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Plan of the Talk:

• The six Painlevé equations are written in the Hamiltonian form with time
dependent rational Hamilton functions.

• By a natural extension of the phase space one gets corresponding au-
tonomous Hamiltonian systems with two degrees of freedom.

• The Bäcklund transformations of the Painlevé equations are realized
as symplectic birational transformations in C4.

• The cases with classical solutions are interpreted as the cases of partial
integrability of the extended Hamiltonian systems.

• It is proved that the extended Hamiltonian systems do not have any
additional algebraic first integral besides the known special cases of
the third and fifth Painlevé equations.

• It is shown that the original Painlevé equations admit the first integrals
expressed in terms of the elementary functions only in the special cases
mentioned above. In the proofs equations in variations with respect to a
parameter and Liouville’s theory of elementary functions are used.



The Painlevé Equations
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ẍ = 2x3 + tx+ α (PII)
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where α, β, γ, δ are arbitrary complex parameters (and the dot denotes d/dt).



• The Painlevé equations PI − PV I possess the Painlevé property.

• Solutions of PI − PV I (the Painlevé transcendents) are meromorphic
functions on the universal cover of CP1�{singular points}.

• PI − PV I are not integrable in terms of the known functions.

• The Painlevé equations have numerous applications in mathematics
and mathematical physics nowadays.

• Equations PI − PV I can be written in the Hamiltonian form

dx

dt
=
∂h

∂y
,

dy

dt
= −

∂h

∂x
, (1)

where h = h(x, y, t) is some (time dependent) Hamilton function (papers
of K. Okamoto, also J. Malmquist). They have 3/2 degrees of freedom.



Okamoto’s (polynomial) Hamiltonians

h̃I =
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2
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y
}
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h̃IV = 2xy2 − (x2 + 2tx+ 2κ0)y + θ∞x,

h̃V =
1

t
{x(x− 1)2y2 −

[
κ0(x− 1)2 + θx(x− 1)− ηtx

]
y + κ(x− 1)},

h̃V I =
1

t(1− t)
{x(x− 1)(x− t)y2 + κ(x− t)

− [κ0(x− 1)(x− t) + κ1x(x− t) + (θ − 1)x(x− 1)] y},
where the parameters above are defined explicitly via the parameters α, β, γ, δ
in PJ .



Extended Hamiltonian Function

dx

dt
=
∂h

∂y
,

dy

dt
= −

∂h

∂x
,

After renaming the ‘time’ t by a new ‘coordinate’ q, introducing a new ‘mo-
mentum’ p and extending the Hamilton function,

H(x, y, q, p) = h(x, y, q) + p, (2)

one obtains the autonomous Hamiltonian system

ẋ = H ′y, ẏ = −H ′x, q̇ = H ′p = 1, ṗ = −H ′q. (3)

Here the dot denotes differentiation with respect to a new time τ. We shall
denote the corresponding vector field by XH.

E. Horozov and Ts. Stoyanova considered the question of integrability of
system (3) in the Liouville–Arnold sense (or of its complete integrability).
It means that there should exist a function F (x, y, q, p) in involution with H :
{H,F} = Ḟ = 0. They applied a version of the Ziglin method, developed by
J.-P. Ramis and Morales-Ruiz.



It uses the monodromy group (or the differential Galois group) of the normal
variation equation for a particular algebraic solution of the corresponding
Hamiltonian system. In the case of complete integrability with meromorphic
first integrals the identity component of this differential Galois group should
be abelian.

Suitable algebraic solutions of the Painlevé equations exist for special values
of the parameters. By direct computation of the monodromy group (and,
for some equations, of Stokes operators) Horozov and Stoyanova show that
the identity component of the differential Galois group of the normal
variation equation is not abelian. The method works only for special
values of the parameters (but not discrete).

Our method of proof of the non-integrability is different. By a suitable normal-
ization of the variables we arrive at a perturbation of a completely integrable
system with two algebraic first integrals. Then we consider the equation in
variations with respect to a parameter (denoted by ε) around a particular
solution which is a rather general elliptic curve. Then analysis of few initial
terms in powers of ε of a possible first integral of the perturbed system leads
to some properties of elliptic integral which cannot be true.



New Hamiltonians

The Painlevé equations are of the Liénard type:

ẍ = A(x, t)ẋ2 +B(x, t)ẋ+ C (x, t) (4)

with rational coefficients (with possible poles at t = 0, t = 1, t = ∞, x = 0,
x = 1, x =∞ and x = t).

Let

y = ẋ/D(x, t).

The divergence of the nonautonomous vector field

V (x, y, t) = Dy
∂

∂x
+
{(
AD −D′x

)
y2 +

(
B −D′t/D

)
y + C/D

} ∂

∂y

equals

divV =
(
2AD −D′x

)
y +

(
B −D′t/D

)
= 0,

which implies

D′x/D = 2A, D′t/D = B.



Hence, if the condition

2A′t = B′x (5)

is fulfilled, then Eq. (4) takes the Hamiltonian form in the variables

(x, y) = (x, ẋ/D) , (6)

where

D(x, t) = exp

(∫ (x,t)

2Adx+Bdt

)
. (7)

The corresponding Hamilton function is given by

h(x, y, t) = D(x, t)
y2

2
+ h0(x, t), (8)

h0 = −
∫ x C

D
dx. (9)

Moreover, if the 1−form 2Adx+Bdt has only simple poles with integer residua
at them, then the function D(x, t) is rational. If, additionally, the 1−form C

D
dx

has vanishing residua at its poles then the Hamilton function (8) is rational.



