Schrödinger operator with continuous spectrum and turbulence in integrable systems

Vladimir Zakharov and Dmitry Zakharov
Department of Mathematics, University of Arizona, Tucson;
Courant Institute of Mathematical Sciences, NYU, New York

Introduction

We consider the Schrödinger equation on the real axis

$$
-\psi^{\prime \prime}+u(x) \psi=E \psi, \quad-\infty<x<\infty
$$

with a bounded potential $u(x)$.
A value of E belongs to the spectrum of $u(x)$ if there exists one or two independent bounded wave functions $\psi(x, E)$:

$$
|\psi(x, E)|<1, \quad-\infty<x<\infty
$$

The spectrum is a subset of the axis $-\infty<E<\infty$, and can have a quite complicated structure. We only consider the case when the spectrum is purely continuous.

A periodic one-gap potential is determined up to translation by the formula

$$
u(x)=u_{0}(x)=2 \wp\left(x+i \omega^{\prime}-x_{0}\right)+e_{3} .
$$

Here $\wp(x)$ is the elliptic Weierstrass function with periods 2ω and $2 i \omega^{\prime}$. Its spectrum is $\left[-\kappa_{2}^{2},-\kappa_{1}^{2}\right] \cup[0, \infty)$, where

$$
\begin{gathered}
\kappa_{2}^{2}=e_{1}-e_{3}, \quad \kappa_{1}^{2}=e_{2}-e_{3}, \quad e_{1}>e_{2}>e_{3}, \quad e_{1}+e_{2}+e_{3}=0, \\
{\left[\wp^{\prime}(z)\right]^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right) .}
\end{gathered}
$$

The spectrum is doubly degenerate and reflectionless.
We will show that a general one-gap reflectionless potential is determined by two positive continuous functions $R_{1}(p)$ and $R_{2}(p)$, defined inside the allowed gap.

Bargmann potentials via the dressing method

We consider a $\bar{\partial}$-problem on the complex k-plane of the following kind:

$$
\frac{\partial \chi}{\partial \bar{k}}=i e^{2 i k x} T(k) \chi(x,-k)
$$

Here $T(k)$ is a compactly supported distribution called the dressing function of the $\bar{\partial}$-problem. A solution of this equation is defined up to multiplication by a function of x, hence if a solution exists we can normalize it by the condition $\chi \rightarrow 1$ as $|k| \rightarrow \infty$.

Such a solution satisfies the integral equation

$$
\chi(x, k)=1+\frac{i}{\pi} \iint \frac{e^{-2 i q x} T(-q) \chi(x, q)}{k+q} d q d \bar{q}
$$

where we normalize the integral in the following way:

$$
\frac{1}{k}=\lim _{\varepsilon \rightarrow 0} \frac{\bar{k}}{|k|^{2}+\varepsilon^{2}}, \quad \frac{\partial}{\partial \bar{k}}\left(\frac{1}{k}\right)=\pi \delta(k)
$$

Here $\delta(k)$ is the two-dimensional δ-function.
We now show that a solution of the $\bar{\partial}$-problem gives rise to a solution of the initial Schrödinger equation.

Theorem 1. Suppose that the dressing function $T(k)$ has the property that the $\bar{\partial}$-problem has a unique solution χ normalized by the condition

$$
\chi(x, k)=1+o(1) \text { as }|k| \rightarrow \infty
$$

on the set $\mathbb{C} \times \mathcal{U}$, where $\mathcal{U} \subset \mathbb{R}$ is an open subset. Denote

$$
\chi(x, k)=1+\frac{i \chi_{0}(x)}{k}+O\left(k^{-2}\right), \quad u(x)=2 \frac{d}{d x} \chi_{0}(x) .
$$

Then the function $\chi(x, k)$ is a solution of the differential equation

$$
\chi_{x x}-2 i k \chi_{x}-u(x) \chi=0
$$

and the function $\psi(x, k)=\chi(x, k) e^{-i k x}$ is a solution of the Schrödinger equation with $E=k^{2}$.

Theorem 2. Let $\kappa_{1}, \ldots, \kappa_{N}$ and c_{1}, \ldots, c_{n} be a collection of nonzero real numbers satisfying the following properties:

1. $\kappa_{m} \neq \pm \kappa_{n}$ for all m and n.
2. $c_{n} / \kappa_{n}>0$ for all n.

