y_{r}^{b} T_{b}{ }^{a}(x)+\sum_{\substack{1<n \\ w_{1}+\cdots+w_{n}=r}} \frac{1}{n!} y_{w_{1}}^{b_{1}} \cdots y_{w_{n}}^{b_{n}} T_{b_{n} \cdots b_{1}}^{a}(x)
$$

so the fibrations $F_{r} \rightarrow F_{r-1}$ are affine. The linear part of F_{r} corresponds to a vector subbundle \bar{F}_{r} over M (we put y_{w}^{a}, with $0<w<r$, equal to 0).

- In this way we get for any graded bundle F of degree k, like for jet bundles, a tower of affine fibrations

$$
F=F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Example. In the case of the canonical graded bundle $F=T^{k} M$, we get exactly the tower of projections of jet bundles

The tower of affine fibrations

- Transformations for the canonical projection $F_{r} \rightarrow F_{r-1}$ are linear modulo a shift by a polynomial in variables of degrees $<r$,

$$
y_{r}^{\prime a}=y_{r}^{b} T_{b}^{a}(x)+\sum_{\substack{1<n \\ w_{1}+\cdots+w_{n}=r}} \frac{1}{n!} y_{w_{1}}^{b_{1}} \cdots y_{w_{n}}^{b_{n}} T_{b_{n} \cdots b_{1}} \stackrel{a}{b_{1}}(x),
$$

so the fibrations $F_{r} \rightarrow F_{r-1}$ are affine. The linear part of F_{r} corresponds to a vector subbundle \bar{F}_{r} over M (we put y_{w}^{a}, with $0<w<r$, equal to 0).

- In this way we get for any graded bundle F of degree k, like for jet bundles, a tower of affine fibrations

$$
F=F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Example. In the case of the canonical graded bundle $F=T^{k} M$, we get exactly the tower of projections of jet bundles

$$
\mathrm{T}^{k} M \xrightarrow{\tau^{k}} T^{k-1} M \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} \mathrm{~T}^{2} M \xrightarrow{\tau^{2}} \mathrm{~T} M \xrightarrow{\tau^{1}} F_{0}=M .
$$

Further constructions

- The reduced manifold F_{r} will also be denoted $F[\nabla \leq r]$ if we want to stress which weight vector field ∇ we have in mind (sometimes we will work with many).
- There is also a "dual" sequence of submanifolds and their inclusions

$$
\begin{equation*}
M:=F_{0}=F^{[k]} \hookrightarrow F^{[k-1]} \hookrightarrow \cdots \hookrightarrow F^{[0]}=F_{k}, \tag{2}
\end{equation*}
$$

where we define, locally but correctly,

$$
F^{[i]}:=\left\{p \in F_{k} \mid y_{w}^{a}=0 \text { if } w \leq i\right\} .
$$

- In words, "you project higher to lower, but set to 0 lower to higher"
- Note that the $C^{\infty}(M)$-module $\mathcal{A}^{r}(F)$ of homogeneous functions of degree r on F is finitely generated and projective, so it corresponds to sections of a vector bundle $A^{r}(F)$ over M. The graded algebra

$$
\mathcal{A}(F)=\bigoplus_{i=0}^{\infty} \mathcal{A}^{i}(F)
$$

generated by homogeneous functions is called the polynomial algebra

Further constructions

- The reduced manifold F_{r} will also be denoted $F[\nabla \leq r]$ if we want to stress which weight vector field ∇ we have in mind (sometimes we will work with many).
- There is also a "dual" sequence of submanifolds and their inclusions

where we define, locally but correctly,
- In words, "you project higher to lower, but set to 0 lower to higher"
- Note that the $C^{\infty}(M)$-module $\mathcal{A}^{r}(F)$ of homogeneous functions of degree r on F is finitely generated and projective, so it corresponds to sections of a vector bundle $A^{r}(F)$ over M. The graded algebra

