Stone duality and quasi-orbit spaces for C^* -inclusions

Bartosz Kwaśniewski, University of Białystok

XXXVIII Workshop on Geometric Methods in Physics, Białowieża 2019.07.02

joint work with

see arXive 1804 09387

Classical setting

Consider a continuous group action $G \rightarrow \text{Homeo}(X)$ where

X - locally compact Hausdorff space, G - locally compact group

The orbit space $X/G = \{Gx : x \in X\}$ is usually badly non-Hausdorff.

• T_0 replacement for X/G is the **quasi-orbit space** X/\sim where

 $x \sim y \quad \iff \quad \overline{Gx} = \overline{Gy}$

• noncommutative replacement is the crossed product $C_0(X) \rtimes G$.

Effros-Hahn conjecture 1967

All primitive ideals in $C_0(X) \rtimes G$ are induced from stability groups of points in X.

Related Fact: Gootmann-Rosenberg 1979

If G is second countable and amenable and X is second countable, then there is a continuous map from the primitive ideal space of $C_0(X) \rtimes G$ onto X/\sim .

Classical setting II

Consider a continuous group action $\alpha : G \rightarrow \operatorname{Aut}(A)$ where

 $A - C^*$ -algebra, G - locally compact group

Let \check{A} be the primitive ideal space of A with Jacobson topology, given by the lattice $\mathbb{I}(A)$ of ideals in A. The **quasi-orbit space** \check{A}/\sim is defined using the induced action $\check{\alpha}: G \rightarrow \text{Homeo}(\check{A})$:

$$x \sim y \qquad \Longleftrightarrow \qquad \overline{Gx} = \overline{Gy}$$

Fact: related to generalized Effros-Hahn conjecture

Let $B := A \rtimes G$ be the crossed product. If G is second countable, amenable and A is separable, then there is

$$\check{B} \twoheadrightarrow \check{A} / \sim$$

a continuous and open surjective map called quasi-orbit map.

Question

Can we construct the quasi-orbit map just from the inclusion $A \subseteq \mathcal{M}(B)$?

Bartosz Kwaśniewski, University of Białystok Stone duality and quasi-orbit spaces for C^* -inclusions

Stone duality

The category of **locales** has complete, distributive lattices as objects and maps that preserve arbitrary joins and finite meets as arrows.

If X is a topological space, then the family of open subsets $\mathbb{O}(X)$ is a locale. If $f: X \to Y$ is a continuous map, then $f^{-1}: \mathbb{O}(Y) \to \mathbb{O}(X)$ is a locale morphism. Thus \mathbb{O} is a contravariant functor from topological spaces to locales.

If L is a complete lattice, then the set of **prime elements** $Prime(L) := \{p \in L \setminus \{1\} : I_1 \land I_2 \leq p \text{ for } I_1, I_2 \in L \text{ implies } I_1 \leq p \text{ or } I_2 \leq p\}$ is a topological space where $L \ni I \to U_I := \{p \in Prime(L) : I \leq p\} \in \mathbb{O}(Prime(L))$ Any locale morphism $G : L \to R$ induces continuous $G^* : Prime(R) \to Prime(L)$

Stone duality. The functors Prime and \mathbb{O} are adjoint. They give equivalence between spatial locales and sober topological spaces.

Question: Which locale morphisms $G: L \rightarrow R$ induce continuous open surjective maps G^* : $Prime(R) \rightarrow Prime(L)$?

A locale morphism $G: L \to R$ is called **open** if it has a left adjoint $F: R \to L$:

 $\forall_{I \in R, J \in L} \qquad I \leqslant G(J) \Longleftrightarrow F(I) \leqslant J \qquad (Galois \ connection)$

such that the Frobenius reciprocity condition holds:

 $F(J \cap G(I)) = F(J) \cap I$ for all $I \in R, J \in L$.

If $f: X \to Y$ is a continuous open map, then $f^{-1}: \mathbb{O}(Y) \to \mathbb{O}(X)$ is an open locale morphism with left adjoint given by $f: \mathbb{O}(X) \to \mathbb{O}(Y)$.

