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Noncommutative Poisson geometry

Let us describe an approach to noncommutative Poisson geometry
due to Van den Bergh.

Basic ingredients of the usual Poisson geometry: functions, vector
fields (derivations), Poisson bivectors and brackets.

Noncommutiative setup: an associative algebra A, double
derivations, double Poisson bivectors and double brackets.



Double derivations (after Crawley–Boevey)
Double derivations are elements of Der(A,A⊗ A), i.e. linear
maps α : A→ A⊗ A satisfying the Leibniz identity
α(ab) = aα(b) + α(a)b for all a, b ∈ A.

One can make Der(A,A⊗ A) into an A-bimodule, by using the
“inner” bimodule structure on A⊗ A:

c ∗ (a⊗ b) = a⊗ cb , (a⊗ b) ∗ c = ac ⊗ b .

Below we will use a distinguished element E ∈ Der(A,A⊗ A)
defined by E (a) = a⊗ 1− 1⊗ a.

Notation:
D := Der(A,A⊗ A), bimodule of double derivations
(noncommutative vector fields)

TAD - the tensor algebra of the bimodule D
(noncommutative polyvector fields)

TAD is a graded algebra, with A placed in degree 0 and double
derivations D in degree 1.



Double brackets (after Van den Bergh)

A double bracket on A is a linear map {{−,−}} : A⊗ A→ A⊗ A
which has the following properties:

{{a, bc}} = b {{a, c}}+ {{a, b}} c and {{a, b}} = −{{b, a}}◦ ,

where (u ⊗ v)◦ = v ⊗ u.

We will use Sweedler notation, writing elements x ∈ A⊗ A as
x = x ′ ⊗ x ′′, skipping the summation symbol.

Thus, we write {{a, b}} = {{a, b}}′ ⊗ {{a, b}}′′.

With each double bracket {{−,−}} one associates a (single) bracket
{−,−} : A⊗ A→ A given by

{a, b} := {{a, b}}′ {{a, b}}′′ .

{−,−} is not antisymmetric in general, and it satisfies Leibniz
identity only in the second argument.



Schouten bracket on TAD

Recall: Starting from A, we use the bimodule D = Der(A,A⊗ A)
to construct the tensor algebra TAD.
Nontrivial fact (Van den Bergh): The algebra TAD admits a
canonical double bracket with the following properties:

{{a, b}} = 0 , {{α, a}} = α(a) ∀a, b ∈ A ∀α ∈ D

{{α, β}} ∈ D ⊗ A + A⊗ D ∀α, β ∈ D

Moreover, this bracket is a double Poisson bracket in an
appropriate sense. Note that TAD is a graded algebra, and the
above double bracket on TAD admits a graded version, called the
double Schouten–Nijenhuis bracket,
{{−,−}}SN : TAD ⊗ TAD → TAD ⊗ TAD and the associated
Schouten–Nijenhuis bracket {−,−}SN : TAD ⊗ TAD → TAD,
with both brackets being of degree −1.



(Quasi-)Poisson brackets and moment maps

Using the Schouten–Nienhuis bracket on TAD, we can formulate
compactly the notions of a double (quasi-)Poisson bracket on A
and the corresponidng moment maps. Double brackets on A can
be produced from double bivectors, i.e. elements P ∈ (TAD)2.
Explicitly, for δ1, δ2 ∈ D, the double bracket associated with δ1δ2 is
given by

{{a, b}} = δ2(b)′δ1(a)′′ ⊗ δ1(a)′δ2(b)′′ − δ1(b)′δ2(a)′′ ⊗ δ2(a)′δ1(b)′′

A double bracket associated to a bivector P is called Poisson if
{P,P}SN = 0 modulo commutators, and quasi-Poisson if
{P,P}SN = 1

6E
3 modulo commutators.

For a double Poisson bracket, a moment map is an element µ ∈ A
such that {P, µ}SN = −E .
For a double quasi-Poisson bracket, a multiplicative moment
map is an invertible element Φ ∈ A such that
{P,Φ}SN = −1

2(EΦ + ΦE ).



Representation spaces

A path from noncommutative to commutative geometry goes
through representation spaces.

For any n ∈ N, the representation space Rep(A, n) is the space of
all algebra maps % : A→ Matn(C).
On Rep(A, n) we have a natural action of GLn (by changing basis).

Each element a ∈ A can be viewed as a matrix-valued function on
Rep(A,N), whose value at a point % is given by %(a). The ring of
functions O(Rep(A, n)) is generated by the functions aij for a ∈ A,
i , j = 1, . . . , n satisfying the relations (ab)ij =

∑
k aikbkj .