generated by homogeneous functions is called the polynomial algebra

Further constructions

- The reduced manifold F_{r} will also be denoted $F[\nabla \leq r]$ if we want to stress which weight vector field ∇ we have in mind (sometimes we will work with many).
- There is also a "dual" sequence of submanifolds and their inclusions

$$
\begin{equation*}
M:=F_{0}=F^{[k]} \hookrightarrow F^{[k-1]} \hookrightarrow \cdots \hookrightarrow F^{[0]}=F_{k} \tag{2}
\end{equation*}
$$

where we define, locally but correctly,

$$
F^{[i]}:=\left\{p \in F_{k} \mid y_{w}^{a}=0 \text { if } w \leq i\right\}
$$

- In words,
-

degree r on F is finitely generated and projective, so it corresponds to sections of a vector bundle $A^{r}(F)$ over M. The graded algebra

generated by homogeneous functions is called the polynomial algebra

Further constructions

- The reduced manifold F_{r} will also be denoted $F[\nabla \leq r]$ if we want to stress which weight vector field ∇ we have in mind (sometimes we will work with many).
- There is also a "dual" sequence of submanifolds and their inclusions

$$
\begin{equation*}
M:=F_{0}=F^{[k]} \hookrightarrow F^{[k-1]} \hookrightarrow \cdots \hookrightarrow F^{[0]}=F_{k} \tag{2}
\end{equation*}
$$

where we define, locally but correctly,

$$
F^{[i]}:=\left\{p \in F_{k} \mid y_{w}^{a}=0 \text { if } w \leq i\right\}
$$

- In words, "you project higher to lower, but set to 0 lower to higher". degree r on F is finitely generated and projective, so it corresponds to sections of a vector bundle $A^{r}(F)$ over M. The graded algebra

generated by homogeneous functions is called the polynomial algebra

Further constructions

- The reduced manifold F_{r} will also be denoted $F[\nabla \leq r]$ if we want to stress which weight vector field ∇ we have in mind (sometimes we will work with many).
- There is also a "dual" sequence of submanifolds and their inclusions

$$
\begin{equation*}
M:=F_{0}=F^{[k]} \hookrightarrow F^{[k-1]} \hookrightarrow \cdots \hookrightarrow F^{[0]}=F_{k} \tag{2}
\end{equation*}
$$

where we define, locally but correctly,

$$
F^{[i]}:=\left\{p \in F_{k} \mid y_{w}^{a}=0 \text { if } w \leq i\right\}
$$

- In words, "you project higher to lower, but set to 0 lower to higher".
- Note that the $C^{\infty}(M)$-module $\mathcal{A}^{r}(F)$ of homogeneous functions of degree r on F is finitely generated and projective, so it corresponds to sections of a vector bundle $A^{r}(F)$ over M. The graded algebra

$$
\mathcal{A}(F)=\bigoplus_{i=0}^{\infty} \mathcal{A}^{i}(F)
$$

generated by homogeneous functions is called the polynomial algebra of F.

Splitting of graded bundles

Definition

A split graded bundle F of degree k over M is a graded bundle being a direct sum of vector bundles E_{i} over $M, i=1, \ldots, k$:

$$
F=E_{1} \oplus \cdots \oplus E_{k}
$$

such that the linear fiber coordinates in E_{i} are of degree i. In other words, split graded bundles are graded vector bundles.

Theorem

Any graded bundle F of degree k is isomorphic with the split graded bundle $\bar{F}=\bar{F}^{1} \oplus \cdots \oplus \bar{F}^{k}$

The point is that this isomorphism is not canonical. Also the morphism of graded vector bundles in the category of graded bundles differ from graded vector bundle morphism which makes these categories different.

Splitting of graded bundles

Definition

A split graded bundle F of degree k over M is a graded bundle being a direct sum of vector bundles E_{i} over $M, i=1, \ldots, k$:

$$
F=E_{1} \oplus \cdots \oplus E_{k}
$$

such that the linear fiber coordinates in E_{i} are of degree i. In other words, split graded bundles are graded vector bundles.

