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Positive operator valued measures play a crucial role in the modern formulation
of quantum mechanics where they represent quantum observables as well as in
quantum information theory since they are important for a range of quantum
information processing protocols where classical post-processing plays a role.
The spectral measures (also known as Projection Valued Measures or PVMs)
are particular examples of POVMs and are able to describe only a very limited
class of observables. Furthermore they are not able to give a clear mathematical
representation of the joint measurability of two observables. For example,
the non-commutativity of the position and momentum operators Q and P
forbids a mathematical description of the joint measurement of position and
momentum. Things go differently if position and momentum are represented
by POVMs. Indeed, there are two commutative POVMs F® and F¥ that are
informationally equivalent to () and P respectively and are the marginals of a
joint POVM. Moreover F¥ and F¥ are noisy versions of Q and P respectively.
This is at the root of the formulation of quantum mechanics on phase space [1—
3] where POVMs allow a rigorous quantization procedure. All that underlines
the relevance of POVMs in general and of commutative POVMs in particular.

There are three characterizations of commutative POVMs [4-14] and one
of them shows that every commutative POVM is the randomization of a spec-
tral measure by means of a Markov kernel (or transition probability). That is
exactly what happens in the phase space formulation of quantum mechanics
when the symmetry group is the Heisenberg group, i.e., position and momen-
tum are jointly described by a non commutative POVM whose marginals are
randomization (through Markov kernels) of the position and momentum oper-
ators.

In the present work we analyze more in details the randomization proce-
dure. In particular, we show that there is a universal Markov kernel p. It is
called universal because every commutative POVM F is the randomization of
a particular spectral measure EF by means of p. Formally, we prove that there
is a Markov kernel p such that, for any real commutative POVM F,
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F(8) = [ O dEf

where E¥ is a spectral measure which depends on F.

The talk will include a brief introduction to the relevance of POVMs in

phase space quantum mechanics.
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