Thm. (B.K., R. Meyer)

Let $G: L \to \mathbb{O}(X)$ be a locale morphism and $\pi: X \to \text{Prime}(L)$ a continuous map that are adjunct (X is a topological space and L a complete lattice). Assume also

• X is second countable, and all closed subspaces of X are Baire spaces.

 π is an open surjection $\iff G: L \to \mathbb{O}(X)$ is injective and open.

Cor. (Dixmier 1967) If a C^* -algebra A is separable, then the inclusion $\check{A} \subseteq \text{Prime}(A) := \text{Prime}(\mathbb{I}(A))$ is in fact equality.

Bartosz Kwaśniewski, University of Białystok Stone duality and quasi-orbit spaces for C*-inclusions

We fix a general C^* -inclusion $A \subseteq \mathcal{M}(B)$. The maps $r : \mathbb{I}(B) \to \mathbb{I}(A)$ and $i : \mathbb{I}(A) \to \mathbb{I}(B)$ where

$$r(J) := \{ a \in A : aJ + Ja \subseteq J \}, \qquad i(I) := \overline{BIB}$$

form a Galois connection (adjunction): $\forall_{I \in \mathbb{I}(A), J \in \mathbb{I}(B)} \ I \subseteq r(J) \iff i(I) \subseteq J$ $\mathbb{I}^{B}(A) := r(\mathbb{I}(B))$ - restricted ideals, $\mathbb{I}^{A}(B) := i(\mathbb{I}(A))$ - induced ideals.

Consequences of Galois connection:

() the map *i* preserves joins and *r* preserves meets, and give $\mathbb{I}^{B}(A) \cong \mathbb{I}^{A}(B)$

2 the inclusion
$$\mathbb{I}^{B}(A) \hookrightarrow \mathbb{I}(A)$$
 and $r \circ i \colon \mathbb{I}(A) \to \mathbb{I}^{B}(A)$ are adjunct

3 $i \circ r \colon \mathbb{I}(B) \to \mathbb{I}^{A}(B)$ and the inclusion $\mathbb{I}^{A}(B) \hookrightarrow \mathbb{I}(B)$ are adjunct

Ex1. If $B := A \rtimes G$ for a locally compact group action $\alpha : G \to \operatorname{Aut}(A)$, then $\mathbb{I}^{B}(A) = \{I \in \mathbb{I}(A) : \alpha_{g}(I) = I \text{ for } g \in G\} - \alpha \text{-invariant ideals in } A$ $\mathbb{I}^{A}(B) = \{I \rtimes G : I \text{ is an } \alpha \text{-invariant ideal in } A\}$ **Ex2.** If $B := M_{2}(\mathbb{C}) \oplus M_{2}(\mathbb{C})$ and $A := \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \oplus \begin{pmatrix} b & 0 \\ 0 & c \end{pmatrix} \right\} \cong \mathbb{C}^{3}$ then $\mathbb{I}^{A}(B) = \mathbb{I}(B)$ and $\mathbb{I}^{B}(A) = \{0, \{aE_{11} \oplus 0 : a \in \mathbb{C}\}, \{0 \oplus bE_{11} : b \in \mathbb{C}\}, A\}$

Bartosz Kwaśniewski, University of Białystok Stone duality and quasi-orbit spaces for C*-inclusions

We fix a general C^* -inclusion $A \subseteq \mathcal{M}(B)$. The maps $r : \mathbb{I}(B) \to \mathbb{I}(A)$ and $i : \mathbb{I}(A) \to \mathbb{I}(B)$ where

$$r(J) := \{ a \in A \ aJ + Ja \subseteq J \}, \qquad i(I) := \overline{BIB}$$

form a Galois connection (adjunction): $\forall_{I \in \mathbb{I}(A), J \in \mathbb{I}(B)} \ I \subseteq r(J) \iff i(I) \subseteq J$ $\mathbb{I}^{B}(A) := r(\mathbb{I}(B))$ - restricted ideals, $\mathbb{I}^{A}(B) := i(\mathbb{I}(A))$ - induced ideals.

