The WKB approximation in deformation quantization

J. Tosiek, R.Cordero and F. J. Turrubiates, J. Math. Phys. 57, 062103 (2016)

Jaromir Tosiek

Lodz University of Technology, Poland

in collaboration with

Ruben Cordero and Francisco Turrubiates

Instituto Politecnico Nacional, Mexico

1 The energy *****– eigenvalue equation

For a Hamilton function $H(\vec{r}, \vec{p}) = \frac{\vec{p}^2}{2M} + V(\vec{r})$ the *– eigenvalue equation is

$$H(\vec{r},\vec{p}) * W_E(\vec{r},\vec{p}) = E W_E(\vec{r},\vec{p})$$

with an additional condition imposed on the Wigner energy eigenfunction $W_E(\vec{r},\vec{p})$

$$\{H(\vec{r},\vec{p}), W_E(\vec{r},\vec{p})\}_{\mathrm{M}} = 0.$$

1 THE ENERGY *- EIGENVALUE EQUATION

As the *- product we use the Moyal product

$$A(\vec{r},\vec{p}) * B(\vec{r},\vec{p}) := \frac{1}{(\pi\hbar)^6} \int_{\mathbb{R}^{12}} d\vec{r}' d\vec{p}' d\vec{r}'' d\vec{p}'' A(\vec{r}',\vec{p}') B(\vec{r}'',\vec{p}'')$$

$$\times \exp\left[\frac{2i}{\hbar}\left\{\left(\vec{r}''-\vec{r}\right)\cdot\left(\vec{p}'-\vec{p}\right)-\left(\vec{r}'-\vec{r}\right)\cdot\left(\vec{p}''-\vec{p}\right)\right\}\right]$$

The dot \cdot stands for the scalar product.

The above definition is valid for a wide class of tempered distributions.

٠

1 THE ENERGY *- EIGENVALUE EQUATION

The Moyal product is closed i.e.

$$\begin{split} \int_{\mathbb{R}^6} A(\vec{r},\vec{p}) * B(\vec{r},\vec{p}) d\vec{r} \, d\vec{p} &= \int_{\mathbb{R}^6} B(\vec{r},\vec{p}) * A(\vec{r},\vec{p}) d\vec{r} \, d\vec{p} = \\ \int_{\mathbb{R}^6} A(\vec{r},\vec{p}) \cdot B(\vec{r},\vec{p}) d\vec{r} \, d\vec{p}. \end{split}$$

The mean value of a function $A(\vec{r}, \vec{p})$ in a state represented by a Wigner function $W(\vec{r}, \vec{p})$ equals

$$\left\langle A(\vec{r},\vec{p})\right\rangle = \int_{\mathbb{R}^6} A(\vec{r},\vec{p}) \cdot W(\vec{r},\vec{p}) d\vec{r} d\vec{p}.$$

The Moyal bracket is defined as

$$\{A(\vec{r},\vec{p}), B(\vec{r},\vec{p})\}_{\mathrm{M}} := \frac{1}{i\hbar} \Big(A(\vec{r},\vec{p}) * B(\vec{r},\vec{p}) - B(\vec{r},\vec{p}) * A(\vec{r},\vec{p}) \Big).$$

Not all of the solutions of the system of the *- eigenvalue equations are physically acceptable.

A Wigner eigenfunction $W_E(\vec{r}, \vec{p})$ of the Hamilton function $H(\vec{r}, \vec{p})$ fulfills the following conditions:

(i) is a real function,

(ii) the *- square
$$W_E(\vec{r}, \vec{p}) * W_E(\vec{r}, \vec{p}) = \frac{1}{2\pi\hbar} W_E(\vec{r}, \vec{p})$$
 and
(iii) $\int_{\mathbb{R}^6} W_E(\vec{r}, \vec{p}) d\vec{r} d\vec{p} = 1.$

We restrict to the 1– D case. But even in this simplest situation the system of eigenvalue equations leads to a pair of integral equation. This is why approximate methods are desirable.

A naive treating of the * – eigenvalue equation as a power series in the deformation parameter \hbar does not work, because Wigner eigenfunctions contain arbitrary large negative powers of \hbar .

2 Ingredients of the WKB construction

Eigenstates and eigenvalues of energy can be found by solving the stationary Schroedinger equation

$$-\frac{\hbar^2}{2M}\Delta\psi_E(\vec{r}) + V(\vec{r})\psi_E(\vec{r}) = E\psi_E(\vec{r}).$$

Every solution of the stationary Schroedinger equation can be written as a linear combination of two functions

$$\psi_{EI}(\vec{r}) = \exp\left(\frac{i}{\hbar}\sigma_I(\vec{r})\right) \text{ and } \psi_{EII}(\vec{r}) = \exp\left(\frac{i}{\hbar}\sigma_{II}(\vec{r})\right),$$

where $\sigma_I(\vec{r}), \sigma_{II}(\vec{r})$ denote some complex valued functions.

