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1. Abstract

There is developed the G. Goldin’s current algebra representation scheme for reconstructing quantum
Hamiltonian and symmetry operators in case of quantum integrable spatially many- and one-dimensional
Schrödinger type dynamical systems.

In the report we are interested mainly in studying local current algebra representations in suitably
renormalized Fock spaces and their applications to constructing the related finite-particle factorized
representations for corresponding secondly-quantized many-particle Hamiltonian operators. As examples
we have studied in detail the factorized structure of Hamiltonian operators, describing such quantum
integrable spatially many- and one-dimensional models as generalized oscillatory, Calogero-Sutherland,
Coulomb type and Nonlinear Schrödinger dynamical systems of spin-less bose-particles.

Main topics to be discussed are as follows:

1.1. An integrable many-particle oscillatory quantum model. As a first application of the
local current algebra representation construction devised above, we will consider a simple nonrela-
tivistic oscillatory quantum model of interacting bose-particles in the m-dimensional Euclidean space
(Rm;< ·|· >),m ∈ Z+, described by the secondly quantized Hamiltonian operator

(1.1) H(ω) =
1

2

∫
Rm

dx < ∇ψ+(x)|∇ψ(x) > +
1

2

∫
Rm

dx < ωx|ωx > ψ+(x)ψ(x),

acting on the corresponding Fock space Φ, and parametrized by the positive definite frequency matrix
ω ∈ End Rm. The following proposition holds.

Proposition 1.1. The quantum oscillatory Hamiltonian operator (1.1) allows on the suitable Fock
space Φ the factorized representation

(1.2) H(ω) =
1

2

∫
Rm

dx < K+(x) + ωxρ(x))|ρ(x)−1(K(x) + ωxρ(x)) > +
1

2
trω N.

Its ground state |Ω(ω)) ∈ Φ satisfies the conditions

(1.3) H(ω)|Ω(ω)) =
1

2
trω N|Ω(ω)), (K(x) + ωxρ(x))|Ω(ω)) = 0

for all x ∈ Rm.

Moreover, as for any x, y ∈ Rm there holds the equality

(1.4) [< D(ω),+(x)|ρ(x)−1D(ω)(x) >,< D(ω),+(y)|ρ(y)−1D(ω)(y) >] = 0,

where, by definition, the local operator

(1.5) D(ω)(x) := K(x) + ωxρ(x),

the next operators

(1.6) H(ω,p) =
1

2

∫
Rm

dx
(
< D(ω),+(x)|ρ(x)−1D(ω)(x) >

)p
on the Fock space Φ are a priori commuting to each other, that is

(1.7) [H(ω,p),H(ω,q)] = 0

for any integers p, q ∈ Z+. Thus, the following quantum integrability proposition holds.
1
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Proposition 1.2. The nonrelativistic oscillatory quantum model (1.1) of interacting bose-particles in
the m-dimensional space Rm possesses a countable hierarchy of the commuting to each other symmetric
operators (1.6) on the suitable Fock space Φ represents a quantum integrable model.

The obtained this way differential operators H
(ω,p)
N : L

(s)
2 (RmN ;C) → L

(s)
2 (RmN ;C), p ∈ Z+, are

respectively, also commuting to each other, as this follows from (1.7), giving rise to the quantum inte-

grability of the N -particle oscillatory Hamiltonian model H
(ω)
N = H

(ω,1)
N + 1

2 trω N for arbitrary finite
N ∈ Z+.

1.2. A generalized integrable many-particle oscillatory quantum model. A generalized quantum
oscillatory model of bose-particles in Rm is described by the N -particle Hamiltonian operator

(1.8) HN :=
1

2

∑
j=1,N

< ∇xj
|∇xj

> +
1

2

∑
j,k=1,N

< ωN (xj − xk)|ωN (xj − xk) >

on L
(s)
2 (RmN ;C), parametrized by a positive definite interaction matrix ωN ∈ End Rm, N ∈ Z+. In

the case when this interaction matrix depends on the particle number N ∈ Z+ as ωN = ω̄
√
N/2 for

some constant positive definite matrix ω̃ ∈ End Rm, the corresponding to (1.8) secondly quantized
Hamiltonian operator is representable as

(1.9) H =
1

2

∫
Rm

dx < ∇ψ+(x)|∇ψ(x) > +
N

4

∫
Rm×Rm

dxdyψ+(x)ψ+(y)ψ(y)ψ(x) < ω̄(x−y)|ω̄(x−y) >,

acting on a suitably chosen Fock type representation space Φ.
Consider now a quasi-local operator mapping D(x) : Φ→ Φm, x ∈ Rm, equal to

(1.10) D(x) := ψ+(x)∇ψ(x) +

∫
Rm

dy < ω̄(x− y) : ρ(x)ρ(y) :,

and construct the next operator expression:

(1.11) H̃ =
1

2

∫
Rm

< D+(x)|ρ(x)−1D(x) > .