> Theorem
> Any graded bundle F of degree k is isomorphic with the split graded bundle $\bar{F}=\bar{F}^{1}$

> The point is that this isomorphism is not canonical. Also the morphism of graded vector bundles in the category of graded bundles differ from graded vector bundle morphism which makes these categories different.

Splitting of graded bundles

Definition

A split graded bundle F of degree k over M is a graded bundle being a direct sum of vector bundles E_{i} over $M, i=1, \ldots, k$:

$$
F=E_{1} \oplus \cdots \oplus E_{k}
$$

such that the linear fiber coordinates in E_{i} are of degree i. In other words, split graded bundles are graded vector bundles.

Theorem

Any graded bundle F of degree k is isomorphic with the split graded bundle $\bar{F}=\bar{F}^{1} \oplus \cdots \oplus \bar{F}^{k}$.

> The point is that this isomorphism is not canonical. Also the morphism of graded vector bundles in the category of graded bundles differ from graded vector bundle morphism which makes these categories different.

Splitting of graded bundles

Definition

A split graded bundle F of degree k over M is a graded bundle being a direct sum of vector bundles E_{i} over $M, i=1, \ldots, k$:

$$
F=E_{1} \oplus \cdots \oplus E_{k}
$$

such that the linear fiber coordinates in E_{i} are of degree i. In other words, split graded bundles are graded vector bundles.

Theorem

Any graded bundle F of degree k is isomorphic with the split graded bundle $\bar{F}=\bar{F}^{1} \oplus \cdots \oplus \bar{F}^{k}$.

The point is that this isomorphism is not canonical. Also the morphism of graded vector bundles in the category of graded bundles differ from graded vector bundle morphism which makes these categories different.

Splitting of graded bundles - comments

- The situation is similar to the celebrated Batchelor Theorem in supergeometry stating that any supermanifold is (non-canonically) diffeomorphic with the 'superization' ΠE of a vector bundle E. Here, ΠE is a supermanifold with the same local affine coordinates (x, y) and transition functions as in E but the fiber linear coordinates y are regarded as odd functions:

Of course, morphisms of such supermanifolds are different from that of vector bundles, so these categories are completely different.

- The Betchelor Theorem was actually proved first by Polish physicist Gawędzki, that provides therefore another example of the Arnold's law saying that "Discoveries are rarely attributed to the correct person"
- Of course Arnold's law is self-referential, as Whitehead claimed earlier that "Everything of importance has been said before by someone who did not discover it".

Splitting of graded bundles - comments

- The situation is similar to the celebrated Batchelor Theorem in supergeometry stating that any supermanifold is (non-canonically) diffeomorphic with the 'superization' ΠE of a vector bundle E. Here, ΠE is a supermanifold with the same local affine coordinates (x, y) and transition functions as in E but the fiber linear coordinates y are regarded as odd functions:

$$
y^{i} y^{j}=-y^{j} y^{i}
$$

Of course, morphisms of such supermanifolds are different from that of vector bundles, so these categories are completely different.

> The Betchelor Theorem was actually proved first by Polish physicist Gawędzki, that provides therefore another example of the Arnold's law saving that
> - Of course Arnold's law is self-referential, as Whitehead claimed earlier that "Everything of importance has been said before by someone who

Splitting of graded bundles - comments

- The situation is similar to the celebrated Batchelor Theorem in supergeometry stating that any supermanifold is (non-canonically) diffeomorphic with the 'superization' ΠE of a vector bundle E. Here, ΠE is a supermanifold with the same local affine coordinates (x, y) and transition functions as in E but the fiber linear coordinates y are regarded as odd functions:

$$
y^{i} y^{j}=-y^{j} y^{i}
$$

Of course, morphisms of such supermanifolds are different from that of vector bundles, so these categories are completely different.