When we substitute functions $\psi_{EI}(\vec{r}), \psi_{EII}(\vec{r})$ into the stationary Schroedinger equation, we obtain that phases $\sigma_I(\vec{r})$ and $\sigma_{II}(\vec{r})$ satisfy the partial nonlinear differential equation of the 2nd order

$$\frac{1}{2M} \left(\nabla \sigma(\vec{r}) \right)^2 - \frac{i\hbar}{2M} \Delta \sigma(\vec{r}) = E - V(\vec{r}), \tag{1}$$

for
$$\sigma(\vec{r}) = \sigma_I(\vec{r})$$
 and $\sigma(\vec{r}) = \sigma_{II}(\vec{r})$.

In the classical limit $\hbar \to 0$ this equation reduces to the Hamilton – Jacobi stationary equation

$$\frac{1}{2M} \left(\nabla \sigma(\vec{r}) \right)^2 = E - V(\vec{r}). \tag{2}$$

In the 1–D case Eq. (1) is of the form

$$\frac{1}{2M} \left(\frac{d\sigma(x)}{dx} \right)^2 - \frac{i\hbar}{2M} \frac{d^2\sigma(x)}{dx^2} = E - V(x).$$

In some part of its domain the solution can be written as a formal power series in the Planck constant

$$\sigma(x) = \sum_{k=0}^{\infty} \left(\frac{\hbar}{i}\right)^k \sigma_k(x).$$

Thus we receive an iterative system of equations

$$\frac{1}{2M} \left(\frac{d\sigma_0(x)}{dx}\right)^2 = E - V(x),$$
$$\frac{d\sigma_0(x)}{dx} \frac{d\sigma_1(x)}{dx} + \frac{1}{2} \frac{d^2\sigma_0(x)}{dx^2} = 0,$$
$$\frac{d\sigma_0(x)}{dx} \frac{d\sigma_2(x)}{dx} + \frac{1}{2} \left(\frac{d\sigma_1(x)}{dx}\right)^2 + \frac{1}{2} \frac{d^2\sigma_1(x)}{dx^2} = 0,$$
$$\vdots \vdots \vdots$$

There are two solutions of these equations. They differ on the sign at even \hbar power elements.

In the case when the phase $\sigma(x)$ is the power series in the Planck constant, the wave function

$$\psi_E(x) = \prod_{k=0}^{\infty} \psi_{Ek}(x) \quad , \quad \psi_{Ek}(x) = \exp\left[\frac{i}{\hbar} \left(\frac{\hbar}{i}\right)^k \sigma_k(x)\right] \, .$$

Each function $\psi_{Ek}(x)$ need not be an element of $L^2(\mathbb{R})$ but as it is smooth and, due to physical requirements, bounded, the product $\overline{\psi}_{Ek}\left(x+\frac{\xi}{2}\right)\psi_{Ek}\left(x-\frac{\xi}{2}\right)$ is a tempered generalised function.

The analysed approximation can be realised as an iterative procedure, in which the *n*-th approximation $\psi_{E(n)}(x)$ of the wave function $\psi_{E}(x)$ equals

$$\psi_{E(0)}(x) := \psi_{E0}(x)$$

$$\psi_{E(n)}(x) = \psi_{E(n-1)}(x) \cdot \psi_{En}(x) , \ n \ge 1.$$

Applying the Weyl correspondence \mathbf{W}^{-1} to an energy eigenstate $\psi_E(x) := \langle x | \psi_E \rangle = \exp\left(\frac{i}{\hbar}\sigma(x)\right)$ we see that its Wigner function is of the form

$$W_{E}(x,p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} d\xi \,\overline{\psi}_{E}\left(x+\frac{\xi}{2}\right) \psi_{E}\left(x-\frac{\xi}{2}\right) \exp\left(-\frac{i\xi p}{\hbar}\right) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} d\xi \exp\left(\frac{i}{\hbar} \left[\sigma\left(x-\frac{\xi}{2}\right)-\overline{\sigma}\left(x+\frac{\xi}{2}\right)-\xi p\right]\right).$$

Thus

$$W_{E(n)}(x,p) = \int_{-\infty}^{+\infty} W_{E(n-1)}(x,p') W_{En}(x,p-p') dp' =$$

$$= \int_{-\infty}^{+\infty} W_{E(n-1)}(x, p-p'') W_{En}(x, p'') dp''.$$

The semiclassical approximation cannot be applied everywhere. Thus the wave function is a sum of spatially separable functions

$$\psi_E(x) = \sum_{l=1}^k \psi_{Ea_l b_l}(x)$$
$$-\infty \leqslant a_1 < b_1 = a_2 < b_2 = a_3 < \dots < b_{k-1} = a_k < b_k \leqslant \infty.$$

It is a vital question about a phase space counterpart of a state being the superposition of wave functions.