Then the following proposition holds.

Proposition 1.3. The operator expression (1.11) is equivalent on the Fock space Φ to the secondly
quantized Hamiltonian operator (1.9):

(1.12) H̃ = H− trω̄

2
N(N− 1).

Remark 1.4. It is worthy to remark here that owing to its construction, the operator mappings
< D+(x)|ρ(x)−1D(x) >: Φ→ Φ, x ∈ Rm, are commuting to each other, that is

(1.13) [< D+(x)|ρ(x)−1D(x) >,< D+(y)|ρ(y)−1D(y) >] = 0

for any x, y ∈ Rm. This naturally makes it possible to construct a countable hierarchy of commuting to
each other operators H(p) : Φ→ Φ, p ∈ Z+, where

(1.14) H(p) :=

∫
Rm

dx
(
< D+(x)|ρ(x)−1D(x) >

)p
,

that is

(1.15) [H(p),H(p)] = 0

for all p, q ∈ Z+. The latter, in particular, means that our generalized quantum oscillatory model (1.8)
is also integrable.

1.3. The Calogero-Sutherland quantum model: the current algebra representation, the
Hamiltonian reconstruction and integrability. The periodic Calogero-Sutherland quantum bosonic
model on the finite interval [0, l] ' R/[0, l]Z is governed by the N -particle Hamiltonian

(1.16) HN := −
∑
j=1,N

∂2

∂x2
j

+
∑

j 6=k=1,N

π2β(β − 1)

l2 sin2[πl (xj − xk)]
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in the symmetric Hilbert space L
(s)
2 ([0, l]N ;C), where N ∈ Z+ and β ∈ R is an interaction parameter.

As it was stated in a very interesting and highly speculative works [11], there exists linear differential
operators

(1.17) Dj :=
∂

∂xj
− πβ

l

∑
k=1,N,k 6=j

ctg[
π

l
(xj − xk)]

for j = 1, N, such that the Hamiltonian (1.16) is factorized as the bounded from below symmetric
operator

(1.18) HN =
∑
j=1,N

D+
j Dj + EN ,

where

(1.19) EN =
1

3

(
πβ

l

)2

N(N2 − 1)

is the groundstate energy of of the Hamiltonian operator (1.16), that is there exists such a vector |ΩN ) ∈
L

(s)
2 ([0, l]N ;C), satisfying for any N ∈ Z+ the eigenfunction condition

(1.20) HN |ΩN ) = EN |ΩN )

and equals

(1.21) |ΩN ) =j<k=1,N

(
sin[

π

l
(xj − xk)]

)β
.

Being interested additionally in proving the quantum integrability of the Calogero-Sutherland model
(1.16), we will proceed to its second quantized representation [2, 5] and studying it by means of the
current algebra representation approach, devised and developed before in [7, 8, 9, 10, 12, 13].

The secondly quantized form of the Calogero-Sutherland Hamiltonian operator (1.16) looks as

(1.22) H =

∫ l

0

dxψ+
x (x)ψx(x) +

(π
l

)2

β(β − 1)

∫ l

0

dx

∫ l

0

dy
ψ+(x)ψ+(y)ψ(y)ψ(x)

sin2[πl (x− y)]
,

acting in the corresponding Fock space Φ := ⊕n∈Z+
Φn, Φn ' L(s)

2 ([0, l]n;C), n ∈ Z+. Having defined the
operator

(1.23)

D(x) = ψ+(x)ψx(x)−

−πβ2l
∫ l

0
dy ctg[πl (x− y)] : ρ(x)ρ(y) :

acting in the Fock space Φ, one can formulate the following proposition, first stated in [12], using com-
pletely different approach.