Consider the dressing function

$$
T(k)=\pi \sum_{n=1}^{N} c_{n} \delta\left(k-i \kappa_{n}\right)
$$

Then the $\overline{\bar{\partial}}$-problem has a unique solution χ satisfying the normalization condition $\chi \rightarrow 1$ as $|k| \rightarrow \infty$.

This solution is a rational function of k having simple poles at the points $k=i \kappa_{n}$ for $n=1, \ldots, N$, and has the following form:

$$
\chi(x, k)=1+i \sum_{n=1}^{N} \frac{\chi_{n}(x)}{k-i \kappa_{n}}
$$

where the $\chi_{n}(x)$ are real-valued functions. The corresponding potential

$$
u(x)=2 \frac{d}{d x} \sum_{n=1}^{N} \chi_{n}(x)
$$

is a reflectionless Bargmann potential having the finite discrete spectrum $-\kappa_{1}^{2}, \ldots,-\kappa_{N}^{2}$, and $\psi_{n}(x)=\chi_{n}(x) e^{\kappa_{n} x}$ are the corresponding eigenfunctions. Furthermore, for each n, changing the signs of both c_{n} and κ_{n} does not change the potential $u(x)$.

The $\bar{\partial}$-problem on the complex k-plane is reduced now to a system of linear equations on the residues $\chi_{n}(x)$:

$$
\chi_{n}(x)=e^{-2 \kappa_{n} x} c_{n} \chi\left(x,-i \kappa_{n}\right) .
$$

Writing this system out explicitly, and replacing $\chi_{n}(x)=\psi_{n}(x) e^{-\kappa_{n} x}$, we obtain the following system:

$$
\psi_{n}(x)+c_{n} \sum_{m=1}^{N} \frac{e^{-\left(\kappa_{n}+\kappa_{m}\right) x}}{\kappa_{n}+\kappa_{m}} \psi_{m}(x)=c_{n} e^{-\kappa_{n} x}
$$

The matrix of this system

$$
A_{n m}=\delta_{n m}+\frac{c_{n} e^{-\left(\kappa_{n}+\kappa_{m}\right) x}}{\kappa_{n}+\kappa_{m}}
$$

is the sum of an identity matrix and a Cauchy-like matrix, therefore its determinant is the sum of the principal minors of the Cauchy-like-matrix. This sum is indexed by subsets $I=\left\{i_{1}, \ldots, i_{n}\right\}$ of the index set $\{1, \ldots, N\}$ and can be explicitly evaluated as follows:

$$
A=\operatorname{det}\left[A_{n m}\right]=\sum_{I \subset\{1, \ldots, N\}}\left[\prod_{\{i, j\} \subset I, i<j} \frac{\left(\kappa_{i}-\kappa_{j}\right)^{2}}{\left(\kappa_{i}+\kappa_{j}\right)^{2}} \prod_{i \in I} \frac{c_{i}}{2 \kappa_{i}} e^{-2 \kappa_{i} x}\right] .
$$

By assumption, the quantities c_{i} / κ_{i} and $\left(\kappa_{i}-\kappa_{j}\right)^{2}$ are all positive, therefore each summand and hence all of A is positive, so the linear system has a unique solution. By Theorem 1, χ satisfies equation

$$
\chi_{x x}-2 i k \chi_{x}-u(x) \chi=0
$$

and the corresponding potential $u(x)$ is

$$
u(x)=2 \frac{d \chi_{0}}{d x}=2 \frac{d}{d x} \sum_{n=1}^{N} \chi_{n}(x)
$$

To finish the proof, we consider what happens to potential $u(x)$ when we change the signs of one of the κ_{n}. A direct calculation shows that

$$
A=\frac{c_{n}}{2 \kappa_{n}} e^{-2 \kappa_{n} x} \widetilde{A}
$$

where \widetilde{A} is the determinant of the matrix corresponding to the data $\left(\widetilde{\kappa}_{i}, \widetilde{c}_{i}\right)$, where

$$
\widetilde{\kappa}_{i}=\left\{\begin{array}{cl}
\kappa_{i}, & i \neq n, \\
-\kappa_{n}, & i=n,
\end{array} \quad \widetilde{c}_{i}=\left\{\begin{array}{cl}
\left(\frac{\kappa_{i}-\kappa_{n}}{\kappa_{i}+\kappa_{n}}\right)^{2} c_{i}, & i \neq n, \\
-4 \kappa_{n}^{2} / c_{n}, & i=n
\end{array}\right.\right.
$$