Consequences of Galois connection:

() the map *i* preserves joins and *r* preserves meets, and give $\mathbb{I}^{B}(A) \cong \mathbb{I}^{A}(B)$

2 the inclusion $\mathbb{I}^{B}(A) \hookrightarrow \mathbb{I}(A)$ and $r \circ i \colon \mathbb{I}(A) \to \mathbb{I}^{B}(A)$ are adjunct

 \circ $i \circ r \colon \mathbb{I}(B) \to \mathbb{I}^{A}(B)$ and the inclusion $\mathbb{I}^{A}(B) \hookrightarrow \mathbb{I}(B)$ are adjunct

Rem. Putting $Prime^{B}(A) := Prime(\mathbb{I}^{B}(A))$ and $Prime^{A}(B) := Prime(\mathbb{I}^{A}(B))$:

$$\mathsf{Prime}^{B}(A) \cong \mathsf{Prime}^{A}(B)$$

and this topological space could be a candidate for the quasi-orbit space. But we want to relate it to \check{A} and \check{B} !

Bartosz Kwaśniewski, University of Białystok Stone duality and quasi-orbit spaces for C*-inclusions

Quasi-orbit space

Consider the following lattice-theoretic conditions:

(JR) joins of restricted ideals remain restricted

(FR1) $I \cap r \circ i(J) = r \circ i(I \cap J)$ for all $I \in \mathbb{I}^{B}(A)$ and $J \in \mathbb{I}(A)$

Lem. The inclusion map $\mathbb{I}^{B}(A) \hookrightarrow \mathbb{I}(A)$ is a locale morphism if and only if (JR). It is an open locale morphism if and only if (JR) + (FR1).

Cor. If (JR), the induced continuous map π : $Prime(A) \rightarrow Prime^{B}(A)$ satisfies $\pi(\mathfrak{p})$ is the largest restricted ideal in A that is contained in \mathfrak{p} . If in addition (FR1) and \check{A} is second countable, then $\pi: \check{A} = Prime(A) \rightarrow Prime^{B}(A)$ is open and surjective.

Def.

Assuming (JR) the **quasi-orbit space** of the C^* -inclusion $A \subseteq \mathcal{M}(B)$ is the quotient space \check{A}/\sim where $\mathfrak{p} \sim \mathfrak{q}$ if and only if $\pi(\mathfrak{p}) = \pi(\mathfrak{q})$.

 $(JR) \quad joins \ of \ restricted \ ideals \ remain \ restricted \\ (FR1) \quad I \cap r \circ i(J) = r \circ i(I \cap J) \ for \ all \ I \in \mathbb{I}^B(A) \ and \ J \in \mathbb{I}(A)$

Lem. The inclusion map $\mathbb{I}^{\mathcal{B}}(A) \hookrightarrow \mathbb{I}(A)$ is a locale morphism if and only if (JR). It is an open locale morphism if and only if (JR) + (FR1).

Cor. If (JR), the induced continuous map π : Prime(A) \rightarrow Prime^B(A) satisfies $\pi(\mathfrak{p})$ is the largest restricted ideal in A that is contained in \mathfrak{p} . If in addition (FR1) and \check{A} is second countable, then

 $\pi: \check{A} = \mathsf{Prime}(A) \to \mathsf{Prime}^B(A)$ is open and surjective.

Def.

Assuming (JR) the **quasi-orbit space** of the C^* -inclusion $A \subseteq \mathcal{M}(B)$ is the quotient space \check{A}/\sim where $\mathfrak{p} \sim \mathfrak{q}$ if and only if $\pi(\mathfrak{p}) = \pi(\mathfrak{q})$.

