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What are Painleve Functions?



NIST Digital Library of Mathematical Functions

( Project News

2014-08-29 DLMF Update; Version 1.0.9
2014-04-25 DLMF Update; Version 1.0.8; errata & improved MathML
2014-03-21 DLMF Update; Version 1.0.7; New Features improve Math & 3D Graphics

2013-08-16 Bille C. Carlson, DLMF Author, dies at age 89

More news
Foreword 19 Elliptic Integrals
Preface 20 Theta Functions
Mathematical Introduction 21 Multidimensional Theta Functions

1 Algebraic and Analytic Methods 22 Jacobian Elliptic Functions
2 Asymptotic Approximations 23 Weierstrass Elliptic and Modular Functions
3 Numerical Methods 24 Bernoulli and Euler Polynomials
4 Elementary Functions 25 Zeta and Related Functions
5§ Gamma Function 26 Combinatorial Analysis
6 Exponential, Logarithmic, Sine, and Cosine Integrals 27 Functions of Number Theory
7 Error Functions, Dawson's and Fresnel Integrals 28 Mathieu Functions and Hill's Equation
8 Incomplete Gamma and Related Functions 29 Lamé Functions
9 Airy and Related Functions 30 Spheroidal Wave Functions
10 Bessel Functions 31 Heun Functions
11 Struve and Related Functions 2 Painlevé Transcendents
12 Parabolic Cylinder Functions 33 Coulomb Functions

13 Confluent Hypergeometric Functions 34 3j.6;.9) Symbols
14 Legendre and Related Functions 35 Functions of Matrix Argument
15 Hypergeometric Function 36 Integrals with Coalescing Saddles
16 Generalized Hypergeometric Functions and Meijer G -Function Bibliography
17 ¢-Hypergeometric and Related Functions Index
18 Orthogonal Polynomials Notations
Software

Errata




The story I want to tell
is how Painleve functions intersect with
probability theory (in the form of limit
theorems) and how these theoretical
predictions have been experimentally
confirmed in the laboratory.

The experiments involve stochastically
growing interfaces. Physicists call all this
KPZ Universality.



Lets see the experimental results first.

Work of K.Takeuchi & M.Sano
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1.2 Measurement Techniques
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Fig. 1.3. Diagram of growth effects including diffusion, shadowing, and reemission
that may affect surface morphology during thin film growth. The incident particle
flux may arrive at the surface with a wide angular distribution depending on the
deposition methods and parameters.



KPZ Phenomenology

Stochastic growth normal fto the surface
Kardar-Parisi-Zhang (1986)
Basic object: (random) height function h(x,t)

Satisfies the KPZ equation (nonlinear stochastic

PDE) oh  O%h oh\ *
En :V@QZQ | )\<%> —F\/E??(ib,t)

h ~ vaot + (T 3y, t — 0




Stochastic growth in liquid
crystals: Droplet initial
condition



Stochastic growth in liquid
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Binarised snapshots at successive times are shown with different colours. Indicated in the colour bar is the elapsed time after the laser
emission. The local height h(x, t) is defined in each case as a function of the lateral coordinate x along the mean profile of the interface (a
circle for a and a horizontal line for b). See also Supplementary Movies 1 and 2.

Height function h(x,1)



Distribution Functions F; and F»

Fy(s) = exp (— / Tz — $)q(x)? dx)

i) = oo (-1 [ o1 ) P

dzq 3 :
s =xq+2¢° q(x)~ Ai(x), £ —

Painleve II, Hastings-McCleod



_ ng(il?)

fﬁ(x) dy 6:17274

Distribution Skewness Kurtosis
Fi 0.293... 0.165...
Fa 0.224... 0.093..
Fs 0.165... 0.049...
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K. Takeuchi & M. Sano, “Evidence for geometry-dependent universal fluctuations
of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence”, Journal of
Statistical Physics 147 (2012), 853-890. arXiv:1203.2530. (Earlier Phys. Rev. Lett.)
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The distributions F; and F, first arose as the
limiting distribution (size of the matrices->infinity)
of the largest eigenvalue in the the Gaussian
Orthogonal Ensemble (GOE, F;) and the Gaussian
Unitary Ensemble (GUE, F2). Harold Widom & CT
(1992-96).

Since then it has been shown that these are the
limiting distributions for the largest eigenvalue for
a broad class of random matrices (Soshnikov, Its &
Bleher, Deift et al., Tao & Vu, H.-T. Yau et al., ...)



e Question 1: Why Painleve functions?

e Question 2: What does all this have
to do with growth processes?



