Invitation to Hilbert C^* -modules and Morita-Rieffel equivalence

Bartosz K. Kwaśniewski

University of Białystok

1) Introduction

(1953) I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math.

"... extension of the theory of modules to over non-commutative C^* -algebras presents many difficulties"

This claim was disproved by:

(1973) W. L. Paschke, Inner product modules over B*-algebras, Trans. AMS.

Main areas of applications of Hilbert C^* -modules:

- Induced representations and Morita equivalence Rieffel (1974) ...
- KK-theory Kasparov (1975) ...
- C*-algebraic quantum groups Woronowicz (1991) ...
- Universal C*-algebras Pimsner (1998) ...

2) Hilbert C^* -modules

Def.

A **pre-Hilbert space** is a complex linear space X equipped with a map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that, for all $x, y, z \in X$ and $\lambda, \mu \in \mathbb{C}$:

- (1) $\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$
- (2) $\overline{\langle x, y \rangle} = \langle y, x \rangle$
- (3) $\langle x, x \rangle \geq 0$
- (4) $\langle x, x \rangle = 0 \implies x = 0$

The map $\langle x, y \rangle$ is called an **inner-product**. It follows (exercise) that

$$||x|| := \sqrt{|\langle x, x \rangle|}$$

is a norm on X. We say that X is a **Hilbert space** if it is complete with respect to the norm defined above.

Rem.

X is a complex linear space $\equiv X$ is a \mathbb{C} -module complex numbers $\mathbb{C} \equiv$ one dimensional C^* -algebra

Def. Let A be a C^* -algebra.

A (right) **pre-Hilbert** A-**module** is a (right) A-module X equipped with a map $\langle \cdot, \cdot \rangle_A : X \times X \to A$ such that, for all $x, y, z \in X$ and $a, b \in A$:

- (1) $\langle x, ya + zb \rangle_A = \langle x, y \rangle_A a + \langle x, z \rangle_A b$
- (2) $\langle x, y \rangle_A^* = \langle y, x \rangle_A$
- (3) $\langle x, x \rangle_A \ge 0$ (positivity in A)
- (4) $\langle x, x \rangle_A = 0 \implies x = 0$

The map $\langle x, y \rangle_A$ is called an A-valued inner-product. It follows (exercise) that

$$||x|| := \sqrt{||\langle x, x \rangle_A||}$$

is a "norm" on X. We say that X is a (right) **Hilbert** A-module if it is complete with respect to the metric $d(x,y) = \|x - y\|$.

Rem. If A has the unit 1 (in general we may use approximate units), putting $\lambda x := x(\lambda 1), \qquad \lambda \in \mathbb{C}, \ x \in X$

X becomes a complex linear space (a complex Banach space).

Ex.1 (Hilbert spaces) {Hilbert \mathbb{C} -modules} = {Hilbert spaces}.

Ex.2 (C^* -algebras) Let A be a C^* -algebra. The linear space $A_A := A$ with operations (where $x, y \in A_A, a \in A$):

$$x \cdot a := xa, \qquad \langle x, y \rangle_A := x^*y,$$

is a Hilbert A-module. Thus $\{C^*$ -algebras $\} \subseteq \{Hilbert C^*$ -modules $\}$!!!

Closed right ideals J in A correspond to Hilbert A-submodules J_A of A_A .

Ex.3 (Concrete Hilbert A-modules) Let A be a C^* -subalgebra of B(H) where H is a Hilbert space H. Let $X \subseteq B(H)$ be closed subspace such that

$$XA \subseteq X$$
 and $X^*X \subseteq A$.

Then X with operations inherited from B(H) is a Hilbert A-module.

Every Hilbert A-module can be represented in this form!!! (Murphy 1997)

Ex.4 (Hilbert C(M)-modules "=" Vector bundles) Let $H = (\{H_t\}_{t \in M}, \Gamma(H))$ be a continuous field of Hilbert spaces over a compact Hausdorff space M, i.e.:

- (1) $\{H_t\}_{t\in M}$ is a family of Hilbert spaces,
- (2) $\Gamma(H)$ is a linear subspace of sections $M \ni t \mapsto x(t) \in H_t$ such that $M \ni t \mapsto ||x(t)||$ is continuous,
- (3) $H_t = \overline{\{x(t) : x \in \Gamma(H)\}}$ for each $t \in M$,
- (4) If x is a section and for every $t_0 \in M$ and $\varepsilon > 0$ there is $x' \in \Gamma(H)$ such that $||x(t) x'(t)|| < \varepsilon$ for all t in some neighbourhood of t_0 , then $x \in \Gamma(H)$.

