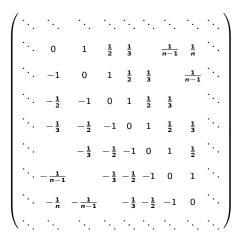
Banach Poisson-Lie groups and the restricted Grassmannian

Alice Barbara Tumpach

Laboratoire Painlevé, France & Pauli Institut, Vienna

Example of bounded operator with unbounded triangular truncation [Davidson, Nest Algebras]



- Does there exists a trace class operator whose triangular truncation is not trace class? Yes, ask D. Beltiță!
- Exercise: Find a concrete example!

Relation between the restricted Grassmannian and the KdV hierachy [G. Segal and G. Wilson, 1985]

$$\Gamma_+ = \{g = e^f, f \text{ holomorphic in } \mathbb{D}, f(0) = 0\}$$

$$\operatorname{Gr}^{(n)} = \{ w \in \operatorname{Gr}^{0}_{\operatorname{res}}(\mathcal{H}) : z^{n}W \subset W \}.$$

$$\Gamma^+_W = \{g \in \Gamma_+ : g^{-1}W \cap \mathcal{H}_- = \{0\}\}.$$

Proposition 5.1 in [SW85] :

∀W ∈ Gr⁰_{res}(H), ∃!Φ_W(g, z) called the Baker function of W, defined for g ∈ Γ⁺_W and z ∈ S¹, such that
(i) Φ_W(g, ·) ∈ W for each fixed g ∈ Γ⁺_W
(ii) Φ_W(g, z) = g(z)(1 + ∑[∞]₁ a_i(g)z⁻ⁱ), a_i are analytic functions on Γ⁺_W and extend to meromorphic functions on the whole of Γ⁺.

Relation between the restricted Grassmannian and the KdV hierachy [G. Segal and G. Wilson, 1985]

Proposition 5.5 in [SW85] :

Set $D = \frac{\partial}{\partial x}$. For each integer $r \ge 2$, there is a unique differential operator P_r of the form $P_r = D^r + p_{r2}D^{r-2} + \cdots + p_{r,r-1}D + p_{rr}$ such that $\frac{\partial \Phi_W}{\partial t_r} = P_r \Phi_W$.

Denote by $C^{(n)}$ the space of all operators P_n associated to subspaces W in $Gr^{(n)}$ evaluated at $t_2 = t_3 = \cdots = 0$.

Proposition 5.13 in [SW85] The action of Γ_+ on $\operatorname{Gr}^{(n)}$ induces an action on the space $\mathcal{C}^{(n)}$. For $r \geq 1$, the flow $W \mapsto \exp(t_r z^r) W$ on $\operatorname{Gr}^{(n)}$ induces the *r*-th KdV flow on $\mathcal{C}^{(n)}$.

Key Observation : $\Gamma_+ \subset B^+_{res}(\mathcal{H})$.

Bruhat-Poisson structure of finite-dimensional Grassmannians [Lu-Weinstein, 1990]

Proposition :

- ▶ SU(n) and $SB(n, \mathbb{C})$ are dual Poisson-Lie groups
- ► the Grassmannians Gr(p, n) = SU(n) / S(U(p) × U(n)) are Poisson homogeneous spaces
- ▶ SB (n, \mathbb{C}) acts on Gr(p, n) by Dressing transformations
- ► the symplectic leaves of Gr(p, n) are the Schubert-Bruhat cells and coincides with the orbits under the action of SB(n, C)

cf I. Marshall's talk!

Hilbert-Schmidt result

 $\begin{array}{rcl} \mathsf{GL}_2(\mathcal{H}) = & \mathsf{GL}(\mathcal{H}) \cap \{ \mathrm{Id} + A, A \ \mathrm{Hilbert-Schmidt} \} \\ \mathsf{U}_2(\mathcal{H}) = & \mathsf{U}(\mathcal{H}) \cap \{ \mathrm{Id} + A, A \ \mathrm{Hilbert-Schmidt} \} \\ \mathsf{B}_2^+(\mathcal{H}) = & \{ \alpha, \alpha^{-1} \ \mathrm{upper} \ \mathrm{triangular} \ \mathrm{of} \ \mathrm{the} \ \mathrm{form} \ \mathrm{Id} + \ \mathrm{Hilbert-Schmidt} \\ & \mathrm{with} \ \mathrm{stricktly} \ \mathrm{positive} \ \mathrm{coeff.} \ \mathrm{on} \ \mathrm{diagonal} \}. \\ \langle \cdot, \cdot \rangle \ : \ \mathfrak{u}_2(\mathcal{H}) \times \mathfrak{b}_2^+(\mathcal{H}) \ \to \ \mathbb{R} \\ & (u, b) \qquad \mapsto \quad \mathrm{Im} \ \mathrm{Tr}(ub) \end{array}$ is a strong duality pairing