Guiding principle: Notions of noncommutative geometry should
induce the usual geometric notions on the representation spaces.



Induced notions on representation spaces

1. A double bracket {{−,−}} on A induces a bracket on the space
Rep(A, n) by the formula:

{aij , buv} = {{a, b}}′uj {{a, b}}
′′
iv .

In general, this will be just an antisymmetric bracket. If {{−,−}} is
a double (quasi-)Poisson bracket, then the induced bracket is
(quasi-)Poisson in the standard sense.

Useful formula: {tr a, tr b} = tr{a, b} for a, b ∈ A.

2. A noncommutative moment map µ ∈ A induces a matrix-valued
function (µij)i ,j=1,...n on Rep(A, n). It has the properties of the
usual moment map w.r.t. GLn-action on Rep(A, n).

The same for a multiplicative moment map Φ, in agreement with
[Alekseev–Malkin–Meinreken].



Representation spaces as GLn- spaces

As a result, if an algebra A is equipped with a double
(quasi-)Poisson bracket and a (multiplicative) moment map, then
the space Rep(A, n) is a (quasi-)Hamiltonian GLn-space.

In such situations we can perform a (quasi-)Hamiltonian reduction
⇒ µ−1(λ)//GLn or Φ−1(q)//GLn

The above general theory can be made very concrete in the case of
quivers ⇒ a good source of interesting Poisson varieties.

Quiver varieties (Nakajima) and multiplicative quiver varieties
(Crawley-Boevey – Shaw) are particular subclasses.



Quivers: double derivations

Take Q = (Q, I ), a quiver with vertex set I and arrow set Q.
Let Q be the double of Q, obtained by adjoining to every arrow
a : i → j its opposite, a∗ : j → i , using the convention (a∗)∗ = a.
We write CQ for the path algebra of Q, where the multiplication
is defined by concatenation of paths.
As an algebra, CQ is generated by arrows a ∈ Q and vertices
(viewed as zero paths ei , i ∈ I ).

For all a ∈ Q, define a double derivation ∂
∂a on CQ which acts as

∂b

∂a
=

{
et(a) ⊗ eh(a) if a = b
0 otherwise

Here t(a), h(a) denote tail and head of a.



Quivers: double Poisson structure

The following two theorems are due to Van den Bergh.

Theorem 1. For any quiver Q, the path algebra of Q admits a
double Poisson bivector

P =
∑
a∈Q

∂

∂a

∂

∂a∗

with a moment map

µ =
∑
a∈Q

(aa∗ − a∗a) .



Quivers: double quasi-Poisson structure

Fix some ordering < on Q. Define ε(a) = ±1 depending on
whether a is in Q or not.
Theorem 2. For any quiver Q, the (localised) path algebra of Q
admits a double quasi-Poisson bivector given by

P =
1

2

∑
a∈Q

ε(a)(1 + a∗a)
∂

∂a

∂

∂a∗

− 1

2

∑
a<b∈Q

(
∂

∂a∗
a∗ − a

∂

∂a

)(
∂

∂b∗
b∗ − b

∂

∂b

)
,

with a multiplicative moment map

Φ =
∏
a∈Q

(1 + aa∗)ε(a) .

Here the product is taken with respect to the chosen ordering <.



A one-loop quiver: Poisson case

A simple example: a quiver Q with one vertex and one loop, x .
The double quiver has two loops, x and y = x∗.

Q : ·

x

��
Q : ·

x

��

y

ZZ

Path algebra: CQ = C〈x , y〉.

Double Poisson bracket:
{{x , x}} = {{y , y}} = 0, {{x , y}} = −{{y , x}} = 1⊗ 1.

Moment map: µ = xy − yx .
Noncommutative Hamiltonian quotient:

Πλ := C〈x , y〉/{xy − yx = λ}



A one-loop quiver: quasi-Poisson case

Same quiver, so CQ = C〈x , y〉.
Double quasi-Poisson bracket:

{{x , x}} =
1

2

(
x2 ⊗ 1− 1⊗ x2

)
, {{y , y}} =

1

2

(
1⊗ y2 − y2 ⊗ 1

)
,

{{x , y}} = 1⊗ 1 +
1

2
(yx ⊗ 1 + 1⊗ xy + y ⊗ x − x ⊗ y)

{{y , x}} = − 1⊗ 1− 1

2
(1⊗ yx + xy ⊗ 1 + x ⊗ y − y ⊗ x) .