Let us consider a Wigner function originating from a wave function $\psi_{Ea_lb_l}(x)$.

$$W_{Ea_{l}b_{l}}(x,p) = \frac{1}{2\pi\hbar} \int_{\text{Max.}[2(a_{l}-x),2(x-b_{l})]}^{\text{Min.}[2(x-a_{l}),2(b_{l}-x)]} d\xi \,\overline{\psi}_{Ea_{l}b_{l}}\left(x+\frac{\xi}{2}\right) \times \psi_{Ea_{l}b_{l}}\left(x-\frac{\xi}{2}\right) \exp\left(-\frac{i\xi p}{\hbar}\right).$$

- (i) The Wigner function $W_{Ea_lb_l}(x, p)$ vanishes outside the set $(a_l, b_l) \times \mathbb{R}$.
- (ii) As the function $\psi_{Ea_lb_l}(x)$ itself can be a sum of functions, we see that every Wigner function of a superposition of wave functions with supports from an interval $[a_l, b_l]$ is still limited to the strip $a_l \leq x \leq b_l$.

One can deduce that if an operator \hat{A} in the position representation satisfies the condition

 $\langle x | \hat{A} | x' \rangle \neq 0$ only for a < x, x' < b,

then the function $\mathbf{W}^{-1}(\hat{A})(x,p)$ may be different from 0 only for x contained in the interval (a,b). Moreover, the function $\mathbf{W}^{-1}(\hat{A})(x,p)$ is a smooth function respect to the momentum p. For every $\tilde{x} \in (a,b)$ and every positive number $\Lambda > 0$ there exists a value of momentum \tilde{p} such that $|\tilde{p}| > \Lambda$ and $\mathbf{W}^{-1}(\hat{A})(\tilde{x},\tilde{p}) \neq 0$.

Consider a two-component linear combination of functions

$$Y(x - a_l)\psi_{Ea_lb_l}(x)Y(b_l - x) + Y(x - a_r)\psi_{Ea_rb_r}(x)Y(b_r - x),$$
$$-\infty \leqslant a_l < b_l \leqslant a_r < b_r \leqslant \infty.$$

Its Wigner function

$$W_{E}(x,p) = \mathbf{W}^{-1} \Big(\frac{1}{2\pi\hbar} |\psi_{Ea_{l}b_{l}}\rangle \langle\psi_{Ea_{l}b_{l}}| \Big) + \mathbf{W}^{-1} \Big(\frac{1}{2\pi\hbar} |\psi_{Ea_{r}b_{r}}\rangle \langle\psi_{Ea_{r}b_{r}}| \Big) + \mathbf{W}^{-1} \Big(\frac{1}{2\pi\hbar} |\psi_{Ea_{l}b_{l}}\rangle \langle\psi_{Ea_{r}b_{r}}| + \frac{1}{2\pi\hbar} |\psi_{Ea_{r}b_{r}}\rangle \langle\psi_{Ea_{l}b_{l}}| \Big).$$

The interference operator $\hat{\text{Int}} := |\psi_{Ea_lb_l}\rangle \langle \psi_{Ea_rb_r}| + |\psi_{Ea_rb_r}\rangle \langle \psi_{Ea_lb_l}|$

- (i) is self-adjoint.
- (ii) It is not a projector.

(iii) Its trace vanishes and it has three possible eigenvalues λ :

$$\lambda = -||\psi_{Ea_{l}b_{l}}||\cdot||\psi_{Ea_{r}b_{r}}||,|-\rangle = \frac{1}{\sqrt{2}} \left(\frac{1}{||\psi_{Ea_{l}b_{l}}||}|\psi_{Ea_{l}b_{l}}\rangle - \frac{1}{||\psi_{Ea_{r}b_{r}}||}|\psi_{Ea_{r}b_{r}}\rangle\right)$$

 $\lambda = 0 \text{, its eigenvector is every vector orthogonal to } |\psi_{Ea_lb_l}\rangle \text{ and } |\psi_{Ea_rb_r}\rangle,$ $\lambda = ||\psi_{Ea_lb_l}|| \cdot ||\psi_{Ea_rb_r}||, |+\rangle = \frac{1}{\sqrt{2}} \left(\frac{1}{||\psi_{Ea_lb_l}||} |\psi_{Ea_lb_l}\rangle + \frac{1}{||\psi_{Ea_rb_r}||} |\psi_{Ea_rb_r}\rangle\right).$

The interference operator Int exchanges directions of vectors $|\psi_{Ea_lb_l}\rangle \rightleftharpoons |\psi_{Ea_rb_r}\rangle$.