The symmetric Riemann-Hilbert problem

We consider a Riemann-Hilbert problem that is a continuous analogue of the finite $\bar{\partial}$-problem of Theorem ?? that generates the Bargmann potentials.
Theorem 3. Let $0<\kappa_{1}<\kappa_{2}$ be real numbers, and let R_{1} and R_{2} be two positive continuous functions on the interval $\left[\kappa_{1}, \kappa_{2}\right]$. Consider the dressing function

$$
T(k)=\pi \int_{\kappa_{1}}^{\kappa_{2}} R_{1}(p) \delta(k-i p) d p-\pi \int_{\kappa_{1}}^{\kappa_{2}} R_{2}(p) \delta(k+i p) d p
$$

Then the $\bar{\partial}$-problem has a unique solution χ satisfying the normalization condition $\chi \rightarrow 1$ as $|k| \rightarrow \infty$. This function is analytic on the k-plane away from two cuts $\left[i \kappa_{1}, i \kappa_{2}\right]$ and $\left[-i \kappa_{2},-i \kappa_{1}\right]$ on the imaginary axis. Denoting by χ^{+}and χ^{-}the right and left boundary values of χ along the cuts

$$
\chi^{ \pm}(x, k)=\lim _{\varepsilon \rightarrow 0} \chi(x, k \pm i \varepsilon), \quad k \in\left[-i \kappa_{2},-i \kappa_{1}\right] \cup\left[i \kappa_{1}, i \kappa_{2}\right],
$$

the function χ satisfies a symmetric Riemann-Hilbert problem on the cuts:

$$
\begin{aligned}
& \chi^{+}(x, i p)-\chi^{-}(x, i p)=\pi i R_{1}(p) e^{-2 p x}\left[\chi^{+}(x,-i p)+\chi^{-}(x,-i p)\right] \\
& \chi^{+}(x,-i p)-\chi^{-}(x,-i p)=-\pi i R_{2}(p) e^{2 p x}\left[\chi^{+}(x, i p)+\chi^{-}(x, i p)\right]
\end{aligned}
$$

The function χ can be explicitly given as

$$
\chi(x, k)=1+i \int_{\kappa_{1}}^{\kappa_{2}} \frac{f(x, p)}{k-i p} d p+i \int_{\kappa_{1}}^{\kappa_{2}} \frac{g(x, p)}{k+i p} d p
$$

where $f(x, p)$ and $g(x, p)$ are real-valued functions defined for real x and for $p \in\left[\kappa_{1}, \kappa_{2}\right]$. The corresponding potential of the Schrödinger operator is

$$
u(x)=2 \frac{d}{d x} \int_{\kappa_{1}}^{\kappa_{2}}[f(x, p)+g(x, p)] d p
$$

Proof. Given R_{1} and R_{2}, we look for a solution of the $\bar{\partial}$-problem in the form

$$
\chi(x, k)=1+i \int_{\kappa_{1}}^{\kappa_{2}} \frac{f(x, p)}{k-i p} d p+i \int_{\kappa_{1}}^{\kappa_{2}} \frac{g(x, p)}{k+i p} d p
$$

The jumps of χ along the cuts are

$$
\chi^{+}(x, i p)-\chi^{-}(x, i p)=2 \pi i f(x, p), \quad \chi^{+}(x,-i p)-\chi^{-}(x,-i p)=2 \pi i g(x, p)
$$

Plugging into the $\bar{\partial}$-problem, we see that χ satisfies the Riemann-Hilbert problem if f and g satisfy the following system of singular integral equations:

$$
\begin{aligned}
& f(x, p)+R_{1}(p) e^{-2 p x}\left[\int_{\kappa_{1}}^{\kappa_{2}} \frac{f(x, q)}{p+q} d q+f_{\kappa_{1}}^{\kappa_{2}} \frac{g(x, q)}{p-q} d q\right]=R_{1}(p) e^{-2 p x} \\
& g(x, p)+R_{2}(p) e^{2 p x}\left[f_{\kappa_{1}}^{\kappa_{2}} \frac{f(x, q)}{p-q} d q+\int_{\kappa_{1}}^{\kappa_{2}} \frac{g(x, q)}{p+q} d q\right]=-R_{2}(p) e^{2 p x} .
\end{aligned}
$$