List of New Hamiltonians
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where y = dx/dt.



Symplectic Bäcklund Transformations

Bäcklund transformations are birational changes of the variables x, t which
transform a given equation PJ with given parameters to the same PJ but with
different parameters.

In the series of papers of K. Okamoto it is proved that these transformations
can be extended to the so-called canonical transformations(

x, y, t, h̃
)
7−→

(
x′, y′, t′, h̃′

)
which preserve the canonical form

Ω̃ = dx ∧ dy + dt ∧ dh̃.

The new Hamiltonian h̃′ = h̃′J is from the same list, but with different param-
eters.

The corresponding changes of the parameters induce the action on the pa-
rameter space. It turns out that the latter action is equivalent (after a proper
choice of coordinates) to an action of some group generated by reflections,
an affine Weyl group associated with some root system.



The finite Weyl group W (R), associated with a root system R ⊂ Rn, is

generated by reflections sα : x 7−→ x − 2(α,x)
(α,α)

α, α ∈ R. They are orthogonal

reflections with respect to the hyperplanes Lα = {(α, x) = 0} .

The affine Weyl group Wa(R), associated with the root system R, is gen-

erated by the reflections sα,k : x 7−→ x − 2(α,x)−k
(α,α)

α, α ∈ R, k ∈ Z; i.e., by the

orthogonal reflections with respect to hyperplanes Lα,k = {(α, x) = k}. Of

course, by rescaling the x ∈ Rn we can represent the generators of Wa(R) as

the above reflections, but with k ∈ µZ for some µ 6= 0.

Wa(A1) for PII ,

Wa(B2) for PIII ,

Wa(A2) for PIV ,

Wa(A3) for PV ,

Wa(D4) for PV I .



For new extended Hamilton functions

H = HJ(x, y, q, p) = hJ(x, y, q) + p,

we want to realize the groups above as the groups of symplectic trans-
formations in the extended space with coordinates x, y, q, p and with the
symplectic form

Ω = dx ∧ dy + dq ∧ dp. (10)



Equation PII

The new extended Hamitonian function is given by

H = H(α) =
1

2
y2 −

1

2
x4 −

1

2
qx2 − αx+ p.

The change

(x, y, q, p) = U(x′, y′, q′, p′) =

(
x′, y′ − (x′)2 −

1

2
q′, q′, p′ −

1

8
(q′)2 −

1

2
x′
)

(which is symplectic) transforms the Hamiltonian H(α) to the extended Okamoto
Hamiltonian

U∗H(α) = H̃(α) =
1

2
(y′)2 −

(
(x′)2 +

1

2
q′
)
y′ −

(
α+

1

2

)
x′ + p′,

which equals h̃II + p′.



Define the following symplectic transformations

(x, y, q, p) 7−→
(
x′, y′, q′, p′

)
:

S1 : (x, y, q, p) = S1(x′, y′, q′, p′) = (−x′,−y′, q′, p′) ,
S̃2 : (x, y, q, p) = S̃2(x′, y′, q′, p′) =

(
x′ − α+1/2

y′
, y′, q′, p′

)
,

S2 = US̃2U−1.

We have

S∗1H
(α) = H(−α),

S̃∗2H̃
(α) = H̃(−α−1),

S∗2H
(α) = H(−α−1).

Therefore, the birational maps S1 and S2 are Bäcklund transformations in-
ducing the reflections

s1 : α 7−→ −α, s2 : α 7−→ −α− 1.

The latter two maps are reflections generating the affine Weyl group Wa(A1).



Equation PIII, γ = −δ = 1

The new extended Hamitonian function is given by

H(α,β) := H(α,β,1,−1)
III =

x2y2

2q
− αx+

β

x
−

1

2
qx2 −

q

2x2
+ p. (11)

The extended Okamoto Hamiltonian is given by

H̃(α,β) =
x2

2q

[
y2 + 2

(
1− β
x

+
q

x2
− q
)
y

]
+ (β − α− 2)x+ p. (12)

It equals 4h̃III(x, y/4, q) + p with η0 = 1
2
, η∞ = 1

2
, θ0 = 1

2
β − 1, θ∞ = −1

2
α; we

also have γ = 4η2
∞ = 1, δ = −4η2

0 = −1.



The transformation

U = Uβ : (x, y, q, p) =

(
x′, y′ +

1− β
x′

+
q′

(x′)2
− q′, q′, p′ − x′ −

1

x′
+ g(q′)

)
,

g(q) = −
(1− β)2

2q
+ q,

is symplectic and has the following property:

U∗H(α,β) = H̃(α,β).



Define the following symplectic transformations:

S1 : (x, y, q, p) = (−ix′, iy′, iq′,−ip′) , i =
√
−1,

S2 : (x, y, q, p) =
(
−1/x′, (x′)2y′, q′, p′

)
,

S̃3 : (x, y, q, p) =
(
x′ + β−α−2

y′
, y′, q′, p′ + (β−α−2)(α+β)

2q′

)
,

S3 = Uβ ◦ S̃3 ◦ U−1
α+2.

(13)

They imply the following changes in the Hamiltonians:

S∗1H
(α,β) = −iH(α,−β) = −

(
dq′/dq

)
·H(α,−β),

S∗2H
(α,β) = H(β,α),

S̃∗3H̃
(α,β) = H̃(β−2,α+2),

S∗3H
(α,β) = H(β−2,α+2).