Then $\Gamma(H)$ is a Hilbert C(M)-module where (for $x \in \Gamma(H), \ a \in C(M), \ t \in M$):

$$(x \cdot a)(t) := a(t)x(t), \qquad \langle x, y \rangle_{C(M)}(t) := \langle x(t), y(t) \rangle.$$

Every Hilbert C(M)-module is of the form described above!!!

3) Maps on Hilbert C^* -modules

Def.

Let X and Y be Hilbert A-modules. We say that a map $T: X \to Y$ is an **adjointable operator** if there exists a map $T^*: Y \to X$ such that

$$\langle Tx, y \rangle_A = \langle x, T^*y \rangle_A, \quad \text{ for all } x \in X, \ y \in Y.$$

It follows (exercise) that both T and T^* are bound \mathbb{C} -linear and A-linear operators. Moreover, T determines uniquely T^* and vice versa.

 $\mathcal{L}(X,Y) := \{T : X \to Y \text{ adjointable}\}\$ is a Banach subspace of B(X,Y), $\mathcal{L}(X) := \mathcal{L}(X, X)$ is a unital C^* -algebra (exercise).

Ex. (Not every bounded A-linear map is adjointable)

Let A = C(M) where M compact Hausdorff and $J := \{a \in C(M) : a(t_0) = 0\}$ where $t_0 \in M$ is a non-isolated point. The inclusion map $T: J_A \to A_A$ is isometric, A-linear but NOT adjointable. If T were adjointable, then

$$x^* = \langle Tx, 1 \rangle_A = \langle x, T^*(1) \rangle_A = x^*T^*(1), \quad \text{ for all } x \in J,$$

which implies that $T^*(1)(t)=1$ for $t\in M\setminus\{t_0\}$ and $T^*(1)(t_0)=0$.

Let $x \in X$, $y \in Y$. The map $\Theta_{x,y}: Y \to X$ defined by

$$\Theta_{x,y}(z) = x\langle y,z\rangle_A$$

is an adjointable operator with $\Theta_{x,y}^* = \Theta_{y,x}$.

Def

Elements of $\mathcal{K}(Y,X) := \overline{\operatorname{span}}\{\Theta_{x,y} : x \in X, Y \in Y\}$ are called (generalized) **compact operators** from Y to X.

The space $\mathcal{K}(X) := \mathcal{K}(X,X)$ is a (closed two-sided) ideal in $\mathcal{L}(X)$.

Ex.1 (Hilbert spaces) If $A = \mathbb{C}$, then X = H, $\mathcal{L}(X) = B(H)$ and $\mathcal{K}(X) = K(H)$.

Ex.2 (C^* -algebras) If A a C^* -algebra, then $\mathcal{K}(A_A) \cong A$ and $\mathcal{L}(A_A) \cong M(A)$ is the multiplier algebra of A - maximal essential unitization of A.

Rem. For every Hilbert A-module X we have $M(\mathcal{K}(X)) \cong \mathcal{L}(X)$.

4) C^* -correspondences

Let A, B be C^* -algebras.

Def.

 C^* -correspondence from A to B is a (right) Hilbert B-module X equipped with homomorphism $\phi_X:A\to \mathcal{L}(X)$ - left action of A on X. We write $a\cdot x:=\phi_X(a)x$.

$$A \xrightarrow{X} B$$

We say that

- X is faithful if ϕ_X is faithful
- X is nondegenerate if $\phi_X(A)X = X$
- X is proper if $\phi_X(A) \subseteq \mathcal{K}(X)$

Ex.1 {Representations
$$\pi: A \to B(H)$$
} =
$$\left\{ \begin{array}{c} C^*\text{-correspondences from } A \text{ to } \mathbb{C} \\ A \xrightarrow{H_{\pi}} \mathbb{C} \end{array} \right\}$$