Ex1. If $B := A \rtimes G$ for a locally compact group action $\alpha : G \to \operatorname{Aut}(A)$, then (JR), (FR1) hold, $\pi(\mathfrak{p}) = \bigcap_{g \in G} \alpha_g(\mathfrak{p})$ and \check{A}/\sim is the usual quasi-orbit space. **Ex2.** If $B := M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$ and $A := \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \oplus \begin{pmatrix} b & 0 \\ 0 & c \end{pmatrix} \right\}$ then (JR) fails. Consider the following lattice-theoretic conditions:

- (JR) joins of restricted ideals remain restricted
- (FR1) $I \cap r \circ i(J) = r \circ i(I \cap J)$ for all $I \in \mathbb{I}^{B}(A)$ and $J \in \mathbb{I}(A)$
- (MR_f) finite meets of induced ideals are again induced
- (MR) (arbitrary) meets of induced ideals are again induced
- (FR2) $I \cap F(J) = F(I \cap J)$ for every $I \in \mathbb{I}^{A}(B)$ and $J \in \mathbb{I}(B)$, where F(J) is the meet of all induced ideals that contain J.

Lem. The inclusion map $\mathbb{I}^{A}(B) \hookrightarrow \mathbb{I}(B)$ is a locale morphism if and only if (MR_{f}) . It is an open locale morphism if and only if (MR) + (FR2).

The induced continuous map is $i \circ r$: Prime $(B) \rightarrow \text{Prime}^{A}(B) \cong \text{Prime}^{B}(A)$. Thus the map r: Prime $(B) \rightarrow \text{Prime}^{B}(A)$ is well defined and continuous.

Cor. Assume (JR), (FR1), (MR_f) and \check{A} is second countable. We have a continuous map $\varrho: \check{B} \to \check{A}/\sim$ defined by $\pi_*^{-1} \circ r$, where $\pi_*: \check{A}/\sim \to \mathsf{Prime}^B(A)$ is a homeomorphism. The map ϱ is open surjective if and only if (MR) + (FR2)

Def. We call $\varrho \colon \check{B} \to \check{A}/\sim$ defined above the **quasi-orbit map** for $A \subseteq \mathcal{M}(B)$

Consider the following lattice-theoretic conditions:

- (JR) joins of restricted ideals remain restricted
- (FR1) $I \cap r \circ i(J) = r \circ i(I \cap J)$ for all $I \in \mathbb{I}^{B}(A)$ and $J \in \mathbb{I}(A)$
- (MR_f) finite meets of induced ideals are again induced
- (MR) (arbitrary) meets of induced ideals are again induced
- (FR2) $I \cap F(J) = F(I \cap J)$ for every $I \in \mathbb{I}^{A}(B)$ and $J \in \mathbb{I}(B)$, where F(J) is the meet of all induced ideals that contain J.

Cor. Assume (JR), (FR1), (MR_f) and \check{A} is second countable. We have a continuous map $\varrho \colon \check{B} \to \check{A}/\sim$ defined by $\pi_*^{-1} \circ r$, where $\pi_* \colon \check{A}/\sim \to \mathsf{Prime}^B(A)$ is a homeomorphism. The map ϱ is open surjective if and only if (MR) + (FR2)

Def. We call $\varrho: \check{B} \to \check{A}/\sim$ defined above the **quasi-orbit map** for $A \subseteq \mathcal{M}(B)$

Thm0. Let $A \subseteq \mathcal{M}(B)$ be a C^* -inclusion with \check{A} second countable. Reduction $r : \mathbb{I}(B) \to \mathbb{I}^B(A)$ induce homeomorphism $\check{B} \cong \check{A}/\sim$ if and only if r is injective and the conditions (JR), (FR1) hold.

Question: When the above lattice-theoretic conditions hold?

Bartosz Kwaśniewski, University of Białystok Stone duality and quasi-orbit spaces for C^* -inclusions

Thm1. Let $\alpha : G \to Aut(A)$ be a locally compact group action and let *B* be the full $A \rtimes G$ or reduced crossed product $A \rtimes_{red} G$.