- The Betchelor Theorem was actually proved first by Polish physicist Gawedzki, that provides therefore another example of the Arnold's law saying that "Discoveries are rarely attributed to the correct person".
- Of course Arnold's law is self-referential, as Whitehead claimed earlier that

Splitting of graded bundles - comments

- The situation is similar to the celebrated Batchelor Theorem in supergeometry stating that any supermanifold is (non-canonically) diffeomorphic with the 'superization' ΠE of a vector bundle E. Here, ΠE is a supermanifold with the same local affine coordinates (x, y) and transition functions as in E but the fiber linear coordinates y are regarded as odd functions:

$$
y^{i} y^{j}=-y^{j} y^{i} .
$$

Of course, morphisms of such supermanifolds are different from that of vector bundles, so these categories are completely different.

- The Betchelor Theorem was actually proved first by Polish physicist Gawędzki, that provides therefore another example of the Arnold's law saying that "Discoveries are rarely attributed to the correct person".
- Of course Arnold's law is self-referential, as Whitehead claimed earlier that "Everything of importance has been said before by someone who did not discover it".

Tangent lifts of graded structures

- Consider an arbitrary graded bundle F_{k} over M of minimal degree k with homogeneous coordinates $\left(x^{A}, y_{w}^{a}\right), 1 \leq w \leq k$. The corresponding homogeneity structure is then

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

and the weight vector field: $\nabla_{F}:=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{a}}$.

- Applying the tangent functor to all h_{t}, we get a homogeneity structure $\left(d_{T} h\right)_{t}=T\left(h_{t}\right)$ on TF:

$$
\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}\left(x^{A}, y_{w}^{a}, \dot{x}^{B}, \dot{y}_{w}^{b}\right)=\left(x^{A}, t^{w} y_{w}^{a}, \dot{x}^{B}, t^{w} \dot{y}_{w}^{b}\right)
$$

- The corresponding weight vector field is the tangent lift of ∇_{F} :

Tangent lifts of graded structures

- Consider an arbitrary graded bundle F_{k} over M of minimal degree k with homogeneous coordinates $\left(x^{A}, y_{w}^{a}\right), 1 \leq w \leq k$. The corresponding homogeneity structure is then

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

and the weight vector field: $\nabla_{F}:=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{2}}$.

- Applying the tangent functor to all h_{t}, we get a homogeneity structure $\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}=\mathrm{T}\left(h_{t}\right)$ on TF
- The corresponding weight vector field is the tangent lift of ∇_{F} :

Tangent lifts of graded structures

- Consider an arbitrary graded bundle F_{k} over M of minimal degree k with homogeneous coordinates $\left(x^{A}, y_{w}^{a}\right), 1 \leq w \leq k$. The corresponding homogeneity structure is then

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

and the weight vector field: $\nabla_{F}:=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{2}}$.

- Applying the tangent functor to all h_{t}, we get a homogeneity structure $\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}=\mathrm{T}\left(h_{t}\right)$ on $\mathrm{T} F$:

$$
\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}\left(x^{A}, y_{w}^{a}, \dot{x}^{B}, \dot{y}_{w}^{b}\right)=\left(x^{A}, t^{w} y_{w}^{a}, \dot{x}^{B}, t^{w} \dot{y}_{w}^{b}\right)
$$

- The corresponding weight vector field is the tangent lift of ∇_{F} :

Tangent lifts of graded structures

- Consider an arbitrary graded bundle F_{k} over M of minimal degree k with homogeneous coordinates $\left(x^{A}, y_{w}^{a}\right), 1 \leq w \leq k$. The corresponding homogeneity structure is then

$$
h_{t}\left(x^{A}, y_{w}^{a}\right)=\left(x^{A}, t^{w} y_{w}^{a}\right)
$$

and the weight vector field: $\nabla_{F}:=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{2}}$.