Ex.2 (Homomorphisms) If $\alpha:A\to B$ a *-homomorphism then $A\xrightarrow{X_{\alpha}}B$ where $X_{\alpha}:=\alpha(A)B$ is equipped with operations (where $x,y\in X_{\alpha},\ a\in A,\ b\in B$):

$$a \cdot x := \alpha(a)x$$
, $x \cdot b := xb$, $\langle x, y \rangle_B := x^*y$

Ex.3 (Concrete C^* -correspondences) Let $X \subseteq B(H)$ be a closed linear space and $A, B \subseteq B(H)$ are C^* -subalgebras such that

$$XB \subseteq X$$
, $X^*X \subseteq B$, $AX \subseteq X$.

Then X is naturally a C^* -correspondence from A to B.

Every C^* -correspondence can be represented in this form!!!

Ex.4 (C^* -correspondences vs graphs) Let V, W be sets. Let G = (E, s, r) be a graph from V to W, i.e. E is a set and $s: E \to V$ and $r: E \to W$ are maps. We define C^* -correspondence X_G from $A = C_0(W)$ to $B := C_0(V)$ by:

$$X_G:=\{x\in C_0(E):V
i v\longmapsto \sum_{e\in s^{-1}(v)}\left|x(e)
ight|^2\in\mathbb{C} ext{ is in } C_0(V)\},$$

$$\langle x,y\rangle_A(v):=\sum_{e\in s^{-1}(v)}\overline{x(e)}y(e),$$

$$(a\cdot x)(e):=a(r(e))x(e),$$

$$(x \cdot b)(e) := x(e)b(s(e)).$$

Every C^* -correspondence from $C_0(W)$ to $C_0(V)$ is of this form!!!

Def. (Tensor product)

If $A \xrightarrow{X} B$ and $B \xrightarrow{Y} C$ then there is (exercise) a C^* -correspondence $A \xrightarrow{X \otimes_B Y} C$ where $X \otimes_B Y = \overline{\operatorname{span}}\{x \otimes y : x, \in X, y \in Y\}$ and

$$\langle x_1 \otimes y_1, x_2 \otimes y_2 \rangle_C = \langle y_1, \langle x_1, x_2 \rangle_B \cdot y_2 \rangle_C.$$

Ex.1 (Induced representations) If $A \xrightarrow{X} B$ is a C^* -correspondence and $B \xrightarrow{H_{\pi}} \mathbb{C}$ is a representation of B, then $A \xrightarrow{X \otimes_B H_{\pi}} \mathbb{C}$ is a representation of A.

Usually it is denoted by $X-\operatorname{Ind}_B^A\pi$ and the underlying Hilbert space by $X\otimes_\pi H$

Ex.2 (Composition of homomorphisms) If $\alpha: A \to B$ and $\beta: B \to C$ are *-homomorphisms then $X_{\alpha} \otimes_{B} X_{\beta} \cong X_{\beta \circ \alpha}$ where $\beta \circ \alpha: A \to C$.

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C \implies A \xrightarrow{X_{\alpha}} B \xrightarrow{X_{\beta}} C \quad (\text{up to } \cong)$$

$$X_{\beta \circ \alpha} \xrightarrow{X_{\alpha} \otimes_{B} X_{\beta}}$$

Ex.3 (Concrete tensor products) Let $A, B, C \subseteq B(H)$ and

$$X, Y \subseteq B(H)$$
 be concrete C^* -correspondences $A \xrightarrow{X} B$ and $B \xrightarrow{Y} C$:

$$XB\subseteq X,\quad X^*X\subseteq B,\quad AX\subseteq X\quad \text{ and }\quad YC\subseteq Y,\quad Y^*Y\subseteq C,\quad BY\subseteq Y.$$

Then $\overline{XY} = \overline{\operatorname{span}}\{xy : x \in X, y \in Y\} \subseteq B(H) \text{ is a concrete } A \xrightarrow{\overline{XY}} C$:

$$\overline{XY}C\subseteq \overline{XY}, \quad (\overline{XY})^*\overline{XY}\subseteq C, \quad A\overline{XY}\subseteq \overline{XY}$$

and

$$X \otimes_B Y \cong \overline{XY}$$
.

