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1 The energy ∗– eigenvalue equation

For a Hamilton function H(~r, ~p ) = ~p 2

2M +V (~r) the ∗– eigenvalue equa-
tion is

H(~r, ~p ) ∗WE(~r, ~p ) = EWE(~r, ~p )

with an additional condition imposed on the Wigner energy eigen-
function WE(~r, ~p )

{H(~r, ~p ),WE(~r, ~p )}M = 0.
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As the ∗– product we use the Moyal product

A(~r, ~p ) ∗B(~r, ~p ) :=
1

(π~)6

∫
R12

d~r ′d~p ′d~r ′′d~p ′′A(~r ′, ~p ′)B(~r ′′, ~p ′′)

× exp

[
2i

~

{
(~r ′′ − ~r ) · (~p ′ − ~p )− (~r ′ − ~r ) · (~p ′′ − ~p )

}]
.

The dot ‘·’ stands for the scalar product.

The above definition is valid for a wide class of tempered distribu-
tions.
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The Moyal product is closed i.e.

∫
R6
A(~r, ~p ) ∗B(~r, ~p )d~r d~p =

∫
R6
B(~r, ~p ) ∗ A(~r, ~p )d~r d~p =∫

R6
A(~r, ~p ) ·B(~r, ~p )d~r d~p.

The mean value of a function A(~r, ~p ) in a state represented by a
Wigner function W (~r, ~p ) equals

〈
A(~r, ~p )

〉
=

∫
R6
A(~r, ~p ) ·W (~r, ~p )d~r d~p.
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The Moyal bracket is defined as

{A(~r, ~p ), B(~r, ~p )}M :=
1

i~

(
A(~r, ~p ) ∗B(~r, ~p )−B(~r, ~p ) ∗ A(~r, ~p )

)
.

Not all of the solutions of the system of the ∗- eigenvalue equations
are physically acceptable.

A Wigner eigenfunctionWE(~r, ~p ) of the Hamilton functionH(~r, ~p )

fulfills the following conditions:

(i) is a real function,

(ii) the ∗– square WE(~r, ~p ) ∗WE(~r, ~p ) = 1
2π~WE(~r, ~p ) and

(iii)
∫
R6WE(~r, ~p )d~rd~p = 1.
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We restrict to the 1– D case. But even in this simplest situation
the system of eigenvalue equations leads to a pair of integral equation.
This is why approximate methods are desirable.

A naive treating of the ∗ – eigenvalue equation as a power series
in the deformation parameter ~ does not work, because Wigner eigen-
functions contain arbitrary large negative powers of ~.
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2 Ingredients of the WKB construction

Eigenstates and eigenvalues of energy can be found by solving the
stationary Schroedinger equation

− ~2

2M
∆ψE(~r ) + V (~r )ψE(~r ) = EψE(~r ).

Every solution of the stationary Schroedinger equation can be writ-
ten as a linear combination of two functions

ψE I(~r ) = exp

(
i

~
σI(~r )

)
and ψE II(~r ) = exp

(
i

~
σII(~r )

)
,

where σI(~r ), σII(~r ) denote some complex valued functions.
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When we substitute functions ψE I(~r ), ψE II(~r ) into the stationary
Schroedinger equation, we obtain that phases σI(~r ) and σII(~r ) satisfy
the partial nonlinear differential equation of the 2nd order

1

2M

(
∇σ(~r )

)2 − i~
2M

∆σ(~r ) = E − V (~r), (1)

for σ(~r ) = σI(~r ) and σ(~r ) = σII(~r ).

In the classical limit ~→ 0 this equation reduces to the Hamilton –
Jacobi stationary equation

1

2M

(
∇σ(~r )

)2
= E − V (~r). (2)
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In the 1–D case Eq. (1) is of the form

1

2M

(
dσ(x)

dx

)2

− i~
2M

d2σ(x)

dx2
= E − V (x).

In some part of its domain the solution can be written as a formal
power series in the Planck constant

σ(x) =

∞∑
k=0

(
~
i

)k
σk(x).
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Thus we receive an iterative system of equations

1

2M

(
dσ0(x)

dx

)2

= E − V (x),

dσ0(x)

dx

dσ1(x)

dx
+

1

2

d2σ0(x)

dx2
= 0,

dσ0(x)

dx

dσ2(x)

dx
+

1

2

(
dσ1(x)

dx

)2

+
1

2

d2σ1(x)

dx2
= 0,

... ... ...