We solve this system by approximation. Fix N, and let $\Delta=\left(\kappa_{2}-\kappa_{1}\right) / 2 N$. We subdivide the segment $\left[\kappa_{1}, \kappa_{2}\right]$ into $2 N$ equal parts and denote

$$
\begin{gathered}
\lambda_{1}=\kappa_{1}, \quad \mu_{1}=\kappa_{1}+\Delta, \quad \lambda_{2}=\kappa_{1}+2 \Delta, \quad \mu_{2}=\kappa_{1}+3 \Delta, \ldots \\
f_{n}(x)=f\left(x, \lambda_{n}\right), \quad g_{n}(x)=g\left(x, \mu_{n}\right), \quad \alpha_{n}=R_{1}\left(\lambda_{n}\right), \quad \beta_{n}=-R_{2}\left(\mu_{n}\right) .
\end{gathered}
$$

We approximate the integrals with their Riemann sums and obtain:

$$
\begin{aligned}
& f_{n}(x)+\alpha_{n} e^{-2 \lambda_{n} x}\left(\sum_{m=1}^{N+1} \frac{f_{m}(x)}{\lambda_{n}+\lambda_{m}}+\sum_{m=1}^{N} \frac{g_{m}(x)}{\lambda_{n}-\mu_{m}}\right)=\alpha_{n} e^{-2 \lambda_{n} x} \\
& g_{n}(x)+\beta_{n} e^{2 \mu_{n} x}\left(\sum_{m=1}^{N+1} \frac{f_{m}(x)}{-\mu_{n}+\lambda_{m}}+\sum_{m=1}^{N} \frac{g_{m}(x)}{-\mu_{n}-\mu_{m}}\right)=\beta_{n} e^{2 \mu_{n} x} .
\end{aligned}
$$

We see that this system is equivalent to the system determining the eigenfunctions of a Bargmann potential having $2 N+1$ solitons with poles $\left(\lambda_{1}, \ldots, \lambda_{N+1},-\mu_{1}, \ldots,-\mu_{N}\right)$ and residues $\left(\alpha_{1}, \ldots, \alpha_{N+1}, \beta_{1}, \ldots, \beta_{N}\right)$.

According to the results of the last paragraph, this system has a unique solution for all x and gives a Bargmann potential with $2 N+1$ solitons, which is bounded uniformly in N.

Hence, for sufficiently large N our system of singular integral equations can be approximated by an algebraic system, which has a unique solution. This approximation holds for $-L<x<L$, where

$$
2 \Delta R e^{\kappa_{2} L} \ll 1, \quad R=\max \left(R_{1}(p), R_{2}(p)\right)
$$

To increase L, we need to exponentially increase N :

$$
N \simeq e^{\kappa_{2} L}
$$

Nevertheless, for N sufficiently large, it is possible to include any point of the real axis in the interval $(-L, L)$. The resulting potentials are bounded in both directions.

Let $0<\kappa_{1}<\kappa_{2}$, and consider a symmetric pair of segments [$i \kappa_{1}, i \kappa_{2}$] and [$-i \kappa_{2},-i \kappa_{1}$] on the imaginary axis. Let $R_{1}(\kappa)$ and $R_{2}(\kappa)$ be two functions defined on $\left[\kappa_{1}, \kappa_{2}\right]$, and consider the following dressing function that is the continuous analogue of the dressing function in Theorem 2:

$$
T(k)=\pi \int_{\kappa_{1}}^{\kappa_{2}} R_{1}(\kappa) \delta(k-i \kappa) d \kappa+\pi \int_{\kappa_{1}}^{\kappa_{2}} R_{2}(\kappa) \delta(k+i \kappa) d \kappa
$$

where we integrate along the segments $\left[i \kappa_{1}, i \kappa_{2}\right]$ and $\left[-i \kappa_{2},-i \kappa_{1}\right]$. This dressing function is the continuous analogue of the dressing function in Theorem 2.

To increase L we need to exponentially increase $N: N \simeq e^{b L}$. Nevertheless, for N sufficiently large, it is possible to include any point of the real axis in the interval $(-L, L)$. Proceeding as before, we determine that the eigenfunctions

$$
\varphi(x, \kappa)=f(x, \kappa) e^{\kappa x}, \quad \psi(x, \kappa)=g(x, \kappa) e^{-\kappa x}
$$

are bounded and orthonormal:

$$
\begin{gathered}
\int_{-\infty}^{\infty} \varphi(x, \kappa) \varphi\left(x, \kappa^{\prime}\right) d x=R_{1}(\kappa) \delta\left(\kappa-\kappa^{\prime}\right), \\
\int_{-\infty}^{\infty} \psi(x, \kappa) \varphi\left(x, \kappa^{\prime}\right) d x=0 \\
\int_{-\infty}^{\infty} \psi(x, \kappa) \psi\left(x, \kappa^{\prime}\right) d x=R_{2}(\kappa) \delta\left(\kappa-\kappa^{\prime}\right) .
\end{gathered}
$$

