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Introduction

We consider the Schrödinger equation on the real axis

−ψ′′ + u(x)ψ = Eψ, −∞ < x <∞,

with a bounded potential u(x).

A value of E belongs to the spectrum of u(x) if there exists one or two
independent bounded wave functions ψ(x,E):

|ψ(x,E)| < 1, −∞ < x <∞.

The spectrum is a subset of the axis −∞ < E < ∞, and can have a quite
complicated structure. We only consider the case when the spectrum is purely
continuous.
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A periodic one-gap potential is determined up to translation by the formula

u(x) = u0(x) = 2℘(x+ iω′ − x0) + e3.

Here ℘(x) is the elliptic Weierstrass function with periods 2ω and 2iω′. Its
spectrum is [−κ22,−κ21] ∪ [0,∞), where

κ22 = e1 − e3, κ21 = e2 − e3, e1 > e2 > e3, e1 + e2 + e3 = 0,

[℘′(z)]2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).
The spectrum is doubly degenerate and reflectionless.

We will show that a general one-gap reflectionless potential is determined by
two positive continuous functions R1(p) and R2(p), defined inside the allowed
gap.
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Bargmann potentials via the dressing method

We consider a ∂-problem on the complex k-plane of the following kind:

∂χ

∂k
= ie2ikxT (k)χ(x,−k).

Here T (k) is a compactly supported distribution called the dressing function of
the ∂-problem. A solution of this equation is defined up to multiplication by a
function of x, hence if a solution exists we can normalize it by the condition
χ→ 1 as |k| → ∞.
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Such a solution satisfies the integral equation

χ(x, k) = 1 +
i

π

¨
e−2iqxT (−q)χ(x, q)

k + q
dqdq,

where we normalize the integral in the following way:

1

k
= lim
ε→0

k

|k|2 + ε2
,

∂

∂k

(
1

k

)
= πδ(k).

Here δ(k) is the two-dimensional δ-function.

We now show that a solution of the ∂-problem gives rise to a solution of the
initial Schrödinger equation.
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Theorem 1. Suppose that the dressing function T (k) has the property that the
∂-problem has a unique solution χ normalized by the condition

χ(x, k) = 1 + o(1) as |k| → ∞

on the set C× U, where U ⊂ R is an open subset. Denote

χ(x, k) = 1 +
iχ0(x)

k
+O(k−2), u(x) = 2

d

dx
χ0(x).

Then the function χ(x, k) is a solution of the differential equation

χxx − 2ikχx − u(x)χ = 0,

and the function ψ(x, k) = χ(x, k)e−ikx is a solution of the Schrödinger
equation with E = k2.
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Theorem 2. Let κ1, . . . , κN and c1, . . . , cn be a collection of nonzero real
numbers satisfying the following properties:

1. κm 6= ±κn for all m and n.

2. cn/κn > 0 for all n.

Consider the dressing function

T (k) = π

N∑
n=1

cnδ(k − iκn).

Then the ∂-problem has a unique solution χ satisfying the normalization
condition χ→ 1 as |k| → ∞.

– Typeset by FoilTEX – 6



This solution is a rational function of k having simple poles at the points
k = iκn for n = 1, . . . , N , and has the following form:

χ(x, k) = 1 + i

N∑
n=1

χn(x)

k − iκn
,

where the χn(x) are real-valued functions. The corresponding potential

u(x) = 2
d

dx

N∑
n=1

χn(x)

is a reflectionless Bargmann potential having the finite discrete spectrum
−κ21, . . . ,−κ2N , and ψn(x) = χn(x)eκnx are the corresponding eigenfunctions.
Furthermore, for each n, changing the signs of both cn and κn does not change
the potential u(x).
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The ∂-problem on the complex k-plane is reduced now to a system of linear
equations on the residues χn(x):

χn(x) = e−2κnxcnχ(x,−iκn).