There are two solutions of these equations. They differ on the sign
at even ~ power elements.
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In the case when the phase σ(x) is the power series in the Planck
constant, the wave function

ψE(x) =

∞∏
k=0

ψE k(x) , ψE k(x) = exp

[
i

~

(
~
i

)k
σk(x)

]
.

Each function ψE k(x) need not be an element of L2(R) but as it
is smooth and, due to physical requirements, bounded, the product
ψE k

(
x + ξ

2

)
ψE k

(
x− ξ

2

)
is a tempered generalised function.
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The analysed approximation can be realised as an iterative proce-
dure, in which the n-th approximation ψE(n)(x) of the wave function
ψE(x) equals

ψE(0)(x) := ψE0(x)

ψE(n)(x) = ψE(n−1)(x) · ψE n(x) , n > 1.



2 INGREDIENTS OF THE WKB CONSTRUCTION 13

Applying the Weyl correspondence W−1 to an energy eigenstate
ψE(x) :=

〈
x|ψE

〉
= exp

(
i
~σ(x)

)
we see that its Wigner function is of

the form

WE(x, p) =
1

2π~

∫ +∞

−∞
dξ ψE

(
x +

ξ

2

)
ψE

(
x− ξ

2

)
exp

(
−iξp

~

)
=

=
1

2π~

∫ +∞

−∞
dξ exp

(
i

~

[
σ

(
x− ξ

2

)
− σ

(
x +

ξ

2

)
− ξp

])
.
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Thus

WE(n)(x, p) =

∫ +∞

−∞
WE(n−1)(x, p

′)WE n(x, p− p′)dp′ =

=

∫ +∞

−∞
WE(n−1)(x, p− p′′)WE n(x, p′′)dp′′.



2 INGREDIENTS OF THE WKB CONSTRUCTION 15

The semiclassical approximation cannot be applied everywhere. Thus
the wave function is a sum of spatially separable functions

ψE(x) =

k∑
l=1

ψEalbl(x)

−∞ 6 a1 < b1 = a2 < b2 = a3 < . . . < bk−1 = ak < bk 6∞.

It is a vital question about a phase space counterpart of a state being
the superposition of wave functions.
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Let us consider a Wigner function originating from a wave function
ψEalbl(x).

WEalbl(x, p) =
1

2π~

∫ Min.[2(x−al),2(bl−x)]

Max.[2(al−x),2(x−bl)]
dξ ψEalbl

(
x +

ξ

2

)
×

×ψEalbl

(
x− ξ

2

)
exp

(
−iξp

~

)
.

(i) The Wigner functionWEalbl(x, p) vanishes outside the set (al, bl)×
R.

(ii) As the function ψEalbl(x) itself can be a sum of functions, we see
that every Wigner function of a superposition of wave functions
with supports from an interval [al, bl] is still limited to the strip
al 6 x 6 bl.
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One can deduce that if an operator Â in the position representation
satisfies the condition

〈
x|Â|x′

〉
6= 0 only for a < x, x′ < b,

then the function W−1(Â)(x, p) may be different from 0 only for x
contained in the interval (a, b). Moreover, the function W−1(Â)(x, p)

is a smooth function respect to the momentum p. For every x̃ ∈ (a, b)

and every positive number Λ > 0 there exists a value of momentum p̃

such that |p̃| > Λ and W−1(Â)(x̃, p̃) 6= 0.
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Consider a two-component linear combination of functions

Y (x− al)ψEalbl(x)Y (bl − x) + Y (x− ar)ψEarbr(x)Y (br − x),

−∞ 6 al < bl 6 ar < br 6∞.

Its Wigner function

WE(x, p) = W−1
( 1

2π~
|ψEalbl

〉〈
ψEalbl|

)
+W−1

( 1

2π~
|ψEarbr

〉〈
ψEarbr|

)
+

+W−1
( 1

2π~
|ψEalbl

〉〈
ψEarbr| +

1

2π~
|ψEarbr

〉〈
ψEalbl|

)
.
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The interference operator ˆInt := |ψEalbl
〉〈
ψEarbr| + |ψEarbr

〉〈
ψEalbl|

(i) is self-adjoint.

(ii) It is not a projector.