Theorem :

(1) $U_2(\mathcal{H})$ and $B_2^+(\mathcal{H})$ are dual Hilbert Poisson-Lie groups with $\pi_g^u := R_g^* \pi_r^u(g), \ \pi_g^b := R_g^* \pi_r^b(g)$ and $\pi_r^u : U_2(\mathcal{H}) \to \Lambda^2 \mathfrak{b}_2^+(\mathcal{H})^*(\mathfrak{b}_2^+(\mathcal{H}))$ defined by $\pi_r^u(u)(b_1, b_2) = \operatorname{Im} \operatorname{Tr} p_{\mathfrak{u}_2}(u^{-1}b_1u) \left[p_{\mathfrak{b}_2^+}(u^{-1}b_2u) \right],$ $\pi_r^b : B_2^\pm(\mathcal{H}) \to \Lambda^2 \mathfrak{u}_2(\mathcal{H})^*(\mathfrak{u}_2(\mathcal{H}))$ defined by $\pi_r^b(g)(x_1, x_2) = \operatorname{Im} \operatorname{Tr} p_{\mathfrak{b}_2^+}(g^{-1}x_1g) \left[p_{\mathfrak{u}_2}(g^{-1}x_2g) \right].$

(2) $\mathsf{Gr}^0_{\mathrm{res}}(\mathcal{H})$ is a $\mathsf{U}_2(\mathcal{H})\text{-}\mathsf{Poisson}$ homogeneous space

Consequence : Using Iwasawa decomposition $GL_2(\mathcal{H}) = U_2(\mathcal{H}) B_2^+(\mathcal{H})$, [D. Beltiță, 2006], one can solve associated Lax equations.

Poisson manifold modelled on a non-separable Banach space

Problems :

- (1) no bump functions available (norm not even \mathcal{C}^1 away from the origin)
- (2) Leibniz rule does not imply existence of Poisson tensor (there exists derivation of order greater then 1)
- (3) existence of Hamiltonian vector field is not automatic

Definition of a Banach Poisson manifold

Definition of a Poisson tensor :

M Banach manifold, \mathbb{F} a subbundle of T^*M in duality with *TM*. π smooth section of $\Lambda^2 \mathbb{F}^*(\mathbb{F})$ is called a Poisson tensor on *M* with respect to \mathbb{F} if :

- 1. for any closed local sections α , β of \mathbb{F} , the differential $d(\pi(\alpha, \beta))$ is a local section of \mathbb{F} ;
- 2. (Jacobi) for any closed local sections α , β , γ of \mathbb{F} ,

 $\pi \left(\alpha, d \left(\pi(\beta, \gamma) \right) \right) + \pi \left(\beta, d \left(\pi(\gamma, \alpha) \right) \right) + \pi \left(\gamma, d \left(\pi(\alpha, \beta) \right) \right) = 0.$

Definition of a Poisson Manifold :

A Banach Poisson manifold is a triple (M, \mathbb{F}, π) consisting of a smooth Banach manifold M, a subbundle \mathbb{F} of the cotangent bundle T^*M in duality with TM, and a Poisson tensor π on M with respect to \mathbb{F} .

Definition of Banach Poisson-Lie groups

Definition : A Banach Poisson-Lie group *B* is a Banach Lie group equipped with a Banach Poisson manifold structure such that the group multiplication $m: B \times B \to B$ is a Poisson map, where $B \times B$ is endowed with the product Poisson structure.

Proposition : Let *B* be a Banach Lie group and (B, \mathbb{U}, π) a Banach Poisson structure on *B*. Then *B* is a Banach Poisson-Lie group if and only if

- 1. $\mathbb U$ is invariant under left and right multiplications by elements in B,
- 2. the subspace $\mathfrak{u} := \mathbb{U}_e \subset \mathfrak{b}^*$, where *e* is the unit element of *B*, is invariant under the coadjoint action of *B* on \mathfrak{b}^* and the map

$$\begin{array}{rccc} \pi_r & : & B & \to & \Lambda^2 \mathfrak{u}^*(\mathfrak{u}) \\ & g & \mapsto & R^*_{g^{-1}} \pi_g, \end{array}$$

is a 1-cocycle on B with respect to the coadjoint representation of B in $\Lambda^2 \mathfrak{u}^*(\mathfrak{u})$.