In the parameter space we have:

s1 : (α, β) 7−→ (α,−β),
s2 : (α, β) 7−→ (β, α) ,
s3 : (α, β) 7−→ (β − 2, α+ 2) .

(14)

They are orthogonal reflections with respect to the lines {β = 0} , {β − α = 0}
and {β − α− 2 = 0} . Such reflections generate the affine Weyl group associ-
ated with the root system B2.



In fact, the changes S̃3 and S3 can be generalized to the corresponding changes
S̃ε,ε and Sε,ε (where ε, ε = ±1 are related with the possible choices of η0 = ε

2
and η∞ = ε

2
) leading to reflections with respect to the lines εβ − εα− 2 = 0.



Equation PIV

The new extended Hamitonian function is given by

HIV = H(α,β) =
1

2
xy2 −

1

2
x3 − 2qx2 − 2q2x+ 2αx+

β

x
+ p. (15)

The extended Okamoto Hamitonian function is given by

H̃(a,b)
± =

1

2
x

[
y2 + 2

(
±(x+ 2q)−

b

2x

)
y

]
∓ ax+ p. (16)

Here H̃(a,b)
− equals 4h̃IV (x, y/4, q) + p, where h̃IV is the Okamoto Hamiltonian

with κ0 = 1
4
b and θ∞ = 1

4
a, and H̃(a,b)

+ is analogously expressed via a modified

Okamoto Hamiltonian denoted by H̄ in Okamoto’s paper. Moreover, we have

α = ∓
(

1

2
a−

1

4
b+ 1

)
, β = −

1

8
b2. (17)

The Hamiltonians above are related by means of the following symplectic
maps:

U± : (x, y, q, p) =

(
x′, y′ ±

(
x′ + 2q′

)
−

b

2x′
, q′, p′ ± bq′ ± 2x′

)
,



i.e.,

U∗±H
(α,β) = H̃(a,b)

± .

Moreover,

V ∗H̃(a,b)
− = H̃(b−a−4,b)

+ , (18)

V = Vb = U−1
− ◦ U+.

Below we use H̃(a,b)
− as a reference Hamiltonian; thus we will get maps in the

(a, b)−plane.



Now we introduce the following symplectic transformations:

S1 : (x, y, q, p) =
(
x′ x

′y′−b
x′y′−a, y

′x′y′−a
x′y′−b , q

′, p′
)
,

S2 = Vb ◦ S1 ◦ V −1
b−a−4,

S3 = (x, y, q, p) =
(
x′ + a

y′
, y′, q′, p′ + 2aq′

)
.

(19)

We have

S∗1H̃
(a,b)
± = H̃(b,a)

± ,

S∗2H̃
(a,b)
− = H̃(−a−8,b−a−4)

− ,

S∗3H̃
(a,b)
− = H̃(−a,b−a)

− .

Therefore, we get the following changes in the parameter plane:

s1 : (a, b) 7−→ (b, a) ,
s2 : (a, b) 7−→ (−a− 8, b− a− 4),
s3 : (a, b) 7−→ (−a, b− a) .

(20)

They are involutions. Next, we have s1 ◦ s3 : (a, b) 7−→ (b− a,−a) , i.e., a linear
map equivalent to the rotation of order 3. Therefore, the maps s1 and s3

generate the Weyl group A2 ' S(3).



We can realize this group in a subspace of R3 with zero sum of coordinates:

X =
{
v ∈ R3 : v1 + v2 + v3 = 0

}
by taking

v1 =
1

12
(a− 2b), v2 =

1

12
(b− 2a), v3 =

1

12
(a+ b);

thus v ∈ X. Then the reflections (20) take the following form:

s1 : v 7−→ (v2, v1, v3) ,
s3 : v 7−→ (v1, v3, v2),
s2 : v 7−→ (v1, v3 + 1, v2 − 1) .

(21)

We see that s1 and s3 are orthogonal reflections in the plane X with respect
to the lines {v1 = v2} and {v2 = v3} , while s2 is an orthogonal reflection with
respect to the line {v2 = v3 + 1} (parallel to the first line). These maps are
the standard generators of the affine Weyl group Wa(A2).



Equation PV , δ = −1/2

The new extended Hamitonian function is given by

H(α,β,γ) = HV |δ=−1/2 =
x(x− 1)2

2q
y2 − α

x

q
+

β

qx
+

γ

x− 1
−

qx

2(x− 1)2
+ p.

The extended Okamoto Hamiltonian is given by

H̃(a,b,c) =
1

2q

{
x(x− 1)2

[
y2 −

(
a

x
+

b

x− 1
+

2q

(x− 1)2

)
y

]
+ c(x− 1)

}
+ p.

It equals 2h̃V (x, y/2, q) + p, where h̃V is the Okamoto Hamiltonian with κ0 =
a/2, θ = b/2, η = −1 and κ = c/4. Moreover:

α =
1

8

{
(a+ b)2 − 4c

}
, β = −

1

8
a2, γ = −

1

2
b− 1, δ = −

1

2
.



We have

U∗H(α,β,γ) = H̃(a,b,c),

where the map

U = Ua,b,c :

(x, y, q, p) =

(
x′, y′ − f(x′)−

q′

(x′ − 1)2
, q′, p′ +

1

x′ − 1
+ g(q′)

)
,

f(x) =
a

2x
+

b/2

x− 1
, g(q) =

a(a+ b)− 2c

4q
−
a+ b

2

is symplectic. The Hamiltonian H̃(a,b,c) will be our reference Hamiltonian.