- Applying the tangent functor to all h_{t}, we get a homogeneity structure $\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}=\mathrm{T}\left(h_{t}\right)$ on $\mathrm{T} F$:

$$
\left(\mathrm{d}_{\mathrm{T}} h\right)_{t}\left(x^{A}, y_{w}^{a}, \dot{x}^{B}, \dot{y}_{w}^{b}\right)=\left(x^{A}, t^{w} y_{w}^{a}, \dot{x}^{B}, t^{w} \dot{y}_{w}^{b}\right) .
$$

- The corresponding weight vector field is the tangent lift of ∇_{F} :

$$
\nabla_{\mathrm{T} F}=\mathrm{d}_{\mathrm{T}} \nabla_{F}=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{a}}+\sum_{w} w \dot{y}_{w}^{a} \frac{\partial}{\partial \dot{y}_{w}^{a}} .
$$

Phase lifts of graded structures

- Similarly we can try to lift h_{t} to the cotangent bundle T* F with the adapted coordinates $\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)$; for $t \neq 0$:

$$
\left(T h_{t}\right)^{*}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{-w} y_{w}^{a}, p_{B}, t^{w} p_{b}^{w}\right) .
$$

- As this cannot be directly extended to an action of \mathbb{R}, we define the phase lift as $\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}=t^{k}\left(\mathrm{~T}\left(h_{t^{-1}}\right)^{*}\right)$:

$$
\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{w} y_{w}^{a}, t^{k} p_{B}, t^{k-w} p_{b}^{w}\right) .
$$

- The associated weight vector field reads

- In this way, the tangent and cotangent bundles are canonically graded bundles of degree k over F and \bar{F}_{k}^{*}, respectively.

Phase lifts of graded structures

- Similarly we can try to lift h_{t} to the cotangent bundle $T^{*} F$ with the adapted coordinates $\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)$; for $t \neq 0$:

$$
\left(\mathrm{T} h_{t}\right)^{*}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{-w} y_{w}^{a}, p_{B}, t^{w} p_{b}^{w}\right) .
$$

- As this cannot be directly extended to an action of \mathbb{R}, we define the phase lift as $\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}=t^{k}\left(\mathrm{~T}\left(h_{t^{-1}}\right)^{*}\right)$:
- The associated weight vector field reads

- In this way, the tangent and cotangent bundles are canonically graded bundles of degree k over F and \bar{F}_{k}^{*}, respectively.

Phase lifts of graded structures

- Similarly we can try to lift h_{t} to the cotangent bundle $\mathrm{T}^{*} F$ with the adapted coordinates $\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)$; for $t \neq 0$:

$$
\left(\mathrm{T} h_{t}\right)^{*}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{-w} y_{w}^{a}, p_{B}, t^{w} p_{b}^{w}\right) .
$$

- As this cannot be directly extended to an action of \mathbb{R}, we define the phase lift as $\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}=t^{k}\left(\mathrm{~T}\left(h_{t^{-1}}\right)^{*}\right)$:

$$
\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{w} y_{w}^{a}, t^{k} p_{B}, t^{k-w} p_{b}^{w}\right) .
$$

- The associated weight vector field reads
- In this way, the tangent and cotangent bundles are canonically graded bundles of degree k over F and \bar{F}_{k}^{*}, respectively.

Phase lifts of graded structures

- Similarly we can try to lift h_{t} to the cotangent bundle $T^{*} F$ with the adapted coordinates $\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)$; for $t \neq 0$:

$$
\left(\mathrm{T} h_{t}\right)^{*}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{-w} y_{w}^{a}, p_{B}, t^{w} p_{b}^{w}\right) .
$$

- As this cannot be directly extended to an action of \mathbb{R}, we define the phase lift as $\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}=t^{k}\left(\mathrm{~T}\left(h_{t^{-1}}\right)^{*}\right)$:

$$
\left(\mathrm{d}_{\mathrm{T}^{*}}^{\mathrm{k}} h\right)_{t}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{w} y_{w}^{a}, t^{k} p_{B}, t^{k-w} p_{b}^{w}\right) .
$$

- The associated weight vector field reads

$$
\nabla_{\mathrm{T}^{*} F}=\mathrm{d}_{\mathrm{T}^{*}}^{k} \nabla_{F}=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{a}}+k p_{B} \frac{\partial}{\partial p_{B}}+\sum_{w}(k-w) p_{a}^{w} \frac{\partial}{\partial p_{a}^{w}}
$$

- In this way, the tangent and cotangent bundles are canonically graded bundles of degree k over F and \bar{F}_{k}^{*}, respectively.