$$\hat{\operatorname{Int}}|\psi_{Ea_lb_l}\rangle = ||\psi_{Ea_lb_l}||^2 |\psi_{Ea_rb_r}\rangle \quad , \quad \hat{\operatorname{Int}}|\psi_{Ea_rb_r}\rangle = ||\psi_{Ea_rb_r}||^2 |\psi_{Ea_lb_l}\rangle.$$

The function $W_{Eint}(x, p)$ representing the interference term is determined by the integral

$$W_{Eint}(x,p) = 2\Re \left(\int_{\text{Max.}[2(a_l-x),2(x-a_r)]}^{\text{Min.}[2(b_l-x),2(x-a_r)]} d\xi \,\overline{\psi}_{Ea_lb_l} \left(x + \frac{\xi}{2} \right) \psi_{Ea_rb_r} \left(x - \frac{\xi}{2} \right) \times \exp \left(-\frac{i\xi p}{\hbar} \right) \right).$$

The function $W_{Eint}(x, p)$

- (i) is different from 0 for $x \in \left(\frac{a_l+a_r}{2}, \frac{b_l+b_r}{2}\right)$. This interval in general is not contained in the sum of intervals $(a_l, b_l) \cup (a_r, b_r)$.
- (ii) Hence the interference part of a Wigner function may be nonzero at points with abscissas, at which two wave functions $\psi_{Ea_lb_l}(x)$ and $\psi_{Ea_rb_r}(x)$ disappear.
- (iii) The function $W_{Eint}(x, p)$ is real.
- (iv) It does not contribute to the spatial density of probability, because

$$\varrho_{int}(x) = \int_{-\infty}^{+\infty} dp \, W_{E\,int}(x,p) = 0.$$

- 2 INGREDIENTS OF THE WKB CONSTRUCTION
- (v) Hence

$$\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dp \, W_{E\,int}(x,p) = \int_{\frac{a_l+a_r}{2}}^{\frac{b_l+b_r}{2}} dx \int_{-\infty}^{+\infty} dp \, W_{E\,int}(x,p) = 0.$$

(vi) The integrals

vanish.

$$\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dp \, W_{Eint}(x,p) W_{Ealbl}(x,p) = 0,$$
$$\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dp \, W_{Eint}(x,p) W_{Earbr}(x,p) = 0$$

(vii) For any observable A(x) depending only on position, the interference Wigner function $W_{Eint}(x, p)$ does not influence the mean value of A(x), because

$$\left\langle A(x)\right\rangle = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dp \, W_{Eint}(x,p)A(x) = 0.$$

The ground state of a 1–D harmonic oscillator is

$$\psi_E(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right) , \quad E = \frac{\hbar\omega}{2}.$$

It can be written as

$$\psi_E(x) = \psi_{E(-)}(x) + \psi_{E(+)}(x),$$

where

$$\psi_{E(-)}(x) = \psi_E(x)Y(-x) , \quad \psi_{E(+)}(x) = \psi_E(x)Y(x).$$

Its Wigner eigenfunction

$$W_E(x,p) = \frac{1}{\pi\hbar} \exp\left(-\frac{p^2 + m^2\omega^2 x^2}{\hbar m\omega}\right)$$

٠

(a) The complete Wigner eigenfunction

(b) The Wigner energy eigenfunction without the interference contribution

(b) The Wigner energy eigenfunction with- (c) The interference Wigner eigenfunction

3 The WKB construction on a phase space

- (i) Division of a spatial domain into parts, in which the approximation can be applied and areas near to turning points.
- (ii) Approximate (up to a chosen degree) and strict solving of respective equations for the phase σ in all regions.
- (iii) Application of connection formulas finding approximate energy levels.
- (iv) Calculating Wigner energy eigenfunctions.

Figure 1: A potential V(x) as a function of x.

4 Example

The Poeschl – Teller potential described by the expression

$$V(x) = -\frac{\hbar^2 a^2}{M} \frac{1}{\cosh^2(ax)},$$

where a > 0 is a parameter.

The energy eigenvalue problem for this potential is solvable for any positive energy E>0

The phases

$$\sigma_0 = \frac{\hbar\sqrt{k^2\cosh^2 ax + 2a^2}}{\sqrt{k^2\cosh 2ax + 4a^2 + k^2}} \left[2\arctan\left(\frac{2a\sinh ax}{\sqrt{k^2\cosh 2ax + 4a^2 + k^2}}\right) + \frac{k}{a}\operatorname{arcsinh}\left(\frac{k\sinh ax}{\sqrt{2a^2 + k^2}}\right) \right]$$

and

$$\sigma_1 = -\frac{1}{2} \ln \left(\hbar \cosh ax \sqrt{k^2 \cosh^2 ax + 2a^2} \right).$$

Figure 2: The strict Wigner function of the Poeschl – Teller potential.