The first two symplectic Bäcklund transformations are the following:

T : (x, y, q, p) =
(
x′, y′,−q′,−p′

)
, T̃ = U−1

a,b,c ◦ T ◦ Ua′,b′,c′. (22)

We have

T ∗H(α,β,γ) = −H(α,β,−γ),
T̃ ∗H̃(a,b,c) = −H̃(a′,b′,c′),

a′ = a, b′ = −b− 4, c′ = c+ 1
4

{
(a− b− 4)2 − (a+ b)2

}
.

(23)

The symplectic change

S1 : (x, y, q, p) =
(
x′, y′ +

a

x′
, q′, p′ + a

)
(24)

gives

S∗1H̃
(a,b,c) = H̃(−a,b,c−ab).



The maps

S± : (x, y, q, p) =

(
x′
x′y′ − a
x′y′ − λ±

, y′
x′y′ − λ±
x′y′ − a

, q′, p′ +
c− c′

2q′

)
, (25)

where

λ± =
1

2

(
a+ b±

√
∆
)
, ∆ = (a+ b)2 − 4c = 8α

and c′ = aλ∓, are symplectic and satisfy

S∗±H̃
(a,b,c) = H̃(a′,b′,c′).

The changes of the parameters can be expressed in terms of the new
parameters a, λ+, λ− as follows:

(a, λ+, λ−) 7−→ (λ+, a, λ−) , (a, λ+, λ−) 7−→ (λ−, λ+, a) ; (26)

they are two transpositions between the roots of the equations (z − λ+)(z −
λ−) = 0 and z − a = 0.



It is useful to introduce another parameter, which replaces c:

d =
√

∆ = λ+ − λ−
(or d = λ− − λ+). Thus α = d2/8 and λ± = 1

2 (a+ b± d) .

Then the maps S1 and S± lead to the following linear changes in the (a, b, d)−space:

s1 : (a, b, d) 7−→ (−a, b, d)

s± : (a, b, d) 7−→
(
a+ b± d

2
, a∓ d,

d± a∓ b
2

)
;

here the third component d′ in the image of s+ is a− λ−, and d′ = λ+ − a in
the case s−. The maps s1 and s± are involutions and generate the finite Weyl
group associated with the root system A3 ' S(4).

To see this, we use the following linear functions:

v1 =
1

8
(2a+ b), v2 =

1

8
(b− 2a), v3 = −

1

8
(b+ 2d), v4 =

1

8
(2d− b);

they satisfy v1 + v2 + v3 + v4 = 0.



We find the following form of the above involutions:

s1 : v 7−→ (v2, v1, v3, v4) ,
s+ : v 7−→ (v1, v3, v2, v4) ,
s− : v 7−→ (v1, v4, v3, v2) ;

(27)

They are orthogonal reflections in the space

X =
{
v ∈ R4 : v1 + v2 + v3 + v4 = 0

}
with respect to the planes {v1 = v2} , {v2 = v3} and {v2 = v4} .



In order to get an additional reflection, which generates the affine Weyl group
Wa(A3) (together with s1 and s±), we use the map T̃ from Eq. (22). In the
(a, b, d) variables, it induces the change

t : (a, b, d) 7−→ (a,−b− 4, d) .

Then the map

S3 = T̃ ◦ S+ ◦ T̃
yields the change

s3 : (a, b, d) 7−→
(
a− b+ d− 4

2
, d− a− 4,

a+ b+ d+ 4

2

)
.

In the space X we get the map

s3 : v 7−→ (v4 − 1, v2, v3, v1 + 1) , (28)

i.e., the reflection with respect to the plane {v4 = v1 + 1} .



Equation PV I

The new extended Hamitonian function is given by

H(α,β,γ,δ) =
1

2q(q − 1)
{x(x− 1)(x− q)y2 − 2αx+ 2β

q

x

+2γ
q − 1

x− 1
+ 2δ

q(q − 1)

x− q
+ 2q(q − 1)p}.

The extended Okamoto Hamiltonian function is given by

H̃(a,b,c,d) =
1

2q(q − 1)
{x(x− 1)(x− q)[

y2 −
(
a

x
+

b

x− 1
+

c

x− q

)
y

]
+ d(x− q)}+ p.

It equals −2h̃V I(x, y/2, q) + p, where h̃V I is the Okamoto Hamiltonian with
κ0 = a/2, κ1 = b/2, θ = 1 + c/2 and κ = d/4.



They are related by the symplectic change

U : (x, y, q, p) =

(
x′, y′ − f(x′)−

c/2

x′ − q′
, q′, p′ +

c/2

x′ − q′
+ g(q′)

)
,

f(x) =
a

2x
+

b/2

x− 1
, g(q) =

(a+ c)2 − b2 + q
[
(a+ b)2 − c2 − 4d

]
8q(q − 1)

.

Moreover, we have

α =
(a+ b+ c)2 − 4d

8
, β = −

a2

8
, γ =

b2

8
, δ = −

c(c+ 4)

8
.



We have the following symplectic Bäcklund transformations

T1 : (x, y, q, p) =
(

1− x′,−y′,1− q′,−p′ + α
q′(q′−1)

)
,

T2 : (x, y, q, p) =
(

1
x′
,−(x′)2y′, 1

q′
,−(q′)2p′ + (γ + δ)q′

)
,

T3 : (x, y, q, p) =
(
x′

q′
, q′y′ + f(x′, q′), 1

q′
,−(q′)2p′ − q′x′y′ + g(x′, q′)

)
,

where

f(x, q) = −
q(q − 1)

(x− 1)(x− q)
=

q

x− 1
−

q

x− q
, g(x, q) =

−q
x− 1

.