The functions $f(x, \kappa)$ and $g(x, \kappa)$ grow exponentially as $x \rightarrow-\infty$ and $x \rightarrow \infty$, respectively. The function $\chi_{0}(x)$ grows linearly in both diretions:

$$
\chi_{0}=-c_{1} x+\chi_{0}(x), \text { as } x \rightarrow-\infty, \quad \chi_{0}=-c_{2} x+\chi_{0}(x) \text { as } x \rightarrow+\infty,
$$

where $\left|\chi_{0}(x)\right|<$ const for $-\infty<x<\infty$.
All these statements are supported by numerical experiments, which will be published elsewhere.

We note that in the κ-region, in which both functions $R_{1}(\kappa)$ and $R_{2}(\kappa)$ are strictly positive, the spectrum is doubly degenerate. On the set of points where one of the functions vanishes, the spectrum is simple.

If $R_{1}(\kappa)=R_{2}(\kappa)$, then $g(x, \kappa)=-f(-x, \kappa)$, and the potential is symmetric $u(-x)=u(x)$. We note that for $R_{1}(\kappa)=R_{2}(\kappa)$ every finite approximation only gives an approximately symmetric potential, however, the accuracy of symmetry grows exponentially as $N \rightarrow \infty$.

Periodic one-gap potentials

The periodic one-gap potentials of the Schrödinger operator can be constructed from the symmetric Riemann-Hilbert problem. Let ω and ω^{\prime} be positive real numbers, and consider the elliptic curve $E=\mathbb{C} / \Lambda$, where Λ is the period lattice generated by 2ω and $2 i \omega^{\prime}$. Denote by $\wp(z)$ the Weierstrass elliptic function associated to the lattice Λ. It satisfies the differential equation

$$
\left[\wp^{\prime}(z)\right]^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right),
$$

where the zeroes e_{1}, e_{2}, e_{3} are real-valued, satisfy $e_{1}+e_{2}+e_{3}=0$, and we assume that $e_{3}<e_{2}<e_{1}$.

The function

$$
u(x)=2 \wp\left(x-\omega-i \omega^{\prime}\right)+e_{3}
$$

is a real-valued potential of the Schrödinger operator with period 2ω. Our goal is to construct a solution of Schrödinger equation that gives a solution of the symmetric Riemann-Hilbert problem.

We consider the following function $\varphi(x, z)$, where x is real and z is defined on the curve E :

$$
\varphi(x, z)=\frac{\sigma\left(x-\omega-i \omega^{\prime}+z\right) \sigma\left(\omega+i \omega^{\prime}\right)}{\sigma\left(x-\omega-i \omega^{\prime}\right) \sigma\left(\omega+i \omega^{\prime}-z\right)} \exp [-\zeta(z) x] .
$$

A direct calculation shows that φ satisfies the Lamé equation

$$
\varphi^{\prime \prime}-\left[2 \wp\left(x-\omega-i \omega^{\prime}\right)+\wp(z)\right] \varphi=0 .
$$

Hence we see that φ is a solution of the Schrödinger equation if the parameter z satisfies the relation

$$
k^{2}=e_{3}-\wp(z)
$$

The Weierstrass function \wp has degree two, hence for a generic complex value of k there are values of z on E that satisfy this relation. In order to make the function $\varphi(x, z)$ a well-defined function of k, we need to choose a branch of z.

We choose the solution $z(k)$ of this relation that satisfies

$$
z(k)=\frac{i}{k}+O\left(\frac{1}{k^{2}}\right) \text { as }|k| \rightarrow \infty .
$$

This branch defines a single-sheeted map from the complex k-plane with two cuts on the imaginary axis to a period rectangle of the lattice Λ centered at 0 . The cuts on the imaginary axis are $\left[-i \kappa_{2},-i \kappa_{1}\right]$ and $\left[i \kappa_{1}, i \kappa_{2}\right]$, where

$$
\kappa_{1}=\sqrt{e_{2}-e_{3}}, \quad \kappa_{2}=\sqrt{e_{1}-e_{3}} .
$$

The right and left sides of the top cut $\left[i \kappa_{1}, i \kappa_{2}\right]$ are mapped to the line segments joining ω to $\omega+i \omega^{\prime}$ and $\omega-i \omega^{\prime}$, respectively, and the right and left sides of the bottom cut $\left[-i \kappa_{2},-i \kappa_{1}\right]$ are respectively mapped to the segments joining $-\omega^{\prime}$ to $-\omega+i \omega^{\prime}$ and $-\omega-i \omega^{\prime}$.