Ex.4 (C^* -correspondences vs graphs) Let G = (E, s, r) a graph from V to W and H = (F, s, r) a graph from W to U. Define the graph

$$H \circ G := (F \circ E, s, r)$$

where $F \circ E := \{(f, e) \in F \times E : s(f) = r(e)\}, s(f, e) := s(e), r(f, e) = r(f).$ Then

$$X_H \otimes_B X_G \cong X_{H \circ G}$$

Category C*-alg

Objects $\equiv C^*$ -algebras

 $Morphisms \equiv *-homomorphisms$

"Category" C*-corr

Objects $\equiv C^*$ -algebras

Morphisms \equiv nondegenerate C^* -correspondences

Associativity: If $A \xrightarrow{X} B$, $B \xrightarrow{Y} C$ and $C \xrightarrow{Z} D$, then

$$X \otimes_B (Y \otimes_C Z) \cong (X \otimes_B Y) \otimes_C Z$$

Identity elements = C^* -algebras: If $A \xrightarrow{X} B$, then

$$X \otimes_B B \cong X$$
 $(A \otimes_A X) \cong X$

Invertible elements: $A \xrightarrow{X} B$ is invertible if there is $B \xrightarrow{X^*} A$

$$X^* \otimes_A X \cong B$$
 $X \otimes_B X^* \cong A$

This holds if and only if X is (Morita-Rieffel) equivalence bimodule.

5) Hilbert C^* -bimodules

Def.

X is a **Hilbert** A-B-**bimodule** if X is a right Hilbert B-module and a left Hilbert A-module such that the respective inner products satisfy

$$_{A}\langle x,y\rangle z=x\langle y,z\rangle_{B},\qquad x,y,z\in X.$$

Rem.1. Every right Hilbert *B*-module is a Hilbert $\mathcal{K}(X)$ -*B*-bimodule where

$$\mathcal{K}(X)\langle x,y\rangle := \Theta_{x,y}, \qquad x,y \in X.$$

Rem.2. Every Hilbert A-B-bimodule X is a C^* -correspondence from A to B.

The adjoint B-A-bimodule X^* is a C^* -correspondence from B to A and

$$X \otimes_B X^{\star} \cong \overline{\langle X, X \rangle}_B \qquad (X^{\star} \otimes_A X) \cong {}_A \overline{\langle X, X \rangle}$$

where

$$\overline{\langle X, X \rangle}_B := \overline{\operatorname{span}} \{ \langle x, y \rangle_B : x, y \in X \} \text{ is an ideal in } B$$

$${}_A \overline{\langle X, X \rangle} := \overline{\operatorname{span}} \{ {}_A \langle x, y \rangle : x, y \in X \} \text{ is an ideal in } A.$$

Def.

X is a (Morita-Rieffel) equivalence A-B-bimodule if

- 1) X is a Hilbert A-B-bimodule
- 2) $\overline{\langle X, X \rangle}_B = B$ and $A \overline{\langle X, X \rangle} = A$.

If such X exists we say that A and B are Morita equivalent.

Rem. Every Hilbert A-B-bimodule is an equivalence ${}_{A}\overline{\langle X,X\rangle}$ - $\overline{\langle X,X\rangle}_{B}$ -bimodule.

Ex.1 Hilbert space H establishes Morita equivalence between \mathbb{C} and K(H).

Ex.2 Let $p \in C$ where C^* -algebra. The right ideal X := pC is an equivalence bimodule from the hereditary algebra A := pCp to the ideal B := CpC.

In general

"X is a Hilbert A-B-bimodule
$$\iff$$
 $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix}$ is a C^* -algebra"

 C^* -algebras A and B are Morita equivalent \iff they can be embedded into a C^* -algebra C as full and complementary corners.

Thm. (Brown, Green, Rieffel 1997)

If A and B have countable approximate units then

$$A, B$$
 are Morita equivalent \iff $A \otimes K(H) \cong B \otimes K(H)$.

Thm.

If A and B are Morita equivalent then

- 1) $\widehat{A} \cong \widehat{B}$
- 2) $Ideal(A) \cong Ideal(B)$
- 3) A is nuclear if and only if B is nuclear
- 4) A and B have the same K-theory
- 5)

6) Cuntz-Pimsner C^* -algebras

Def: Let $A \xrightarrow{X} A$ be a C^* -correspondence from A to A.