Partial Answer to #l1

e For random matrix models with invariant
measures, many distribution functions can be

expressed as Fredholm determinants (Gaudin,
Mehta 1960s): Det(I-K)

e For unitary ensembles, the kernel of the operator
K has an “integrable structure”

K(z,y) = $EPW) — pW)¥(2)

e (2) =00 (1))

() : rational entries, trace zero




oy, =det(I — K), p(x) =Ai(z),(x) = Ai'(x)

K acts on L*(s,00)

oln general, K acts on L*(J), J = (a1,a2)U--- U (a2n_1, a2, )

7(a) := det(] — K) satisfies a total system of PDEs

Simplest cases PDE reduce to ODEs of Painleve type

M. Adler & P. van Moerbeke have a Virasoro algebra
explanation for the appearance of Painleve functions
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Universality of F; and F, extends to non-invariant
measures, e.g. Wigner matrices. In some sense these
are the “nonintegrable cases” since there is no Fredholm
determinant representation of the distribution functions

Soshnikov, Tao & Vu and H.-T. Yau et al. have proved
these universality theorems for largest eigenvalues and
bulk scaling.

This is an instance where "integrable” and “nonintegrable”
lead to the same limit laws.

Similar to a CLT for Bernoulli random variables and a
general CLT.
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What is the connection of RMT distributions
to stochastic growth processes?

e Kardar, Parisi and Zhang (KPZ) predicted the 1/3 exponent
but made no prediction for the fluctuating quantity.

e The KPZ equation, as initially formulated, is ill-defined
due to the square of the gradient term (see Martin Hairer
for rigorous account)

e Physicists formulated many discrete models that they
argued should have the same behavior as the KPZ
equation—KPZ Universality

* We look at "Last passage percolation”



Poisson process in square (0,t) x (0,¢). Pick A point in the square where
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N

PN = N) =

(t,1)

—~

\,o
o

Sy
Y

4 6
9 4

IS Ot

Ligp=4
00 e—t2 (tQ)N

P(L(t) = £) = N P(Ly =/¢) (see Aldous-Diaconis)
N=0 ’

where Ly is the length of the longest increasing subsequence of Sy.




Baik-Deift-Johansson Theorem
1999

D (L(Z/; 2 _ w)







e After the BDJ theorem many discrete models were
solved that showed that the RMT distributions are
the limit laws for the height function.
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models that flat initial conditions lead to F; and
droplet initial conditions leas to F.



e After the BDJ theorem many discrete models were
solved that showed that the RMT distributions are
the limit laws for the height function.

e For example, Prahofer & Spohn introduced the AIRY
PROCESS whose 1-point function is the distribution
F2. These same authors showed in various discrete
models that flat initial conditions lead to F; and
droplet initial conditions leas to F.

 However, all these models were of the
DETERMINANTAL CLASS. KPZ equation not a
determinantal process!



ASEP on Integer Lattice

T ore

® Each particle has an alarm clock --
exponential distribution with parameter one

e When alarm rings particle jumps to right with
probability p and to the left with probability q

e Jumps are suppressed if neighbor is occupied



Initial Conditions
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Step Initial Condition, g>p
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Flat Initial Condition
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Random: Product Bernoulli measure




Integrable Structure of ASEP

We solve the Kolmogorov
forward equation ("master
equation”) for the

transition probability Y—X: §%
Pv(X;t)

Main idea comes from the
Bethe Ansatz (1931)

Hans Bethe
1906-2005



The Differential Equation
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The Differential Equation

e First consider case of two particles, N=2. State is
specified by giving the positions of the two
particles x; < Xz

 Write master equation for two cases x2 > xi+1 and
X2 = X1+l

e First case particles do not interact with each
other (no exclusion effect) and second case
exclusion must be taken into account.



The differential equations are
o o > 121+ 1:

d

%u(xlaaﬁ) =pu(z1 — 1,22) +qu(z +1,22)+

pu(xry,xo — 1)+ qu(xy, 22 + 1) — 2u(x1, T2)

o o =x1 + I:

d
—U(fL’l,ZCQ) — pU(ZBl — 17332) + qu(xlny + 1) — u(xlaxQ)

dt

We could have simply one equation but then the RHS would have noncon-
stant coefficients.
Formally subtract the second equation from the first equation when xo =
1+ 1:
pu(zy,x1) +qu(zy + 1,214+ 1) —u(zy,214+1) =0

If the first equation holds for all r1 and x5 and this last boundary condition
holds for all x;, then the second equation holds when zo = x1 + 1. So an
equation with nonconstant coefficients has been replaced with an equation with
constant coefficients plus a boundary condition.