We have

T ∗jH
(α,β,γ,δ) = (dq′/dq) ·H(α′,β ′,γ ′,δ′).

They induce the following parameter changes:

t1 : (α, β, γ, δ) 7−→ (α,−γ,−β, δ) ,
t2 : (α, β, γ, δ) 7−→ (−β,−α, γ, δ) ,
t3 : (α, β, γ, δ) 7−→

(
α, β, 1

2
− δ, 1

2
− γ

)
.

(29)



Other symplectic Bäcklund transformations are given by

S1 : (x, y, q, p) =
(
x′, y′ + a

x′
, q′, p′ + ac

2q′

)
,

S2 : (x, y, q, p) =
(
x′, y′ + b

x′−1
, q′, p′ + bc

2(q′−1)

)
,

S3 : (x, y, q, p) =
(
x′, y′ + c+2

x′−q′ , q
′, p′ − c+2

x′−q′ + g(q′)
)
,

S± : (x, y, q, p) =
(
x′xy−λ±

xy−a , y
′ xy−a
xy−λ± , q

′, p′ + d−d′
2(q′−1)

)
,

(30)

where

g(q) = (c+ 2)
(a+ b− 4)q + 2− a

2q(q − 1)
, d′ = aλ∓.

They induce the corresponding parameter changes:

s1 : (a, b, c, d) 7−→ (−a, b, c, d− ab− ac) ,
s2 : (a, b, c, d) 7−→ (a,−b, c, d− ab− bc) ,
s3 : (a, b, c, d) 7−→ (a, b,−c− 4, d− (a+ b− 2)(c+ 2)) ,
s+ : (a, λ+, λ−) 7−→ (λ+, a, λ−) ,
s− : (a, λ+, λ−) 7−→ (λ−, λ+, a) .

(31)



It is natural to introduce a new parameter (replacing d) :

e =
√

(a+ b+ c)2 − 4d = λ+ − λ−,

such that λ± = 1
2
(a+ b+ c± e). Then the maps (31) take the following form:

s1 : (a, b, c, e) 7−→ (−a, b, c, e),
s2 : (a, b, c, e) 7−→ (a,−b, c, e),
s3 : (a, b, c, e) 7−→ (a, b,−c− 4, e),
s± : (a, b, c, e) 7−→

(
a+b+c±e

2
, a+b−c∓e

2
, a−b+c∓e

2
, e±a∓b∓c

2

)
.

Note that

s4 := s− ◦ s+ ◦ s− : (a, b, c, e) 7−→ (a, b, c,−e).



In the variables

v1 =
a+ b

4
, v2 =

a− b
4

, v3 =
c+ e

4
, v4 =

c− e
4

we get the following maps:

s1 : v 7−→ (−v2,−v1, v3, v4) ,
s2 : v 7−→ (v2, v1, v3, v4) ,
s3 : v 7−→ (v1, v2,−v4 − 1,−v3 − 1) ,
s+ : v 7−→ (v1, v3, v2, v4) ,
s4 : v 7−→ (v1, v2, v4, v3) .

(32)

They are orthogonal reflections in R4 with respect to the hyperplanes {v1 + v2 = 0} ,
{v1 − v2 = 0} , {v3 + v4 = −1} , {v2 − v3 = 0} and {v3 − v4 = 0} . It is known
that they generate the affine Weyl group Wa(D4).

The maps tj from Eq. (29) read as

t1 : (a, b, c, e) 7−→ (b, a, c, e) ,
t2 : (a, b, c, e) 7−→ (e, b, c, a) ,
t3 : (a, b, c, e) 7−→ (a, c+ 2, b− 2, e) .

(33)

The group generated by the maps (31)–(33) is isomorphic to the affine Weyl
group Wa(F4) associated with the root system F4.



Partial Integrability and Classical Solutions

In the Hamiltonian mechanics, besides the notion of a complete integrability
(in the Liouville–Arnold sense), there exists the notion of a partial integra-
bility.

In the two degrees of freedom case, this is the situation when the Hamiltonian
vector field XH does not have additional first integrals (only H), but each
3−dimensional level space {H = h} contains a 2−dimensional surface Σ = Σh

invariant with respect to XH. This family {Σh} of invariant surfaces is defined
by

{f = f(x, y, q, p) = 0, H = h} ,
where f is a function on the phase space (usually rational).



In some sources it is claimed that the Hamiltonian vector field restricted to
the invariant surface, XH|Σ, is integrable. That is, there exists a regular non-
constant function G : Σ 7−→ R which is a first integral for XH|Σ. But this is
not the case, in general. For example, in the so-called Hess–Appelrot case
in the rigid body dynamics there exists an invariant surface, but without any
sensible first integral.



There are the cases of partial integrability for the extended Hamiltonian sys-
tems associated with the Painlevé equations with the invariant surface of the
form:

Σ = {y = E(x, q)},
which, together with the relations y = ẋ/D(x, t) and q = t, lead to the Riccati
equations of the form

ẋ = a(t)x2 + b(t)x+ c(t). (34)

Here a, b, c are rational functions with poles at t =∞ and/or at t = 0,1.

It is well known that the Riccati Eq. (34) is related to the second order linear
equation

z̈ + d(t)ż + e(t)z = 0, (35)
x = g(t)ż/z,

where

g = −1/a, d = −b− ȧ/a, e = ac. (36)

Equations (35), for different Painlevé equations, are related to the classical
hypergeometric equation (or the Riemann equation).