Proposition 1.5. The secondly quantized Hamiltonian operator (1.22) in the Fock space Φ is repre-
sentable in dual to (1.18) factorized form as

(1.24) H =

∫ l

0

dxD+(x)ρ(x)−1D(x) + E,

where the ground state energy operator E : Φ→ Φ equals

(1.25) E =
1

3

(
πβ

l

)2

: N3 : +

(
πβ

l

)2

: N2 :,

where

(1.26) N :=

∫ l

0

ρ(x)dx

is the particle number operator, and satisfies the determining conditions

(1.27) (H− E)|Ω) = 0, D(x)|Ω) = 0
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on the suitably renormalized vacuum ground state |Ω) ∈ Φ for all x ∈ R/[0, l]Z. Moreover, for any integer
N ∈ Z+ the corresponding projected vector |ΩN ) := |Ω)|ΦN

there satisfies the following eigenfunction
relationships:

N|ΩN ) = N |ΩN ), E|ΩN ) =

(
1

3

(
πβ

l

)2

: N3 : +

(
πβ

l

)2

: N2 :

)
|ΩN ) =(1.28)

=

[
1

3

(
πβ

l

)2

(N3 − 3N2 + 2N) +

(
πβ

l

)2

N(N − 1)

]
|ΩN ) =

=

[
1

3

(
πβ

l

)2

(N3 − 3N2 + 2N + 3N2 − 3N)

]
|ΩN ) =

=

[
1

3

(
πβ

l

)2

N(N2 − 1)

]
|ΩN ) := EN |ΩN ),

coinciding exactly with the result (1.19).

Remark 1.6. When deriving the expression (1.28), we have used the identity

(1.29)

ρ(x)ρ(y) = : ρ(x)ρ(y) : +ρ(y)δ(x− y),

ρ(x)ρ(y)ρ(z) = : ρ(x)ρ(y)ρ(z) : + : ρ(x)ρ(y) : δ(y − z)+

+ : ρ(y)ρ(z) : δ(z − x)+ : ρ(z)ρ(x) : δ(x− y)+ : ρ(x)δ(y − z)δ(z − x),

which holds [8, 13] for the density operator ρ : Φ→ Φ at any points x, y, z ∈ R/[0, l]Z.
1.4. An integrable many-particle Coulomb type quantum model on axis. A many particle
Coulomb type quantum bose model on axis is governed by the N -particle Hamiltonian

HN : = −
∑
j=1,N

∂2

∂x2
j

+
∑

j 6=k=1,N

α

|xj − xk|
+(1.30)

+
α2

3

∑
j 6=k 6=s=1,N

[
ln |xj − xk|

(xj − xk)(xj − xs)
|xj − xk||xj − xs|

ln |xj − xs| +

+ ln |xk − xj |
(xk − xj)(xk − xs)
|xk − xj ||xk − xs|

ln |xk − xs|+

+ ln |xs − xj |
(xs − xj)(xs − xk)

|xs − xj ||xs − xk|
ln |xs − xk|

]
acting in the Hilbert space L

(s)
2 (RN ;C), N ∈ Z+, is parametrized by a real-valued interaction parameter

α ∈ R\{0}, which modulates both the binary and ternary particle interactions. Its secondly quantized
representation in a suitably chosen Fock space Φ, looks as

H =

∫
R
dxψ+

x (x) ψx(x) > +

∫
R2

dxdy
α

|x− y|
: ρ(x)ρ(y) : +(1.31)

+
α2

3

∫
R3

dxdydz : ρ(x)ρ(y)ρ(z) :

[
ln |x− y| (x− y)(x− z)

|x− y||x− y|
ln |x− z| +

+ ln |y − x| (y − z)(y − x)

|y − z||y − x|
ln |y − x|+ ln |z − x| (z − x)(z − y)

|z − x||z − y|
ln |z − y|

]
,

modulo the infinite renormalization constant operator, responsible for the coinciding points x = y ∈ R
of the Coulomb and logarithmic type interaction potentials. Introduce now at any point x ∈ R the
quasi-local operator expression

(1.32) D(ε)(x) := ψ+(x)ψx(x)− α
∫
R2

dy : ρ(x)ρ(y) : s(x− y; ε),

acting in the Fock space Φ, and construct the following operator:

(1.33) H̃(ε) =

∫
R
dx < D(ε),+(x)|ρ(x)−1D(ε)(x) > .
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Then one can formulate the next proposition.

Proposition 1.7. The many-particle Coulomb type Hamiltonian operator (1.31) in a suitably chosen
Fock space Φ is weakly equivalent, as ε→ 0, to the operator expression (1.33), and satisfies the following
regularized limiting relationship:

(1.34) reg lim
ε→0

H̃(ε) := lim
ε→0

(
H̃(ε) − α2

3ε2
N(N

2 − 1)

)
= H.