Solving the DE, N = 2

Since DE is constant coefficient and holds for all (x1,x3) € Z?* easy to see
that a solution is

EpregretEe ) ey g e C

where

€(§)=§+Q€—1

Permuting £; also gives a solution. Since equation is linear—take linear
combination

w(@1, @23 / / Ao (€)ET1ER? + Agy (€)€T1¢2] @) +e(@)) ge, gg,

Apply boundary condition to the integrand (!):

p+q&1&e — &2
p+q&i& — &

A1(&1,&2) = — A12(&1,82)

Impose initial condition u(x1,z2;0) = 02y 4, 02y ys

—y1—1,—yos—1
A12 — 51 Y1 52 Y2

Choose contour C so that nonzero poles of Ay lie outside of C, then initial
condition satisfied.



Solving the DE, General N

Remarkably, this generalizes to arbitrary (finite) number of particles N (H. Widom
& CT, 2008)

Py(Xit) =) /C - /C Ao @ T & TT (67 1) a¥e

Ay =sgn(o) | ] F&w &)/ ] £(& &)

_z'<j 1<7J
f&&)=p+qc¢ —¢

e Poles of A, lie outside contour C.




Simplication



Simplication
e Py(X;t): Sum of N! terms
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Simplication
Pv(X;t): Sum of N! terms

For step initial condition, compute marginal
distribution of the m™ particle from the left:
Prob(xm(t)<x)

By some remarkable combinatoric identities
plus analysis can (1) take limit N->infinity and
then (2) simplify the result for marginal distr.

Here is the final result before any asymptotics



T k
T::]_?<17 V=4 — P, f(,u,z) = Z 1—Tk/LZ
q

k=—0o0

- d
P(zm(t/v) <z)= / (1 — pur®) det (I + pJ) 7“

k=0
/ SOOO(C) G f(,LL, C/U/)
J(777 Ui ) — /Cp Do (77/) (n/)m—l—l C ./

g



Universality Theorem

T:]_ja T=4q—D; O:?a 01:_1+2\/E, 0220'_1/6(1—\/5)2/3
q

Theorem (TW, 2009):

For ASEP with step initial condition and 0 < p < q, we have

lim P (Im(t/” il L s) — Fy(s)

uniformly for ¢ in a compact subset of (0, 1).

Remarks:
When p = 0 (only jumps to the left, v = 1) the model is called TASEP for
totally asymmetric .... TASEP is a determinantal process whereas ASEP is

not. The above limit law for TASEP was proved by Johannson in 2000.



KPZ & Stochastic Heat Equation

Oh 02h Oh\
ot~V oa A(%) W

N

Bertini & Giacomin (1997) two essential insights:

Problem term

€ Define the solution fo the KPZ equation via a Hopf-Cole transformation:
h(t,x) = —log Z(t, x)

where Z=Z(t,x) satisfies the stochastic heat equation
0Z 10°Z
ot 2 Ox2

& Z(t,x) is obtained from ASEP in a particularly delicate asymptotic limit
called WASEP (weakly asymmetric simple exclusion process)

Z(t,x)W



& For wedge initial conditions (droplet), S.Sasamoto & H.
Spohn and independently G.Amir, I. Corwin & J. Quastel
carried out this program which required new theorems
about the relation between KPZ and the stochastic heat
equation. Both groups used the ASEP results of Widom &
C.T. which required a very delicate asymptotic analysis of
the TW formula.

& Later nonrigorous methods (replica method)
reproduced these results and extended them to the
flat initial condition case. This was carried out by V.
Dotsenko and independently by P. Calabrese, P. Le
Doussal & A. Rosso.

@ A. Borodin & 1. Corwin in their paper "Macdonald

Processes” have a rigorous version of the replica
method.



Theorem. For any 7' > 0 and X € R, the Hopf-Cole solution to KPZ with
narrow wedge initial data, given by H (T, X) = —log Z (T, X) with initial data
Z(0,X) = dx—g, has the following probability distribution

X L = Fris)

PUH(T, X) 27 24 —

where Frp(s) deos not depend upon X and is given by

d
Fr(s)= | e rdet (I — Koy )

c H

Lz(mgls,oo)

where kp = 273713 C is a contour positively oriented and going from +oo+e€i
around R to +oo — €7, and K, is an operator given by its integral kernel

Ky(x,y) /OO o(t)Ai(x + t)Ai(y +t) dt

7
Iu _ e—K,Tt

OT,n =



Corollary. The Hopf-Cole solution to the KPZ equation with narrow wedge
initial data has the following long-time and short-time asymptotics

Fr(27Y3TY38) — Fy(s), T — oo
Pr(27 125474 (s —log V2rT) — G(s), T — 0

The KPZ equation is in the KPZ Universality Class!
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Thank You for Your
attention!