More precisely, we have:

Airy equation for PII,

Bessel equation for PIII,

Hermite–Weber equation for PIV ,

confluent hypergeometric equation for PV ,

Gauss hypergeometric equation for PV I.

(In fact, all the above equations can be obtained from the hypergeometric
equation by some limit process, like the Painlevé equations PI − PV are limits
of PV I).



Since the general Riccati equation is not integrable in the ‘mechanical’ sense,
the Hamiltonian system restricted to Σ is also non-integrable. Similar happens
in the Hess–Appelrot case (mentioned above), where the system restricted to
the corresponding invariant surface is equivalent to a Riccati equation with
periodic coefficients



If, for some parameters α, β, γ, δ, the system related to H(α,β,γ,δ)
J has an in-

variant surface Σ and S is a Bäcklund transformation, leading to a change
(α, β, γ, δ) 7−→ (α′, β′, γ′, δ′), then the system related with H(α′,β ′,γ ′,δ′)

J has the
invariant surface Σ′ = S(Σ).

Usually, the parameters, corresponding to partially integrable Hamiltonians,
lie on walls of the Weyl chambers (hypersurfaces of fixed points of reflections
in the affine Weyl group).

We can analogously interpret the algebraic solutions to the Painlevé equations.
They correspond to 1−dimensional submanifolds which are invariant for XH

and are algebraic.



Example: Invariant Surfaces for PII

The value α = −1
2

of the parameter is the fixed point of the reflection s2 :
α 7→ −α− 1.

Let

f = y + x2 + q/2.

With the Hamiltonian

H̃(−1/2)(x, f, q, p) =
1

2
f2 −

(
x2 +

q

2

)
f + p

we get

ḟ = −∂H̃(−1/2)/∂x = 2xf.



Therefore, the surface

Σ−1/2 = {f = 0} =
{
y = −x2 − q/2

}
is invariant. Putting y = ẋ and q = t we get the Riccati equation

ẋ = −x2 − t/2, (37)

which is the Hamiltonian system restricted to Σ−1/2. The corresponding sec-
ond order linear equation is the Airy equation

z̈ = −tz/2, x = ż/z. (38)

By applying the Bäcklund transformations S, i.e., compositions of the maps
S1 and S2 we find the surfaces Σn+1/2 = S(Σ−1/2), where n + 1/2 ∈ Z+ 1/2
are half-integer values of the parameter α; n+ 1/2 = s(−1/2) where s is the
action on the parameter space corresponding to S. For α = 1/2 we get the
surface Ξ1/2 =

{
y = x2 + q/2

}
= S1(Σ−1/2). Other surfaces Σn+1/2 are more

complicated.

We also have a series of 1−dimensional algebraic curves corresponding to
algebraic solutions to PII. Indeed, for α = 0 we get the particular solution
x(t) ≡ 0. It corresponds to the invariant curve Γ0 = {x = y = 0} . By applying
to it the Bäcklund transformations we get a series of algebraic curves Γn

invariant for XH(n), n ∈ Z.



Theorem 1 Hamiltonian system

ẋ = H ′y, ẏ = −H ′x, q̇ = H ′p = 1, ṗ = −H ′q
associated with any of the equations PI − PV I excluding the cases

(a) α = γ = 0 in PIII,

(b) β = δ = 0 in PIII,

(c) γ = δ = 0 in PV
does not admit any first integral which is an algebraic function of x, y, q, p and
is independent of H.

Theorem 2 Any of the equations PI − PV I, excluding the cases (a), (b) and
(c) in Theorem 1 above, does not admit a first integral which is an elementary
function of x, dx/dt and t.



Remarks.

The cases (a), (b) and (c) in Theorem 1 are well known. Theorem 1 is not
new, only its proof is new. It was proved by V. Gromak using the so-called
second Malmquist theorem which states that if a solution x = ϕ(t) to some
of the Painlevé equation PJ satisfies an algebraic relation between t, ϕ and ϕ̇,
then this relation is of special form: ϕ̇m+P1(t, ϕ)ϕ̇m−1 + . . .+Pm(t, ϕ) ≡ 0 with
Pj ∈ C(t) [ϕ]. Therefore, we have a monic polynomial in ϕ̇ with polynomial in
ϕ coefficients.

Concerning Theorem 2 we should mention the works of H. Umemura and H.
Watanabe. They apply advanced differential Galois theory to prove non-
integrability of some of the Painlevé equations in the class of the so-called
classical functions. The classical functions are obtained from rational func-
tions by successive applications of the so-called permissible operations. The
latter include: derivation, quadrature, algebraic operations, solutions to linear
differential equations, solutions to first order algebraic equations F (x, ẋ) = 0
and compositions with Abelian functions (like the Weierstrass P–function).

One should expect an ‘elementary’ version of Theorem 1, instead of the
restricted statement in Theorem 2. We are convinced that it is true, but the
rigorous proof would be highly complicated. In fact, the main difficulty with



the proof of Theorem 2 is in dealing with elementary functions. We follow
the book of J. Ritt devoted to presentation of some Liouville’s theorems in
terms of multivalued analytic functions.



