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Introduction

We consider the Schrodinger equation on the real axis
—" +u(z) = By, —oo <z < 00,

with a bounded potential u(x).

A value of E belongs to the spectrum of wu(x) if there exists one or two
independent bounded wave functions ¥ (z, E):

Y(z, F) <1, —oo<x<o0.

The spectrum is a subset of the axis —oo < E < 00, and can have a quite
complicated structure. We only consider the case when the spectrum is purely
continuous.
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A periodic one-gap potential is determined up to translation by the formula
u(x) = up(x) = 2p(x + iw’ — z¢) + e3.

Here p(x) is the elliptic Weierstrass function with periods 2w and 2iw’. Its
spectrum is [—k3, —k%] U [0, 00), where

2 2
Ky =€] —€3, K]=¢€e2—e3, €]>ex>e3, e€1+e+e3=0,

[0 (2))° = 4p(2) — e1)(p(2) — e2)(p(2) — e3).
The spectrum is doubly degenerate and reflectionless.

We will show that a general one-gap reflectionless potential is determined by
two positive continuous functions R;(p) and Rs(p), defined inside the allowed

gap.
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Bargmann potentials via the dressing method
We consider a O-problem on the complex k-plane of the following kind:
2 = ie* (k) x(x, —k).

Here T'(k) is a compactly supported distribution called the dressing function of
the O-problem. A solution of this equation is defined up to multiplication by a
function of x, hence if a solution exists we can normalize it by the condition

x — 1 as |k| = oc.
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Such a solution satisfies the integral equation

i [ e 2T (—q)x(x,q)
) =1+ — 4 Jada
x(z, k) +7T// o qdq,

where we normalize the integral in the following way:

1 k 0 (1

- — 1. — — — 5 k .

k- cn0 k212 ok (k) mo(k)
Here d(k) is the two-dimensional §-function.

We now show that a solution of the O-problem gives rise to a solution of the
initial Schrodinger equation.
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Theorem 1. Suppose that the dressing function T'(k) has the property that the
0-problem has a unique solution x normalized by the condition

x(z, k) =14+ 0(1) as |k| — o0
on the set C x U, where U C R is an open subset. Denote

ixo(T) —2 o d
. + O(k™7), u(w)—Q@XO(az).

x(z, k) =1+
Then the function x(z, k) is a solution of the differential equation

Xzz — 2tkxe — u(x)x = 0,

and the function ¥(xz,k) = x(x,k)e™* is a solution of the Schrédinger
equation with E = k.
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Theorem 2. Let k1,...,kn and c1,...,c, be a collection of nonzero real
numbers satisfying the following properties:

1. Ky # £Ky for all m and n.

2. ¢cp/kn >0 for all n.

Consider the dressing function

)= g cnd(k — iky).

Then the O-problem has a unique solution Y satisfying the normalization
condition x — 1 as |k| — oc.
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This solution is a rational function of k having simple poles at the points
k =1k, form=1,..., N, and has the following form:

N
X(z, k) =141

n=1

Xn ()
k— ik,

where the xn(x) are real-valued functions. The corresponding potential

1s a reflectionless Bargmann potential having the finite discrete spectrum
—K3, ..., —K4r, and ¥ (1) = xn(x)e ™ are the corresponding eigenfunctions.
Furthermore, for each n, changing the signs of both c,, and k,, does not change

the potential u(x).
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The O-problem on the complex k-plane is reduced now to a system of linear
equations on the residues x,(x):

_2"’”$cnx(x, —iKp).

Xn(z) =€
Writing this system out explicitly, and replacing x..(z) = ¥, (x)e™ """, we obtain
the following system:

N 6—(f<an+f-cm)x

Yn(x) + Cp Z Y () = cpe™

Kn T+ Km

m=1
The matrix of this system

Cne—(ﬁszrmm)x

Kn T+ KEm
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is the sum of an identity matrix and a Cauchy-like matrix, therefore its determinant
is the sum of the principal minors of the Cauchy-like-matrix. This sum is indexed
by subsets I = {i1,...,i,} of the index set {1,..., N} and can be explicitly
evaluated as follows:

e )2 .

Ic{1,..,N} |{ij}cl i<y

By assumption, the quantities ¢;/r; and (x; — k;)* are all positive, therefore
each summand and hence all of A is positive, so the linear system has a unique
solution. By Theorem 1, y satisfies equation

Xzz — 2tkxe —u(x)x =0,
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and the corresponding potential u(x) is

To finish the proof, we consider what happens to potential u(x) when we change
the signs of one of the x,,. A direct calculation shows that

~

where A is the determinant of the matrix corresponding to the data (k;,¢;),
where

KR; = o C; =
An, =1, —4K2 /c,, i=n.