1.5. Quantum many-particle Hamiltonian dynamical system on axis with βδ-interaction, its
quantum symmetries and integrability. In this Section we will consider a quantum non-relativistic
many-particle bose-system on the axis R, governed by the Hamiltonian operator:

(1.35) HN := −
∑
j=1,N

∂2

∂x2
j

+ β
∑

j 6=k=1,N

δ(xj − xk),

where α, β ∈ R are interaction constants, and acting in the symmetric Hilbert space L
(s)
2 (RN ;C), N ∈ Z+.

The corresponding secondly quantized expression for the Hamiltonian operator (1.35) in the related Fock

space Φ '
∑⊕
n∈Z+

L
(s)
2 (Rn;C) equals

(1.36) H =

∫
R
dx(ψ+

x ψx + βψ+ψ+ψψ),

where the creation ψ+− and annihilation ψ−operators satisfy the canonical commutator relationships

[ψ(x), ψ+(y)] = δ(x− y),(1.37)

[ψ+(x), ψ+(y)] = 0 = [ψ(x), ψ(y)]

for any x, y ∈ R. The Hamiltonian operator (1.36) via the Heisenberg recipe [5, 14] naturally generates
on the creation ψ+ : Φ → Φ and annihilation ψ : Φ → Φ operators the following quantum Schrödinger
type evolution flow :

dψ/dt : =
1

i
[H, ψ] = −iψxx + 2iβψ+ψ2,(1.38)

dψ+/dt : =
1

i
[H, ψ+] = iψ+

xx − 2iβ(ψ+)2ψ

with respect to the temporal parameter t ∈ R.
Let us define in the Fock space Φ the following structural operator:

(1.39) D(ε)(x) := ψ+(x)ψx(x)− β
∫
R
dyϑε(x− y) : ρ(x)ρ(y) :,

where for any ε > 0 the expression ϑε(x−y) := ϑ(x−y−ε) = {1, if x > y−ε}∧ {0, if x ≤ y+ε} for x, y
∈ R denotes the shifted classical Heaviside ϑ-function, and construct the following quantum operator:

(1.40) H(ε) :=

∫
R
dxD(ε),+(x)ρ(x)−1D(ε)(x).

The next proposition (1.40) states an equivalence of the quantum Hamiltonian operator (1.36) and the
weak operator limit limε→0 H(ε).

Proposition 1.8. The many-particle quantum operator (1.36) in a suitably chosen Fock space Φ is
weakly equivalent, as ε → 0, to the operator expression (1.40), and satisfies the following regularized
limiting relationship:

(1.41) reg lim
ε→0

H̃(ε) := lim
ε→0

(
H̃(ε) − β2N3/3

)
= H.

Remark 1.9. It is worthy to mention that the following generalized quantum many-particle Hamiltonian
dynamical bose system

HN : = −
∑
j=1,N

∂2

∂x2
j

+ β
∑

j 6=k=1,N

δ(xj − xk) +(1.42)

+iα
∑

j 6=k=1,N

(
∂

∂xj
◦ δ(xj − xk) + δ(xj − xk) ◦ ∂

∂xk

)
,
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where α, β ∈ R are interaction constants, and acting in the symmetric Hilbert space L
(s)
2 (RN ;C), N ∈ Z+

with (αδ + βδ′)-interaction potential is also integrable, as it was before proved in [14, 15, 4] by means of
the quantum inverse scattering transform in a suitably constructed Fock space Φ. This fact, eventually,
can suggest that there exists a local current algebra representation for the Hamiltonian (1.42), allowing
a suitable finite-particle operator construction for the related structural operator D(x) : Φ → Φ, x ∈
R, factorizing the secondly quantized Hamiltonian operator H '

∫
R
dxD+(x)ρ(x)−1D(x) up to some

renormalizing constant operators in the Fock space.

2. Conclusion

In the work we succeeded in developing an effective algebraic scheme of constructing density operator
and functional representations for the canonical local quantum current algebra and its application to
quantum Hamiltonian and symmetry operators reconstruction. We analyzed the corresponding factor-
ization structure for quantum Hamiltonian operators, governing spatially many- and one-dimensional
integrable dynamical systems. The quantum generalized oscillatory, Calogero-Sutherland, Coulomb type
and Nonlinear Schrödinger models of spin-less bose-particles were analyzed in detail.
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