(iii) Its trace vanishes and it has three possible eigenvalues λ:

λ = −||ψEalbl||·||ψEarbr||, |−
〉

=
1√
2

(
1

||ψEalbl||
|ψEalbl

〉
− 1

||ψEarbr||
|ψEarbr

〉)
,

λ = 0 , its eigenvector is every vector orthogonal to |ψEalbl
〉

and |ψEarbr
〉
,

λ = ||ψEalbl||·||ψEarbr||, |+
〉

=
1√
2

(
1

||ψEalbl||
|ψEalbl

〉
+

1

||ψEarbr||
|ψEarbr

〉)
.



2 INGREDIENTS OF THE WKB CONSTRUCTION 20

The interference operator ˆInt exchanges directions of vectors |ψEalbl
〉



|ψEarbr
〉
.

ˆInt|ψEalbl
〉

= ||ψEalbl||
2 |ψEarbr

〉
, ˆInt|ψEarbr

〉
= ||ψEarbr||2 |ψEalbl

〉
.

The function WE int(x, p) representing the interference term is de-
termined by the integral

WE int(x, p) = 2<

(∫ Min.[2(bl−x),2(x−ar)]

Max.[2(al−x),2(x−br)]
dξ ψEalbl

(
x +

ξ

2

)
ψEarbr

(
x− ξ

2

)
×

×exp
(
−iξp

~

))
.
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The function WE int(x, p)

(i) is different from 0 for x ∈
(
al+ar

2 , bl+br2

)
. This interval in general

is not contained in the sum of intervals (al, bl) ∪ (ar, br).

(ii) Hence the interference part of a Wigner function may be nonzero
at points with abscissas, at which two wave functions ψEalbl(x) and
ψEarbr(x) disappear.

(iii) The function WE int(x, p) is real.

(iv) It does not contribute to the spatial density of probability, because

%int(x) =

∫ +∞

−∞
dpWE int(x, p) = 0.
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(v) Hence∫ +∞

−∞
dx

∫ +∞

−∞
dpWE int(x, p) =

∫ bl+br
2

al+ar
2

dx

∫ +∞

−∞
dpWE int(x, p) = 0.

(vi) The integrals∫ +∞

−∞
dx

∫ +∞

−∞
dpWE int(x, p)WEalbl(x, p) = 0,∫ +∞

−∞
dx

∫ +∞

−∞
dpWE int(x, p)WEarbr(x, p) = 0

vanish.

(vii) For any observable A(x) depending only on position, the inter-
ference Wigner function WE int(x, p) does not influence the mean
value of A(x), because〈

A(x)
〉

=

∫ +∞

−∞
dx

∫ +∞

−∞
dpWE int(x, p)A(x) = 0.
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The ground state of a 1–D harmonic oscillator is

ψE(x) =
(mω
π~

)1/4
exp

(
−mωx

2

2~

)
, E =

~ω
2
.

It can be written as

ψE(x) = ψE(−)(x) + ψE(+)(x),

where

ψE(−)(x) = ψE(x)Y (−x) , ψE(+)(x) = ψE(x)Y (x).

Its Wigner eigenfunction

WE(x, p) =
1

π~
exp

(
−p

2 + m2ω2x2

~mω

)
.
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(a) The complete Wigner eigenfunction
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(b) The Wigner energy eigenfunction with-
out the interference contribution
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(c) The interference Wigner eigenfunction
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3 The WKB construction on a phase space

(i) Division of a spatial domain into parts, in which the approximation
can be applied and areas near to turning points.

(ii) Approximate (up to a chosen degree) and strict solving of respec-
tive equations for the phase σ in all regions.

(iii) Application of connection formulas - finding approximate energy
levels.

(iv) Calculating Wigner energy eigenfunctions.
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Figure 1: A potential V (x) as a function of x.
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4 Example

The Poeschl – Teller potential described by the expression

V (x) = −~
2a2

M

1

cosh2(ax)
,

where a > 0 is a parameter.

-3 -2 -1 1 2 3
x

-1.0

-0.8

-0.6

-0.4

-0.2

V HxL

The energy eigenvalue problem for this potential is solvable for any
positive energy E > 0
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The phases

σ0 =
~
√
k2 cosh2 ax + 2a2√

k2 cosh 2ax + 4a2 + k2

[
2 arctan

(
2a sinh ax√

k2 cosh 2ax + 4a2 + k2

)
+

k

a
arcsinh

(
k sinh ax√
2a2 + k2

)]
and

σ1 = −1

2
ln
(
~ cosh ax

√
k2 cosh2 ax + 2a2

)
.
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Figure 2: The strict Wigner function of the Poeschl – Teller potential.