2
. ,{_’ﬂ" .
~ { Ki, 1 # n, ~ (ﬁ) ciy 1 F#n,
. (2
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The symmetric Riemann—Hilbert problem

We consider a Riemann—Hilbert problem that is a continuous analogue of the
finite O-problem of Theorem ?? that generates the Bargmann potentials.
Theorem 3. Let 0 < k1 < ko be real numbers, and let Ry and R be two
positive continuous functions on the interval [k1, ko). Consider the dressing
function

K2

T(k)=n / " Rip)s(k — ip)dp — 7 / Ro(p)S(k + ip)dp.

1 K1

Then the O-problem has a unique solution Y satisfying the normalization
condition x — 1 as |k| — oo. This function is analytic on the k-plane away
from two cuts ik, iKko| and [—ike, —ik1] on the imaginary axis. Denoting by
X1 and x~ the right and left boundary values of x along the cuts

xE(x, k) = lim x(x, k £ie), k € [—ika, —ir1] U [ik1, ikl

e—0
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the function x satisfies a symmetric Riemann—Hilbert problem on the cuts:

Xt (@, ip) — x (z,ip) = miR(p)e *P*[x* (z, —ip) + x~ (z, —ip)],

X" (@, —ip) — x~ (@, —ip) = —wiR2(p)e**[x " (z,ip) + x~ (z,ip)].

The function x can be explicitly given as

Y f(x,p) [ g(xvp)
k)=1 d d
x(z, k) H/m k—ip pﬂ/ﬁ;1 P

where f(x,p) and g(x,p) are real-valued functions defined for real x and for
p € |k1,Kka|. The corresponding potential of the Schrodinger operator is

u(zr) = 2% /@[f(:v,p) + g(x, p)]dp.

K1

— Typeset by Foil TEX — 12



Proof. Given R; and Rs, we look for a solution of the O-problem in the form

"2 f(x,p) - (" g(z,p)
k) =1 d d
x(z, k) Jr@/m1 — er@/%1 E i

The jumps of y along the cuts are
+( +(CC,—Zp> _X_(xa _Zp) — 27T’Lg(£l?,p>

X" (x,ip) — x~ (z,ip) = 2mif(x,p), X

Plugging into the O-problem, we see that Y satisfies the Riemann—Hilbert problem
if f and g satisfy the following system of singular integral equations:

Cope | [ (5 q) “g(z,q), | —opa
f(z,p) + Ri(pe [ N p+qdq+7£1 p_qdq] = Ri(p)e

"2 f(x,q) " g(,q) 2
z,p) + R pezml dq+/ dg| = —Ra(p)eP”.
gle.p) + Ralp)e” | f 25 Rdg + |20 2 (1)
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We solve this system by approximation. Fix N, and let A = (ko — k1)/2N.
We subdivide the segment [k1, k2| into 2N equal parts and denote

)\1:%31, /ﬂ:/ﬁ;l—l—A, )\2:l€1—|—2A, ,ugzlﬁ)l—l—?)A,...

fn(x) — f(SC, )‘n)v gn(x) — g(x,un), Qp = R1(>\n)a Bn — _R2(,un)-
We approximate the integrals with their Riemann sums and obtain:

N+1
— T m gm - nL
ful@) + ane™* < A +>\ +Z)\ )ZOW o

N+1
e (S e ) e
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We see that this system is equivalent to the system determining the
eigenfunctions of a Bargmann potential having 2N + 1 solitons with poles

()\17“'7)\N+17_,u17'°°7_:u]\7) and residues (Oélw "704N—I—17617” 76]\])

According to the results of the last paragraph, this system has a unique
solution for all  and gives a Bargmann potential with 2N + 1 solitons, which is
bounded uniformly in V.

Hence, for sufficiently large N our system of singular integral equations can
be approximated by an algebraic system, which has a unique solution. This
approximation holds for —L < x < L, where

2ARe™Y << 1, R =max(Ri(p), Ra(p)).
To increase L, we need to exponentially increase IV:

N ~ g2l
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Nevertheless, for N sufficiently large, it is possible to include any point of the
real axis in the interval (—L,L). The resulting potentials are bounded in both
directions.

[]

Let 0 < k1 < ko, and consider a symmetric pair of segments [ik1,ik2] and
|—iKo, —ik1]| On the imaginary axis. Let Ry(x) and Ry(k) be two functions defined
on |k1, k2|, and consider the following dressing function that is the continuous
analogue of the dressing function in Theorem 2:

K2

Tk)=m /K2 Ri(k)d(k —ir)dk + 7T/ Rs(k)d(k + ik)dk,

1 K1

where we integrate along the segments [ik1,iko] and [—iko, —ik1]|. This dressing
function is the continuous analogue of the dressing function in Theorem 2.
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To increase L we need to exponentially increase N: N ~ e’ Nevertheless,
for N sufficiently large, it is possible to include any point of the real axis in the
interval (—L, L). Proceeding as before, we determine that the eigenfunctions

SO(CC, /i) = f(a:, li)emc, w(gj, /{) — g(a;, K;>e—h:x

are bounded and orthonormal:

/OO o(x,k)p(x, k' )dr = Ri1(k)d(k — K'),

— OO

/ " (e, K)ele, K )da = 0,

/_ Y(x, k)Y (x, K )dr = Ra(k)d(k — K).
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The functions f(x,x) and g(x, k) grow exponentially as x — —oo and = — o0,
respectively. The function xo(x) grows linearly in both diretions:

Xo = —c1Z + Xo(x), as x = —o0, X0 = —c2x + Xo(x) asx — +00,

where |xo(x)| < const for —oo < x < 0.