Banach Lie bialgebras

Definition : Let \mathfrak{b} be a Banach Lie algebra, and a duality pairing $\langle \cdot, \cdot \rangle_{\mathfrak{b},\mathfrak{u}}$ between \mathfrak{b} and a normed vector space \mathfrak{u} . One says that \mathfrak{b} is a Banach Lie bialgebra with respect to \mathfrak{u} if

- (1) \mathfrak{b} acts continuously by coadjoint action on \mathfrak{u} .
- (2) there is a 1-cocycle θ : $\mathfrak{b} \to \Lambda^2 \mathfrak{u}^*(\mathfrak{u})$ with respect to the adjoint representation of \mathfrak{b} on $\Lambda^2 \mathfrak{u}^*(\mathfrak{u})$, i.e. satisfying

$$\begin{aligned} \theta\left([x,y]\right)(\alpha,\beta) &= \theta(y)(\mathrm{ad}_x^*\alpha,\beta) + \theta(y)(\alpha,\mathrm{ad}_x^*\beta) \\ &-\theta(x)(\mathrm{ad}_y^*\alpha,\beta) - \theta(x)(\alpha,\mathrm{ad}_y^*\beta) \end{aligned}$$

where $x, y \in \mathfrak{b}$ and $\alpha, \beta \in \mathfrak{u}$.

Banach Lie bialgebras versus Manin triple

Definition : [A. A. Odzijewicz, T. Ratiu, 2003] We will say that b is a Banach Lie-Poisson space with respect to u if u is in duality with b and is a Banach Lie algebra $(u, [\cdot, \cdot]_u)$ which acts continuously on b by coadjoint action.

Theorem :

Consider two Banach Lie algebras $(\mathfrak{b}, [\cdot, \cdot]_{\mathfrak{b}})$ and $(\mathfrak{u}, [\cdot, \cdot]_{\mathfrak{u}})$ in duality. Denote by \mathfrak{g} the Banach space $\mathfrak{g} = \mathfrak{b} \oplus \mathfrak{u}$ with norm $\|\cdot\|_{\mathfrak{g}} = \|\cdot\|_{\mathfrak{b}} + \|\cdot\|_{\mathfrak{u}}$. The following assertions are equivalent. (1) \mathfrak{b} is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to \mathfrak{u} :

(2) $(\mathfrak{g},\mathfrak{b},\mathfrak{u})$ is a Manin triple for the natural non-degenerate symmetric bilinear map

Duality pairing between $\mathfrak{b}_{res}(\mathcal{H})$ and $\mathfrak{u}_{1,2}(\mathcal{H})$ $L_{res}(\mathcal{H}) := \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix}, B \text{ and } C \text{ Hilbert-Schmidt} \}$ $L_{1,2}(\mathcal{H}) := \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix}, A \text{ and } C \text{ Trace class}, B \text{ and } C \text{ Hilbert-Schmidt} \}$

Definition : [T. Goliński, A. Odzijewicz, 2010] For $A = \begin{pmatrix} A_{++} & A_{-+} \\ A_{-+} & A_{--} \end{pmatrix} \in L_{1,2}(\mathcal{H})$ define the restricted trace of A by $\operatorname{Tr}_{\operatorname{res}} A = \operatorname{Tr} A_{++} + \operatorname{Tr} A_{--}$.

Proposition 2.1 in [GO10] : $\forall A \in L_{1,2}(\mathcal{H}), \forall B \in L_{res}(\mathcal{H}), AB \in L_{1,2}(\mathcal{H}), BA \in L_{1,2}(\mathcal{H}) \text{ and } Tr_{res}AB = Tr_{res}BA.$

Consequence of slide 1 : $\mathfrak{u}_{1,2}(\mathcal{H})$ is not preserved by the coadjoint action of $\mathfrak{b}_{\mathrm{res}}^+$. No Manin triple structure on $\mathfrak{b}_{\mathrm{res}}^+(\mathcal{H}) \oplus \mathfrak{u}_{1,2}(\mathcal{H})!$ However there exists a Banach Poisson-Lie group structure on $B_{\mathrm{res}}(\mathcal{H})...$