The k-plane

The z-plane

The function φ satisfies the following properties:

$$
\begin{gathered}
\varphi(x, z+2 \omega)=\varphi(x, z), \quad \varphi\left(x, z+2 i \omega^{\prime}\right)=\varphi(x, z), \\
\bar{\varphi}(x, z)=\varphi(x, z) \text { when } \bar{z}=z, \bar{x}=x
\end{gathered}
$$

Also (very important)

$$
\bar{\varphi}(x, z)=\varphi(x, \bar{z})
$$

for all z having real part ω.
Theorem 4. Let $f(k)$ be the branch of the function

$$
f(k)=\sqrt{\frac{k+i \kappa_{1}}{k+i \kappa_{2}}}
$$

satisfying $f(k) \rightarrow 1$ as $|k| \rightarrow \infty$. On the complex k-plane with two cuts $\left[i \kappa_{1}, i \kappa_{2}\right]$ and $\left[-i \kappa_{2},-i \kappa_{1}\right]$ along the imaginary axis, define the function

$$
\xi(x, k)=f(k) \varphi(x, z(k)) e^{-i k x}
$$

Then the function $\xi(x, k)$ satisfies the equation

$$
\xi^{\prime \prime}+2 i k \xi^{\prime}-u(x) \xi=0, \quad \xi \rightarrow 1 \text { as }|k| \rightarrow \infty
$$

with potential $u(x)$ given by the standard formulae. On the cuts, the function ξ satisfies the Riemann-Hilbert problem

$$
\begin{gathered}
\xi^{+}(x, i q)-\xi^{-}(x, i q)=i \pi R_{1}(q) e^{2 q x}\left[\xi^{+}(x,-i q)+\xi^{-}(x,-i q)\right] \\
\xi^{+}(x,-i q)-\xi^{-}(x,-i q)=-i \pi R_{2}(q) e^{-2 q x}\left[\xi^{+}(x, i q)+\xi^{-}(x, i q)\right]
\end{gathered}
$$

Here $q \in\left[\kappa_{1}, \kappa_{2}\right]$, and $\xi^{+}(x, \pm i q)$ are the right hand values of the upper and lower cuts, and $\xi^{-}(x, \pm i q)$ are the left hand values on the upper and lower cuts. The functions R_{1} and R_{2} are

$$
R_{1}(q)=\frac{1}{\pi} h(q), \quad R_{2}(q)=\frac{1}{\pi h(q)}, \quad h(q)=\sqrt{\frac{\left(q-\kappa_{1}\right)\left(q+\kappa_{2}\right)}{\left(\kappa_{2}-q\right)\left(q+\kappa_{1}\right)}}
$$

References

[1] V. Marchenko, Nonlinear equations and operator algebras, Mathematics and its Applications (Soviet Series), 17, D. Reidel Publishing Co., Dordrecht, 1988
[2] D. Lundina, Compactness of sets of reflectionless potentials, J. Soviet Math. 48 (1990), no. 3, 290-297.
[3] V. Marchenko, The Cauchy problem for the KdV equation with non-decreasing initial data, in What is integrability?, Edited by V. E. Zakharov. Springer Series in Nonlinear Dynamics. Springer-Verlag, Berlin, 1991.
[4] V. Zakharov, S. Manakov, Construction of multidimensional nonlinear integrable systems and their solutions, Funktsional. Anal. i Prilozhen. (in Russian) 19 (1985), no. 2, 11-25, 96.
[5] S. Novikov, S. Manakov, L. Pitaevskii, V. Zakharov, Theory of solitons. The inverse scattering method. Translated from the Russian. Contemporary Soviet Mathematics. Consultants Bureau [Plenum], New York, 1984.
[6] V. Zakharov, Turbulence in integrable systems, Stud. Appl. Math. 122 (2009), no. 3, 219-234.
[7] D. Zakharov, V. Zakharov and S. Dyachenko, Bounded solutions of KdV and non-periodic one-gap potentials in quantum mechanics, Stud. Appl. Math., 2016
[8] S. Dyachenko, D. Zakharov, V. Zakharov, Primitive potentials and bounded solutions of the KdV equation, Physica D, 2016
[9] D. Zakharov, V. Zakharov and S. Dyachenko, Primitive potentials and turbulence in integrable systems, submitted to Phys. Letters A.