Phase lifts of graded structures

- Similarly we can try to lift h_{t} to the cotangent bundle $T^{*} F$ with the adapted coordinates $\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)$; for $t \neq 0$:

$$
\left(\mathrm{T} h_{t}\right)^{*}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{-w} y_{w}^{a}, p_{B}, t^{w} p_{b}^{w}\right) .
$$

- As this cannot be directly extended to an action of \mathbb{R}, we define the phase lift as $\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}=t^{k}\left(\mathrm{~T}\left(h_{t^{-1}}\right)^{*}\right)$:

$$
\left(\mathrm{d}_{\mathrm{T}^{*}}^{k} h\right)_{t}\left(x^{A}, y_{w}^{a}, p_{B}, p_{b}^{w}\right)=\left(x^{A}, t^{w} y_{w}^{a}, t^{k} p_{B}, t^{k-w} p_{b}^{w}\right) .
$$

- The associated weight vector field reads

$$
\nabla_{\mathrm{T}^{*} F}=\mathrm{d}_{\mathbf{T}^{*}}^{k} \nabla_{F}=\sum_{w} w y_{w}^{a} \frac{\partial}{\partial y_{w}^{a}}+k p_{B} \frac{\partial}{\partial p_{B}}+\sum_{w}(k-w) p_{a}^{w} \frac{\partial}{\partial p_{a}^{w}} .
$$

- In this way, the tangent and cotangent bundles are canonically graded bundles of degree k over F and \bar{F}_{k}^{*}, respectively.

Higher lifts and canonical isomorphisms

- Using higher tangent functors T^{k}, we can lift homogeneity structures on F to homogeneity structures on $T^{k} F$ simply putting

$$
\left(d_{T k} h\right)_{t}=T^{k}\left(h_{t}\right): T^{k} F \rightarrow T^{k} F
$$

- We have fundamental isomorphisms between iterated higher tangent and cotangent bundles.

Theorem (Cantrijn-Crampin-Sarlet-Saunders-Tulczyjew)

For any manifold M and any $k \in \mathbb{N}$, there is a canonical isomorphism

$$
\mathrm{T}^{*} \mathrm{~T}^{k} M \simeq \mathrm{~T}^{k} \mathrm{~T}^{*} M
$$

- The corresponding graded bundle structure $T^{k} T^{*} M \rightarrow T^{*} M$ and the vector bundle structure $\mathrm{T}^{*} \mathrm{~T}^{k} M \rightarrow \mathrm{~T}^{k} M$ are compatible in a natural sense, so that $T^{*} T^{k} M \simeq T^{k} T^{*} M$ is a canonical example of a double graded bundle, which will be discussed in the next talk.

Higher lifts and canonical isomorphisms

- Using higher tangent functors T^{k}, we can lift homogeneity structures on F to homogeneity structures on $T^{k} F$ simply putting

$$
\left(\mathrm{d}_{\mathrm{T}^{k}} h\right)_{t}=\mathrm{T}^{k}\left(h_{t}\right): \mathrm{T}^{k} F \rightarrow \mathrm{~T}^{k} F
$$

- We have fundamental isomorphisms between iterated higher tangent and cotangent bundles.

Theorem (Cantrijn-Crampin-Sarlet-Saunders-Tulczyjew)

For any manifold M and any $k \in \mathbb{N}$, there is a canonical isomorphism

- The corresponding graded bundle structure $T^{k} T^{*} M \rightarrow T^{*} M$ and the vector bundle structure $T^{*} T^{k} M \rightarrow T^{k} M$ are compatible in a natural sense, so that $T^{*} T^{k} M \simeq T^{k} T^{*} M$ is a canonical example of a double graded bundle, which will be discussed in the next talk.