Writing this system out explicitly, and replacing χn(x) = ψn(x)e−κnx, we obtain
the following system:

ψn(x) + cn

N∑
m=1

e−(κn+κm)x

κn + κm
ψm(x) = cne

−κnx

The matrix of this system

Anm = δnm +
cne
−(κn+κm)x

κn + κm
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is the sum of an identity matrix and a Cauchy-like matrix, therefore its determinant
is the sum of the principal minors of the Cauchy-like-matrix. This sum is indexed
by subsets I = {i1, . . . , in} of the index set {1, . . . , N} and can be explicitly
evaluated as follows:

A = det[Anm] =
∑

I⊂{1,...,N}

 ∏
{i,j}⊂I,i<j

(κi − κj)2

(κi + κj)2

∏
i∈I

ci
2κi

e−2κix

 .

By assumption, the quantities ci/κi and (κi − κj)2 are all positive, therefore
each summand and hence all of A is positive, so the linear system has a unique
solution. By Theorem 1, χ satisfies equation

χxx − 2ikχx − u(x)χ = 0,
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and the corresponding potential u(x) is

u(x) = 2
dχ0

dx
= 2

d

dx

N∑
n=1

χn(x).

To finish the proof, we consider what happens to potential u(x) when we change
the signs of one of the κn. A direct calculation shows that

A =
cn

2κn
e−2κnxÃ,

where Ã is the determinant of the matrix corresponding to the data (κ̃i, c̃i),
where

κ̃i =

{
κi, i 6= n,
−κn, i = n,

c̃i =

{ (
κi−κn
κi+κn

)2
ci, i 6= n,

−4κ2n/cn, i = n.
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The symmetric Riemann–Hilbert problem

We consider a Riemann–Hilbert problem that is a continuous analogue of the
finite ∂-problem of Theorem ?? that generates the Bargmann potentials.
Theorem 3. Let 0 < κ1 < κ2 be real numbers, and let R1 and R2 be two
positive continuous functions on the interval [κ1, κ2]. Consider the dressing
function

T (k) = π

ˆ κ2

κ1

R1(p)δ(k − ip)dp− π
ˆ κ2

κ1

R2(p)δ(k + ip)dp.

Then the ∂-problem has a unique solution χ satisfying the normalization
condition χ → 1 as |k| → ∞. This function is analytic on the k-plane away
from two cuts [iκ1, iκ2] and [−iκ2,−iκ1] on the imaginary axis. Denoting by
χ+ and χ− the right and left boundary values of χ along the cuts

χ±(x, k) = lim
ε→0

χ(x, k ± iε), k ∈ [−iκ2,−iκ1] ∪ [iκ1, iκ2],
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the function χ satisfies a symmetric Riemann–Hilbert problem on the cuts:

χ+(x, ip)− χ−(x, ip) = πiR1(p)e
−2px[χ+(x,−ip) + χ−(x,−ip)],

χ+(x,−ip)− χ−(x,−ip) = −πiR2(p)e
2px[χ+(x, ip) + χ−(x, ip)].

The function χ can be explicitly given as

χ(x, k) = 1 + i

ˆ κ2

κ1

f(x, p)

k − ip
dp+ i

ˆ κ2

κ1

g(x, p)

k + ip
dp,

where f(x, p) and g(x, p) are real-valued functions defined for real x and for
p ∈ [κ1, κ2]. The corresponding potential of the Schrödinger operator is

u(x) = 2
d

dx

ˆ κ2

κ1

[f(x, p) + g(x, p)]dp.
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Proof. Given R1 and R2, we look for a solution of the ∂-problem in the form

χ(x, k) = 1 + i

ˆ κ2

κ1

f(x, p)

k − ip
dp+ i

ˆ κ2

κ1

g(x, p)

k + ip
dp,

The jumps of χ along the cuts are

χ+(x, ip)− χ−(x, ip) = 2πif(x, p), χ+(x,−ip)− χ−(x,−ip) = 2πig(x, p).

Plugging into the ∂-problem, we see that χ satisfies the Riemann–Hilbert problem
if f and g satisfy the following system of singular integral equations:

f(x, p) +R1(p)e
−2px

[ˆ κ2

κ1

f(x, q)

p+ q
dq +

 κ2

κ1

g(x, q)

p− q
dq

]
= R1(p)e

−2px

g(x, p) +R2(p)e
2px

[ κ2

κ1

f(x, q)

p− q
dq +

ˆ κ2

κ1

g(x, q)

p+ q
dq

]
= −R2(p)e

2px.
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We solve this system by approximation. Fix N , and let ∆ = (κ2 − κ1)/2N .
We subdivide the segment [κ1, κ2] into 2N equal parts and denote

λ1 = κ1, µ1 = κ1 + ∆, λ2 = κ1 + 2∆, µ2 = κ1 + 3∆, . . .

fn(x) = f(x, λn), gn(x) = g(x, µn), αn = R1(λn), βn = −R2(µn).

