IV School on Geometry and Physics
6 July — 11 July 2015
LIST OF COURSES

1. Maciej DUNAJSKI — University of Cambridge, United Kingdom
 An introduction to twistor theory

2. Bogdan MIELNIK — CINVESTAV, Mexico
 The non-inertial quanta: reality or fiction?
 Intense discussions in QM and QFT about the possibility of the “quantization” by
 the observers using the non-inertial reference frames seems of great interest for
 the coexistence of the relativistic and quantum theories. However, the methods
 used to solve the problem are based on ideas which did not answer all critical
 questions. We shall show an example of an explicitly solvable quantum system
 in both inertial and non-inertial reference frames. The comparison of the results
 throws some shadow on the quantum formalism applied from the point of view
 of non-inertial frames.

3. Yurii NERETIN — Institute for Theoretical and Experimental Physics, Russia
 Hilbert spaces of holomorphic functions

4. Stanislav STEPIN — Uniwersytet w Białymstoku, Poland
 Phase integrals method in the problem of quasiclassical localization of spec-
 trum
 An approach based on phase integrals method will be outlined that enables one
 to examine quasiclassical asymptotics of spectrum for nonselfadjoint singularly
 perturbed operators. This approach is applied then to boundary eigenvalue prob-
 lem for second order differential operators with PT-symmetric cubic potentials
 of generic type. Bohr-Sommerfeld quantization rules are derived to describe the
 location of the spectrum and geometric properties of the corresponding spectrum
 concentration curves are investigated as well.

5. Theodore VORONOV — University of Manchester, United Kingdom
 Selected topics in vector bundles, supermanifolds and Lie algebroids
 I wish to give an elementary introduction into these three concepts basing on
 examples and not assuming any prior knowledge. Vector bundles arise every-
 where in geometry. Supermanifold language is a powerful tool in geometry and
 mathematical physics. Supermanifolds are related with vector bundles via the
 classification theorem. Lie algebroids naturally generalize Lie algebras. They are
 useful in connection theory (for vector bundles) and are best described using the
 super language.

6. Stanisław Lech WORONOWICZ — Uniwersytet w Białymstoku, Poland
 Operator algebras in the quantum groups context
 We shall recall the basic concepts of the category of C*-algebras from the point
 of view of their applications in the theory of locally compact quantum groups.