Multiplicative moment map: Φ = (1 + xy)(1 + yx)−1 = xzx−1z−1,
where z := y + x−1. Noncommutative Hamiltonian quotient:

Λq := C〈x±1, z±1〉/{xz = qzx}



Adding framing

The algebras C〈x , y〉/{xy − yx = λ} and C〈x±1, z±1〉/{xz = qzx}
do not have n-dimensional representations unless λ = 0 or qn = 1.
To allow finite-dimensional representations, we extend the quiver:

Q : ∞ v // 0

x

��
Q : ∞

v
((
0

w
ii

x

��

y

YY

Here we associate idempotents e0, e∞ to each of the vertices, so
the path algebra is generated by x , y , v ,w together with e0, e∞.
Note that the brackets are of a ”local” nature, i.e. the brackets
between x , y are essentially the same as without framing. By
definition, all the brackets are linear over B = Ce0 ⊕ Ce∞.



Adding framing (continued)

In the additive case, the only nonzero brackets are
{{x , y}} = −{{y , x}} = e0 ⊗ e0, {{v ,w}} = −{{w , v}} = e∞ ⊗ e∞.

In the multiplicative case the brackets are as follows:

{{x , x}} =
1

2

(
x2 ⊗ e0 − e0 ⊗ x2

)
, {{z , z}} =

1

2

(
e0 ⊗ z2 − z2 ⊗ e0

)
{{x , z}} =

1

2
zx ⊗ e0 +

1

2
e0 ⊗ xz +

1

2
(z ⊗ x − x ⊗ z)

{{v , v}} = {{w ,w}} = 0 , {{v ,w}} = e∞ ⊗ e0 +
1

2
e∞ ⊗ vw +

1

2
wv ⊗ e0

{{x , v}} =
1

2
e0 ⊗ xv − 1

2
x ⊗ v , {{x ,w}} =

1

2
wx ⊗ e0 −

1

2
w ⊗ x

{{z , v}} =
1

2
e0 ⊗ zv − 1

2
z ⊗ v , {{z ,w}} =

1

2
wz ⊗ e0 −

1

2
w ⊗ z



Additive case: Calogero–Moser system
In the additive case, the moment map after framing changes to

µ = xy − yx + vw − wv = (xy − yx + vw)e0 − wve∞ .

Consider representations V = V0 ⊕ V∞ of Q of dimension (n, 1),
i.e. V = Cn ⊕ C. The value of the moment map also becomes
two-component quantity λ0 Idn +λ∞ Id1. Choose λ0 = 1,
λ∞ = −n.
The arrows of the quiver are represented by linear maps between
the spaces at the vertices, i.e. we need to prescribe
X ,Y ∈ Matn×n, v ∈ Matn×1, w ∈ Mat1×n. On such matrix data
the group G = GLn acts by
g .(X ,Y , v ,w) = (gXg−1, gYg−1, gv ,wg−1).
(There is also the action of GL1 at V∞ but it can be neglected.)
Hence, the moment map equations are

XY − YX + vw = Idn , wv = −n .

(Note that the second relation is automatic corollary of the first.)



Additive case: Calogero–Moser system (continued)

As a result, the Hamiltonian quotient gives the nth Calogero–Moser
space (Kazdan–Kostant–Sternberg (1978), WIlson (1998)):

Cn := {X ,Y ∈ Matn×n | rank(XY − YX − Idn) = 1}//GLn .

Cn is a smooth affine variety of dim = 2n. By construction, it is a
Poisson variety.
Local coordinates:
An open susbset of Cn consists of points with diagonalisable X .
Then, modulo GLn action, we have:

X = diag(x1, . . . , xn) , Yij = δijpi + (1− δij)
1

xi − xj

Here p1, . . . , pn are arbitrary, so xi , pj give 2n local coordinates on
Cn.
Claim: We have {xi , xj} = {pi , pj} = 0, {xi , pj} = δij .



Additive case: Calogero–Moser system (continued)
Now:

{{y , y}} = 0 ⇒ {y i , y j} = 0 ⇒ {trY i , trY j} = 0 for all i , j .

Thus, we obtain n functions in involution hi := 1
i trY i on Cn, i.e.

an integrable system.
Recall: Yij = δijpi + (1− δij) 1

xi−xj .

E.g.,
h1 = trY = p1 + · · ·+ pn

h2 =
1

2
trY 2 =

1

2

n∑
i=1

p2i −
n∑
i<j

1

(xi − xj)2

Thus, we recover the Calogero–Moser system of n particles.
Moreover, we easily find the dynamics induced by hi on (X ,Y ) as

d

dt
X = Y i−1 ,

d

dt
Y = 0 .