We approximate the integrals with their Riemann sums and obtain:

fn(x) + αne
−2λnx

(
N+1∑
m=1

fm(x)

λn + λm
+

N∑
m=1

gm(x)

λn − µm

)
= αne

−2λnx,

gn(x) + βne
2µnx

(
N+1∑
m=1

fm(x)

−µn + λm
+

N∑
m=1

gm(x)

−µn − µm

)
= βne

2µnx.
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We see that this system is equivalent to the system determining the
eigenfunctions of a Bargmann potential having 2N + 1 solitons with poles
(λ1, . . . , λN+1,−µ1, . . . ,−µN) and residues (α1, . . . , αN+1, β1, . . . , βN).

According to the results of the last paragraph, this system has a unique
solution for all x and gives a Bargmann potential with 2N + 1 solitons, which is
bounded uniformly in N .

Hence, for sufficiently large N our system of singular integral equations can
be approximated by an algebraic system, which has a unique solution. This
approximation holds for −L < x < L, where

2∆Reκ2L << 1, R = max(R1(p), R2(p)).

To increase L, we need to exponentially increase N :

N ' eκ2L.
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Nevertheless, for N sufficiently large, it is possible to include any point of the
real axis in the interval (−L,L). The resulting potentials are bounded in both
directions.

Let 0 < κ1 < κ2, and consider a symmetric pair of segments [iκ1, iκ2] and
[−iκ2,−iκ1] on the imaginary axis. Let R1(κ) and R2(κ) be two functions defined
on [κ1, κ2], and consider the following dressing function that is the continuous
analogue of the dressing function in Theorem 2:

T (k) = π

ˆ κ2

κ1

R1(κ)δ(k − iκ)dκ+ π

ˆ κ2

κ1

R2(κ)δ(k + iκ)dκ,

where we integrate along the segments [iκ1, iκ2] and [−iκ2,−iκ1]. This dressing
function is the continuous analogue of the dressing function in Theorem 2.

– Typeset by FoilTEX – 16



To increase L we need to exponentially increase N : N ' ebL. Nevertheless,
for N sufficiently large, it is possible to include any point of the real axis in the
interval (−L,L). Proceeding as before, we determine that the eigenfunctions

ϕ(x, κ) = f(x, κ)eκx, ψ(x, κ) = g(x, κ)e−κx

are bounded and orthonormal:

ˆ ∞
−∞

ϕ(x, κ)ϕ(x, κ′)dx = R1(κ)δ(κ− κ′),

ˆ ∞
−∞

ψ(x, κ)ϕ(x, κ′)dx = 0,

ˆ ∞
−∞

ψ(x, κ)ψ(x, κ′)dx = R2(κ)δ(κ− κ′).
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The functions f(x, κ) and g(x, κ) grow exponentially as x → −∞ and x → ∞,
respectively. The function χ0(x) grows linearly in both diretions:

χ0 = −c1x+ χ0(x), as x→ −∞, χ0 = −c2x+ χ0(x) asx→ +∞,

where |χ0(x)| < const for −∞ < x <∞.

All these statements are supported by numerical experiments, which will be
published elsewhere.

We note that in the κ-region, in which both functions R1(κ) and R2(κ) are
strictly positive, the spectrum is doubly degenerate. On the set of points where
one of the functions vanishes, the spectrum is simple.

If R1(κ) = R2(κ), then g(x, κ) = −f(−x, κ), and the potential is symmetric
u(−x) = u(x). We note that for R1(κ) = R2(κ) every finite approximation only
gives an approximately symmetric potential, however, the accuracy of symmetry
grows exponentially as N →∞.