- The quasi-orbit map $\varrho: \check{B} \to \check{A}/\sim$ exists. It is a homeomorphism if and only if r is injective and then $B = A \rtimes_{red} G$.
- ② If the action α is exact and B = A ⋊_{red} G then the quasi-orbit map ρ: B̃ → Ă/~ is open and surjective.
- ③ If G is discrete and not amenable, then there is an action such that the quasi-orbit map on the full crossed product $A \rtimes G$ is not open and surjective.

Thm2. Theorem 1 holds with group action replaced by a Fell bundle $\{B_g\}_{g \in G}$, with $A := B_e$ the unit fiber and B the cross sectional C^* -algebra (full or reduced).

Thm3. Statement (1) in Theorem 1 holds with group action replaced by an action of second countable groupoid \mathcal{G} on a separable C^* -algebra A.

Applications (standing assumption: Ă is second countable)

Thm4. Let S be an inverse semigroup with unit element $e \in S$. Let B be an S-graded C*-algebra, that is there is a family of closed linear subspaces $(B_t)_{t\in S}$ such that $B_g^* = B_{g^*}$, $B_g \cdot B_h \subseteq B_{gh}$ for all $g, h \in S$, and $\sum B_t$ is dense in B. The C*-inclusion $A := B_e \subseteq B$ admits the quasi orbit map $\check{B} \to \check{A}/\sim$.

Thm5. Let $A \subseteq B$ be a regular C^* -inclusion, that is AB = B and the normalizers

$$N_B(A) := \{ b \in B : bAb^* \subseteq A, \quad b^*Ab \subseteq A \}$$

generates B as a C^* -algebra. The quasi-orbit map $\check{B} \to \check{A}/\sim$ exists.

Ex. Let X be the C*-correspondence over $A = \mathbb{C}^3$ built from the directed graph • \longleftarrow • . Then $\mathcal{O}_X := M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$ and $A := \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \oplus \begin{pmatrix} b & 0 \\ 0 & c \end{pmatrix} \right\}$

Thm6. Let $B := \mathcal{O}(J, X)$ be the Cuntz-Pimsner algebra of a C^* -correspondence X over a C^* -algebra A relative to an ideal $J \subseteq J_X$. If \check{B} is second countable, there is a continuous open and surjective map $r : \check{B} \to \operatorname{Prime}^{\gamma}(B) \cong \operatorname{Prime}(\operatorname{Pair}_J^X(A))$.

Let (C, Δ) be a C^* -quantum group generated by a manageable multiplicative unitary $W \in B(H \otimes H)$ (Woronowicz, Sołtan)

Let (A, α) be a **C**^{*}-algebra with an action of *C*. So $\alpha: A \to \mathcal{M}(A \otimes C)$ is an injective morphism, $\alpha(A) \cdot (1 \otimes C) = A \otimes C$ and $(\alpha \otimes \mathsf{Id}_C) \circ \alpha = (\mathsf{Id}_A \otimes \alpha) \circ \alpha$.

The **reduced crossed product** $B = A \rtimes_{\alpha, \mathbf{r}} C$ is defined as the C^* -subalgebra of $\mathcal{M}(A \otimes \mathbb{K}(H))$ generated by $\alpha(A) \cdot (1 \otimes \hat{C})$

Def. Let $I \in \mathbb{I}(A)$ be α -invariant, that is $\alpha(I) \cdot (1 \otimes C) \subseteq I \otimes C$. We say α restricts to an action on I if $\alpha(I) \cdot (1 \otimes C) = I \otimes C$. It descends to an action on A/I if the induced map $\dot{\alpha} : A/I \to \mathcal{M}(A/I \otimes C)$ is injective.

Thm7. Suppose C is exact as a C^* -algebra and that either

 ${f 0}$ the quantum group $\hat{\cal C}$ is discrete and lpha restricts to all invariant ideals, or

2 for any invariant ideal $I \lhd A$, α restricts to I and descends to A/I.

Then the quasi-orbit space \check{A}/\sim exists and is a quotient of \check{A} by an open relation.

Cor. For any coaction of a locally compact amenable group G the quasi-orbit space \check{A}/\sim exists and is a quotient of \check{A} by an open relation.