The fourth Painlevé equation PIV

Introduction of a small parameter

The extended Hamilton function takes the form

H(X,Y,Q, P ) =
1

2
XY 2 −

1

2
X3 − 2QX2 − 2Q2X + 2αX +

β

X
+ P. (39)

Consider the following change:

X = x/µ, Y = y/µ, P = p/µ, Q = q/µ. (40)

It is semi-symplectic:

Ω 7−→ Ω/µ2, H 7−→ Hε/µ
3, (41)

where Ω is the symplectic form and

Hε = H0 + εp =

(
1

2
xy2 −

1

2
x3 − 2qx2 − 2q2x+ ax+

b

x

)
+ εp

with

ε = µ2, a = 2αµ2, b = βµ4.

We assume that µ (and ε) is small and we treat a and b as other small
parameters. Note also that H0 = hIV |t=q.



The Hamiltonian system (3) associated with the function (39) is orbitally
equivalent (i.e., by a time rescaling) to the Hamiltonian system associated
with Hε, i.e.,

ẋ = xy, ẏ = −
1

2
y2 +

3

2
x2 + 4qx+ 2q2 − a+

b

x2
, ṗ = 2x2 + 4qx, q̇ = ε.

(42)

If system (3) has an additional first integral F , then also system (42) has an
integral Fε independent of Hε.



Unperturbed system

For ε = 0 system (42) is completely integrable with the functions H0 =
Hε|ε=0and H1 = q playing the role of the first integrals in involution.

The common level sets

H0 = h0, q = q0

are of the form Γ× C where

Γ = Γ(q0, h0) =
{

(x, y) : xy2 = x3 + 4q0x
2 + cx− 2b/x+ 2h0

}
⊂ C2, (43)

c = 4q2
0 − 2a and the line C = {(p, q) : q = q0} ⊂ C2. After the substitution

y = z/x we obtain the curve (birationally equivalent with Γ) :

∆ =
{
z2 = f(x)

}
, (44)

z = xy, f = x4 + 4q0x
3 + cx2 + 2h0x− 2b, (45)

i.e., Γ is an elliptic curve (at least for typical values of h0 and q0).



The solutions to equation (42) for ε = 0 are the following:

x = X (τ − τ0), y = Y(τ − τ0), p = P(τ − τ0), q = q0.

Here X (τ), Y(τ) = Ẋ/X and P(τ) are defined by the following formulas:

τ =

∫ (X ,Y)

(x0,y0)

dx

xy
=

∫ W
w0

dx

z
, (46)

P − p0 = 2

∫ τ

0

{
X 2(s) + 2q0X (s)

}
ds = 2

∫
x+ 2q0

y
dx (47)

= 2

∫ W
w0

x2 + 2q0x

z
dx,

where the integral
∫ (X ,Y)

(x0,y0) runs along a path in the complex curve Γ from some

initial point (x0, y0) to the point (x, y) = (X (τ),Y(τ)) (the second integral∫W
w0

in Eq. (46) runs along a path in ∆ from w0 = (x0, z0) = (x0, x0y0) to

W(τ) = (X (τ),Z(τ)) = (X ,XY)). p

Below we fix the initial conditions for (x, y) by putting τ0 = 0, y0 = 0 and x0

as some root of the equation f(x) = 0; p0 is the initial value for p.



The second integral in Eq. (46), i.e.,
∫

dx
z

= τ, demonstrates that X (τ) can
be expressed via the Weierstrass P–function.



Equation in variations with respect to ε

Take the above special solution of the unperturbed system: x = X (τ), y =
Y(τ), p = P(τ), q = q0. We consider the equation in variations with respect
to the parameter along this solution. We substitute

x = X (τ) + εx1(τ), y = Y(τ) + εy1(τ), p = P(τ) + εp1(τ), q = q0 + εq1(τ),
(48)

x1(0) = y1(0) = p1(0) = q1(0) = 0, into system (42) and solve it modulo
O(ε2). It is easy to see that

q1(τ) = τ.

Therefore, we have the following (linear in ε) relations:

H0(x, y, q) + εp = h0 + εh1 + . . .
q = q0 + ετ.

(49)



Expansion of an independent first integral

Suppose that the Hamiltonian vector field has an elementary first integral
F (X,Y,Q, P ) independent of H. Then system (42) has the first integral

Fε(x, y, q, p) = F (x/µ, y/µ, q/µ, p/µ),

µ =
√
ε, independent of Hε.

Lemma. There exists an elementary first integral Gε(x, y, q, p), independent
of Hε and obtained from Fε by elementary operations involving Fε, Hε and ε,
such that:

(i) Gε has a uniform, with respect to (x, y, q, p) in an open domain U ⊂ C4

and ε in a sectorial domain V ⊂ (C,0) with vertex at ε = 0, expansion

Gε = G0 +G1(ε) + . . . , (50)

where G0 = G0(x, y, q, p), Gj(ε) = Gj(ε;x, y, q, p) are elementary functions such
that Gj+1/Gj → 0, . . . as ε→ 0;

(ii) the first term in the right-hand side of Eq. (3.12) is of the form
G0 = Ψ0(H0, q) and satisfies

∂Ψ0

∂q
(h0, q0) 6= 0



for typical (h0, q0) ;

(iii) the condition Fε = const along solutions becomes the condition

Gε(x(τ), y(τ), q(τ), p(τ)) = g0 + g1(ε) + . . . , (51)

where g0 and gj(ε) do not depend on τ and are of the same order as G0 and
Gj(ε) respectively.