Thus, X (t) = X (0) + tY i−1, and xi (t) are found as eigenvalues of
X (t).



Multiplicative case: Ruijsenaars–Schneider system
The multiplicative moment map for tadpole quiver becomes

Φ = xzx−1z−1(1 + vw)(1 + wv)−1 .

Choosing the dimension of representations suitably, the result of
quasi-Hamiltonian reduction can be described as

Cn,q = {X ,Z ∈ GLn | rank
(
XZX−1Z−1 − q Id

)
= 1}//GLn .

By construction, this is a Poisson variety. It is smooth when
qn 6= 1.
Note that {{z , z}} = 1

2

(
e0 ⊗ z2 − z2 ⊗ e0

)
, so {{z , z}} 6= 0.

Nevertheless, we still have {z i , z j} = 0 and so {trZ i , trZ j} = 0
for all i , j . Thus, we obtain an integrable system on Cn,q.
In suitable local coordinates (and after some work!), one can
identify it with the Ruijsenaars–Schneider system (cf. Fock–Rosly
(1999)):

trZ =
n∑

i=1

n∏
j :j 6=i

1− qxix
−1
j

1− xix
−1
j

epi , with {xi , pj} = δi ,jxi .



Cyclic quiver Q
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Framed quiver Q∞
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Doubled framed quiver Q∞
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Cyclic quiver: integrable systems

Using similar methods, in case of a cyclic quiver with m verices we
obtain:

1. Additive case: Calogero–Moser system for W = Sn o Zm

(O.C.–Silanyev (2017)).

2. Multiplicative case: New families of integrable systems
generalising the Ruijsenaars–Schenider system (O.C.–Fairon
(2017))

In general, these are complicated, but the simplest Hamiltonians
can be written explicitly for any m.
Related quantum integrable systems also appeared in:
(a) O.C.–Etingof (2013), in the context of Macdonald theory
(b) Braverman–Etingof–Finkelberg (2016), in the context of
cyclotomic DAHAs
(c) Braverman–Finkelberg–Nakajima (2016), in the context of
qunatised K -theoretic Coulomb branches of certain
supersymmetric gauge theories



Example: m = 2

When m = 2 (cyclic quiver with two vertices), we obtain an
integrable quantum Hamiltonian as follows:

H
(2)
q,t =

n∑
i=1

aiT
2
i +

n∑
i<j

bijTiTj+α
n∑

i=1

n∏
k 6=i

1− txix
−1
k

1− xix
−1
k

x−1i Ti+β
n∑

i=1

x−1i ,

where the coefficients ai , bij are given by

ai =(qxi )
−1

n∏
j 6=i

(1− txix
−1
j )(1− qtxix

−1
j )

(1− xix
−1
j )(1− qxix

−1
j )

,

bij =
(t − 1)(t − q)(x−1i + x−1j )

(1− qxix
−1
j )(1− qxjx

−1
i )

n∏
l 6=i ,j

(1− txix
−1
l )(1− txjx

−1
l )

(1− xix
−1
l )(1− xjx

−1
l )

.

Here Ti = e p̂i , and α, β arbitrary parameters. The classical case is
obtained by setting q = 1, Ti = epi .



Summary (so far)

The above framework provides three main classes of examples of
noncommutative (quasi-)Poisson spaces:

1. Noncommutative cotangent bundles TAD with canonical
double Poisson bracket.

2. Path algebras of doubled quivers with double Poisson bracket.

3. Path algebras of doubled quivers with double quasi-Poisson
bracket of Van den Bergh.

Each of these classes provides a large family of interesting Poisson
varieties obtained by Hamiltonian or quasi-Hamiltonian reduction.

Open question: Which of these varieties host interesting
integrable systems?



Other interesting examples
Above we discussed

Q : ∞ v // 0

x

��
Q : ∞

v
((
0

w
ii

x

��

z

YY

Spin generalisation: Similar quiver, but with multiple framing,
i.e. d arrows v1, . . . , vd and d arrows w1, . . . ,wd .
Additive case: Gibbons–Hermsen system (spin Calogero–Moser
system). Multiplicative case: spin Ruijsenaars–Schneider system.
In the latter case, this provides a Hamiltonian formulation of the
spin RS system, answering an old open question by
Arutyunov–Frolov (O.C.–Fairon (2018)). Also, one can use
multiple framing fro the cycilc quiver. This leads to new spin
versions of the Calogero–Moser system for W = Sn o Zm

(O.C.–Silantyev (2017)), as well as their relativistic versions
(Fairon (2019)).
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