Representation of X in a C^* -algebra C is a pair (π, ψ) where $\pi: A \to C$ is a *-homomorphism, and $\psi: X \to C$ is such that

$$\pi(a)\psi(x) = \psi(ax), \qquad \psi(x)\pi(a) = \psi(xa), \qquad \psi(x)^*\psi(y) = \pi(\langle x,y\rangle_A)$$

When π is injective, we say that (π, ψ) is **injective**.

Consider tensor powers $X^{\otimes n}$ of X $(X^{\otimes 0}:=A)$ and Hilbert A-module direct sum

$$\mathcal{F}(X) := \bigoplus_{n=0}^{\infty} X^{\otimes n} = \{ (x_n)_{n=0}^{\infty} : \sum_{n=0}^{\infty} \langle x_n, x_n \rangle_A < \infty \}$$

It carries a diagonal left action $\pi:A o \mathcal{L}(\mathcal{F}(X))$ where

$$\pi(a)(x) := ax \qquad x \in X^{\otimes n}.$$

We have a map $T: X \to \mathcal{L}(\mathcal{F}(X))$ where for $x \in X$, T(x) is a 'creation operator':

$$T(x)y = \begin{cases} xy & \text{if } y \in X^{\otimes 0} = A \\ x \otimes_A y & \text{if } y \in X^{\otimes n} \text{ for } n \ge 1 \end{cases}, \qquad T(x) : X^{\otimes n} \to X^{\otimes n+1}$$

 (π, T) is an injective representation of the C^* -correspondence X.

Def. (Pimsner 1997, Katsura 2003)

The C^* -algebra \mathcal{T}_X generated by $\pi(A)$ and $\mathcal{T}(X)$ is called **Toeplitz algebra of** X.

The Cuntz-Pimsner algebra of X is

$$\mathcal{O}_X := \mathcal{T}_X/\mathcal{J}_X$$

where \mathcal{J}_X is the largest ideal in \mathcal{T}_X such that (π, \mathcal{T}) factors through to an injective representation of X in $\mathcal{T}_X/\mathcal{J}_X$ and \mathcal{J}_X is gauge invariant.

Rem. Recall that $\phi_X:A o \mathcal{L}(X)$ is the left action homomorphism. The ideal

$$J_X = (\ker \phi_X)^{\perp} \cap \phi_X^{-1}(\mathcal{K}(X))$$

induces the ideal $\mathcal{J}_X := \mathcal{K}(\mathcal{F}(X)J_X)$ in $\mathcal{L}(\mathcal{F}(X))$ and we have $\mathcal{J}_X \subseteq \mathcal{T}_X$.

Ex.1 (Cuntz algebras) If X = H is a Hilbert space and d = dim(H), then

$$\mathcal{T}_X = C^*(S_1, ..., S_d : S_i^* S_j = 1\delta_{i,j}, i, j = 1, ..., d)$$

$$\mathcal{O}_X = \mathcal{O}_d$$
 Cuntz algebra if $d \geq 2$ and $\mathcal{O}_\mathbb{C} = \mathbb{T}$

Ex.2 (graph algebras) If $A = C_0(V)$ where V discrete then $X = X_G$ where G = (E, s, r) is a directed graph from V to V, and

$$\mathcal{O}_X = \mathcal{O}_G$$
 — the graph C^* -algebra

It is a universal C^* -algebra generated by mutually orthogonal projections $\{p_v:v\in V\}$ and partial isometries $\{s_e:e\in E\}$ subject to relations

$$s_e^* s_e = p_{s(e)}, \quad s_e s_e^* \leq p_{r(e)} \quad \text{and} \quad p_v = \sum_{v \in r^{-1}(e)} s_e s_e^* \text{ if } 0 < |r^{-1}(e)| < \infty$$

Ex.3 (crossed products by endomorphisms)

If $\alpha:A\to A$ an endomorphism then

$$\mathcal{O}_{X_{\alpha}} = A \rtimes_{\alpha} \mathbb{N}$$
 — the crossed product

If $\alpha: A \to A$ injective, and A unital then

$$A \rtimes_{\alpha} \mathbb{N} = C^*(A \cup \{U\} : U^*U = 1, \alpha(a) = UaU^* \text{ for all } a \in A)$$