Substituting H0 and q from Eqs. (49) into Ψ0 in the equation

Ψ0(H0, q) +G1(ε;x(τ), y(τ), q(τ), p(τ)) + . . . = g0 + g1(ε) + . . . ,

we obtain the following identity (as a function of τ) :

{G1(ε;X ,Y, q0,P)− g1(ε)}+ . . .
+ε · {Aτ +BP(τ) + Φ(X ,Y,P)}+ . . . ≡ 0,

(52)

where

A =
∂Ψ0

∂q
(h0, q0) 6= 0, B = −

∂Ψ0

∂H0
(h0, q0)

are constants (see item (ii) in Lemma 2). The term Φ(X ,Y,P) is an elemen-
tary function corresponding to the term

∂Ψ0

∂H0
(h0, q0) · εh1 +Gk(ε;X ,Y,P, q0)− gk(ε) = ε · {C + Ψk(X ,Y,P, q0)− ck} ,

when Gk(ε) = ε ·Ψk(x, y, q, p) and gk(ε) = ε · ck.

If F (and G) is algebraic then Φ in (52) is also algebraic. If G depends only
on x, y, q then Φ depends only on X ,Y.

Suppose G1(ε) > ε as ε → 0. Then the term G1(ε;X ,Y, q0,P) − g1(ε) in Eq.
(52) is dominating and, hence, it vanishes, it defines some relation between



the functions X ,Y,P. The same statement holds for other terms in Eq.
(3.14) which dominate ε.

However, for the first power of ε Eq. (52) implies the following relation:

Aτ +BP(τ) ≡ Φ(X (τ),Y(τ),P(τ)), A 6= 0. (53)

Here we can say the following about Φ(x, y, p):

either it is algebraic (in the assumptions of Theorem 1) or it is an elementary
function of only x, y (in the assumptions of Theorem 2).



Incomplete elliptic integrals

We have

τ = I(x), P(τ) = p0 + J(x),

where

I(x) =

∫ x

x0

du√
f(u)

, J(x) = 2

∫ x

x0

u2 + 2q0u√
f(u)

du (54)

are incomplete elliptic integrals.

These integrals have periods (called also the complete elliptic integrals):

ω1 =

∮
γ1

dx

z
, ω2 =

∮
γ2

dx

z
, (55)

η1 = 2

∮
γ1

x2 + 2q0x

z
dx, η2 = 2

∮
γ2

x2 + 2q0x

z
dx. (56)

The curves γ1,2 ⊂∆ generate the first homology group of the Riemann surface
∆. If x1, x2, x3, x4 are zeroes of the polynomial f(x), then γ1 (respectively
γ2) is a lift to the Riemann surface of the function

√
f(x) of a loop which

surrounds the points x1, x2 (respectively x1, x3) in the x−plane.



Hence, the Weierstrass function X (τ), inverse to I(x), is doubly periodic,

X (τ + ω1) = X (τ), X (τ + ω2) = X (τ). (57)

Also Y(τ) = Ẋ (τ)/X (τ) is doubly periodic with the same periods.

The function P(τ) is not periodic, but it satisfies the following relations:

P(τ + ω1) = P(τ) + η1, P(τ + ω2) = P(τ) + η2. (58)



We have ∣∣∣∣ ω1 ω2

η1 η2

∣∣∣∣ 6= 0

for typical values of the parameters q0 and h0.

For A 6= 0 and any B the incomplete elliptic integral

K(x) = AI(x) +BJ(x)

is not an elementary function of x.



Proof of Theorem 1 for PIV

Assume relation (53), where Φ is an algebraic function of its arguments. In
other words, τ is an algebraic function of the functions X (τ), Y(τ) and P(τ).
Let us rewrite the corresponding algebraic equation in the following form:∑

m,n

am,n(X ,Y)τmPn = 0, (59)

where am,n are polynomials of X and Y.

Let us replace the function τ with

R(τ) = τ −
ω1

η1
P(τ). (60)

It has the following properties:

R(τ + ω1) = R(τ), R(τ + ω2) = R(τ) + σ, σ = ω2 − ω1(η2/η1) 6= 0. (61)

Equation (59) takes the form∑
m,n

bm,n(X ,Y)RmPn ≡ 0. (62)



Since only the function P is not invariant with respect to the translation by
ω1, n must be equal to 0 in the above formula. But then also m = 0, because
otherwise the left hand side is not invariant with respect to the translation
by ω2.

On the other hand, the degree with respect to R of the polynomial in equation
(62) must be ≥ 1 since equation (59) defines τ as an algebraic function of
X , Y and P.

The latter contradiction proves Theorem 1 for the fourth Painlevé equation.



Proof of Theorem 2 for PIV

Here Eq. (53) means that the function Aτ +BP(τ), A 6= 0, is an elementary
function of X (τ) and Y(τ). Taking into account the algebraic nature of y =√
f(x), this implies that the function K(x) is an elementary function of x,

which is not the case.

Remark. In Differential Galois Theory, besides the class of elementary func-
tions, there exists a class of generalized Liouvillian functions (also called
the functions expressed in generalized quadratures). Such class is obtained
from the field of rational functions on Cn using the following operations: (a)
adding an exponent (f 7−→ exp f), (b) adding an integral (f 7−→

∫
fdxj) and

(c) adding a solution of an algebraic equation. In the case of elementary
functions the operation (b) is replaced by the weaker operation: adding a
logarithm (f 7−→ log f).

Since, in our approach to the integrability/non-integrability problem of the
Painlevé equations via the equation in variations, we encounter incomplete
elliptic integrals (like K(x)) which are evidently primitives of algebraic func-
tion, we cannot claim non-integrability of Painlevé equations in the class of
generalized Liouvillian functions.



Thank you very much for your attention!