– Typeset by FoilTEX – 18



Periodic one-gap potentials

The periodic one-gap potentials of the Schrödinger operator can be constructed
from the symmetric Riemann–Hilbert problem. Let ω and ω′ be positive real
numbers, and consider the elliptic curve E = C/Λ, where Λ is the period lattice
generated by 2ω and 2iω′. Denote by ℘(z) the Weierstrass elliptic function
associated to the lattice Λ. It satisfies the differential equation

[℘′(z)]2 = 4℘(z)3 − g2℘(z)− g3 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

where the zeroes e1, e2, e3 are real-valued, satisfy e1+e2+e3 = 0, and we assume
that e3 < e2 < e1.

The function
u(x) = 2℘(x− ω − iω′) + e3

is a real-valued potential of the Schrödinger operator with period 2ω. Our goal
is to construct a solution of Schrödinger equation that gives a solution of the
symmetric Riemann–Hilbert problem.
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We consider the following function ϕ(x, z), where x is real and z is defined
on the curve E:

ϕ(x, z) =
σ(x− ω − iω′ + z)σ(ω + iω′)

σ(x− ω − iω′)σ(ω + iω′ − z)
exp[−ζ(z)x].

A direct calculation shows that ϕ satisfies the Lamé equation

ϕ′′ − [2℘(x− ω − iω′) + ℘(z)]ϕ = 0.

Hence we see that ϕ is a solution of the Schrödinger equation if the parameter z
satisfies the relation

k2 = e3 − ℘(z).

The Weierstrass function ℘ has degree two, hence for a generic complex value
of k there are values of z on E that satisfy this relation. In order to make the
function ϕ(x, z) a well-defined function of k, we need to choose a branch of z.

– Typeset by FoilTEX – 20



We choose the solution z(k) of this relation that satisfies

z(k) =
i

k
+O

(
1

k2

)
as |k| → ∞.

This branch defines a single-sheeted map from the complex k-plane with two cuts
on the imaginary axis to a period rectangle of the lattice Λ centered at 0. The
cuts on the imaginary axis are [−iκ2,−iκ1] and [iκ1, iκ2], where

κ1 =
√
e2 − e3, κ2 =

√
e1 − e3.

The right and left sides of the top cut [iκ1, iκ2] are mapped to the line segments
joining ω to ω + iω′ and ω − iω′, respectively, and the right and left sides of the
bottom cut [−iκ2,−iκ1] are respectively mapped to the segments joining −ω′ to
−ω + iω′ and −ω − iω′.
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I

IV

II

III

iκ2

iκ1

-iκ1

-iκ2

I

II

IV

III

0
ω

ω+iω'

ω-iω'

-ω+iω'

-ω-iω'

iω'

-iω'

-ω

The k-plane The z-plane

The function ϕ satisfies the following properties:

ϕ(x, z + 2ω) = ϕ(x, z), ϕ(x, z + 2iω′) = ϕ(x, z),

ϕ(x, z) = ϕ(x, z) when z = z, x = x.
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Also (very important)
ϕ(x, z) = ϕ(x, z)

for all z having real part ω.
Theorem 4. Let f(k) be the branch of the function

f(k) =

√
k + iκ1
k + iκ2

satisfying f(k) → 1 as |k| → ∞. On the complex k-plane with two cuts
[iκ1, iκ2] and [−iκ2,−iκ1] along the imaginary axis, define the function

ξ(x, k) = f(k)ϕ(x, z(k))e−ikx.

Then the function ξ(x, k) satisfies the equation

ξ′′ + 2ikξ′ − u(x)ξ = 0, ξ → 1 as |k| → ∞
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with potential u(x) given by the standard formulae. On the cuts, the function
ξ satisfies the Riemann–Hilbert problem

ξ+(x, iq)− ξ−(x, iq) = iπR1(q)e
2qx
[
ξ+(x,−iq) + ξ−(x,−iq)

]
,

ξ+(x,−iq)− ξ−(x,−iq) = −iπR2(q)e
−2qx [ξ+(x, iq) + ξ−(x, iq)

]
.

Here q ∈ [κ1, κ2], and ξ+(x,±iq) are the right hand values of the upper and
lower cuts, and ξ−(x,±iq) are the left hand values on the upper and lower
cuts. The functions R1 and R2 are

R1(q) =
1

π
h(q), R2(q) =

1

πh(q)
, h(q) =

√
(q − κ1)(q + κ2)

(κ2 − q)(q + κ1)
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