Higher lifts and canonical isomorphisms

- Using higher tangent functors T^{k}, we can lift homogeneity structures on F to homogeneity structures on $T^{k} F$ simply putting

$$
\left(\mathrm{d}_{\mathrm{T}^{k}} h\right)_{t}=\mathrm{T}^{k}\left(h_{t}\right): \mathrm{T}^{k} F \rightarrow \mathrm{~T}^{k} F .
$$

- We have fundamental isomorphisms between iterated higher tangent and cotangent bundles.

Theorem (Cantrijn-Crampin-Sarlet-Saunders-Tulczyjew)

For any manifold M and any $k \in \mathbb{N}$, there is a canonical isomorphism

$$
T^{*} T^{k} M \simeq T^{k} T^{*} M
$$

Higher lifts and canonical isomorphisms

- Using higher tangent functors T^{k}, we can lift homogeneity structures on F to homogeneity structures on $T^{k} F$ simply putting

$$
\left(\mathrm{d}_{\mathrm{T}^{k}} h\right)_{t}=\mathrm{T}^{k}\left(h_{t}\right): \mathrm{T}^{k} F \rightarrow \mathrm{~T}^{k} F
$$

- We have fundamental isomorphisms between iterated higher tangent and cotangent bundles.

Theorem (Cantrijn-Crampin-Sarlet-Saunders-Tulczyjew)

For any manifold M and any $k \in \mathbb{N}$, there is a canonical isomorphism

$$
T^{*} T^{k} M \simeq T^{k} T^{*} M
$$

- The corresponding graded bundle structure $\mathrm{T}^{k} \mathrm{~T}^{*} M \rightarrow \mathrm{~T}^{*} M$ and the vector bundle structure $T^{*} T^{k} M \rightarrow T^{k} M$ are compatible in a natural sense, so that $T^{*} T^{k} M \simeq T^{k} T^{*} M$ is a canonical example of a double graded bundle, which will be discussed in the next talk.

Homework 1

- Problem 1. Prove that any real vector space structure on \mathbb{R}^{n} with the same multiplication by reals coincides with the standard one.
- Problem 2. Prove directly that any smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, which satisfies $f(t \cdot x)=t^{k} \cdot f(x)$ for some $k \in \mathbb{N}$ and all $t \in \mathbb{R}$, is a polynomial.
- Problem 3. Show that a submanifold E_{0} of a vector bundle E over M is a vector subbundle (possibly covering a submanifold $M_{0} \subset M$) if and only if it E_{0} is invariant with respect to all homotheties, i.e. $h_{t}\left(E_{0}\right) \subset E_{0}$ for all $t \in \mathbb{R}$.
- Problem 4. Find a split graded bundle isomorphic to the graded bundle $T^{2} M$.
- Problem 5. Let $\tau: E \rightarrow M$ be a vector bundle. What is the base of the vector bundle structure on $T^{*} E$ being the 1-phase lift of the vector bundle (graded bundle of degree 1) structure on E ?

Some References

- A.J. Bruce, K. Grabowska \& J. Grabowski, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 3, 559-575.
- J. Grabowski, M. de León, J. C. Marrero \&
D. Martín de Diego, Nonholonomic constraints: a new viewpoint, J. Math. Phys. 50 (2009), no. 1, 013520, 17 pp.
- K. Grabowska \& J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A 41 (2008), no. 17, 175204, 25 pp.
- K. Grabowska, J. Grabowski \& P. Urbański, Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings, J. Geom. Mech. 6 (2014), 503-526.
- J. Grabowski\& M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys. 59 (2009), 1285-1305.
- J. Grabowski \& M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), 21-36.

THANK YOU FOR YOUR ATTENTION!

[^0]: if and only if f is linear

[^1]: if and only if f is linear

[^2]: Of course, in these coordinates $0^{F}=(0, \ldots, 0)$

[^3]: Theorem
 The homogeneity structure in a graded space comes from a vector space
 structure if and only if it is regular. In this case, the vector space structure is uniquely determined by the homogeneity structure.

[^4]: Theorem
 The homogeneity structure in a graded space comes from a vector space
 structure if and only if it is regular. In this case, the vector space structure is uniquely determined by the homogeneity structure.