All these statements are supported by numerical experiments, which will be
published elsewhere.

We note that in the x-region, in which both functions R;(x) and Rs(k) are
strictly positive, the spectrum is doubly degenerate. On the set of points where
one of the functions vanishes, the spectrum is simple.

If Ri(k) = Ra(k), then g(z,k) = —f(—x, k), and the potential is symmetric
u(—x) = u(x). We note that for R1(k) = Ra(k) every finite approximation only
gives an approximately symmetric potential, however, the accuracy of symmetry
grows exponentially as N — oo.
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Periodic one-gap potentials

The periodic one-gap potentials of the Schrodinger operator can be constructed
from the symmetric Riemann—Hilbert problem. Let w and w’ be positive real
numbers, and consider the elliptic curve E = C/A, where A is the period lattice
generated by 2w and 2iw’. Denote by p(z) the Weierstrass elliptic function
associated to the lattice A. It satisfies the differential equation

[0/ (2)] = 4p(2)” — g2p(2) — g3 = 4(p(2) — e1)(p(2) — e2)(p(2) — e3),

where the zeroes eq, e, e3 are real-valued, satisfy e; +e5+e3 = 0, and we assume
that ez < ey < e3.

The function
u(z) = 2p(r —w —iw') + e3
is a real-valued potential of the Schrodinger operator with period 2w. Our goal

is to construct a solution of Schrodinger equation that gives a solution of the
symmetric Riemann—Hilbert problem.
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We consider the following function ¢(x, z), where z is real and z is defined
on the curve E:

o(x —w —iw + 2)o(w + iw') exp|—C(2)z].

p(,2) = o(r —w—iw)o(w+iw — z)

A direct calculation shows that ¢ satisfies the Lamé equation

0" — [2p(r —w —iw’) + p(z)]p = 0.

Hence we see that ¢ is a solution of the Schrodinger equation if the parameter z
satisfies the relation

k= e3 — p(2).
The Weierstrass function g has degree two, hence for a generic complex value

of k there are values of z on E that satisfy this relation. In order to make the
function ¢(x, z) a well-defined function of k£, we need to choose a branch of z.
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We choose the solution z(k) of this relation that satisfies

' 1
2(k) :%+0 (ﬁ> as |k| — oo.

This branch defines a single-sheeted map from the complex k-plane with two cuts
on the imaginary axis to a period rectangle of the lattice A centered at 0. The
cuts on the imaginary axis are [—iksy, —ik1] and [ik1,ik2], where

K1 = V€2 — €3, Ko — /€1 — €3.

The right and left sides of the top cut [ik1, k2] are mapped to the line segments
joining w to w + 1w’ and w — iw’, respectively, and the right and left sides of the
bottom cut [—iko, —ik1] are respectively mapped to the segments joining —w’ to
—w +iw’ and —w — iw’.
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The k-plane The z-plane

The function ¢ satisfies the following properties:
p(z,2 +20) = p(z,2), @(T,2+ 2iw') = p(z, 2),

o(x,2) = p(x,2) when 7 = 2,7 = x.
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Also (very important)
@(ZC, Z) — 90(3372)
for all z having real part w.
Theorem 4. Let f(k) be the branch of the function

k + i/ﬁ}l
k) = 4/
f( ) k —|—7:l£2
satisfying f(k) — 1 as |k| — oo. On the complex k-plane with two cuts
lik1,iK9| and |—ike, —ik1| along the imaginary axis, define the function

(k) = F(R)p(a, =(K))e*.
Then the function &(x, k) satisfies the equation

&+ 21k —u(x)E =0, £—1as|k|] — oo
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with potential u(x) given by the standard formulae. On the cuts, the function
& satisfies the Riemann—Hilbert problem

EX(w,iq) — € (2,iq) = inRy(q)e* ™ [£F (w, —iq) + & (z, —igq)]

§F(x, —iq) — £ (z, —iq) = —imRa(q)e 2% [€F (2, iq) + & (z,iq)] .
Here q € [k1, k2], and £T(x, +iq) are the right hand values of the upper and

lower cuts, and £ (x,+iq) are the left hand values on the upper and lower
cuts. The functions R1 and Ry are

Ralo) = 2h(a), Fala) = . o) = % (g = r1)la + 2
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