Hamiltonian systems and Maslov indices, corresponding to Schrödinger operators with delta-potentials

Andrei Shafarevich

Joint work with Asilya Suleimanova and Tudor Ratiu

July 8, 2016

Outline

- Introduction
- 2 1D case
- Maslov theory for smooth potentials
- 4 Definition of the operator with δ -potential
- Lagrangian manifold
- 6 Asymptotical eigenvalues
- Jump of the Maslov index

Statement of the problem

Spectral problem for the Schrödinger operator with δ -potential. M — Riemannian manifold, $\dim M \leq 3$.

$$\hat{H} = -\frac{h^2}{2}\Delta + \alpha\delta_P$$

 Δ is the Beltrami – Laplace operator.

Problem: asymptotics of the spectrum as $h \rightarrow 0$.

- R. de L.Kronig, W.G. Penney, Proc. R. Soc. Lond. Ser. A, 130:814, 499-513, 1931.
- F.A. Berezin, L.D. Faddeev "Remarks on the Schrödinger equation with singular potential. Doklady Math., 1961, v.131, pp 1011 1014.
- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden. Solvable models in quantum mechanics. Providence: AMS Chelsea Publishing, 2005.
- S. Albeverio, P. Kurasov. Singular perturbations of differential operators. Cambridge: Cambridge University Press, 2000.

Smooth potential

Let
$$M = \mathbb{R}$$
,

$$\hat{H} = -\frac{h^2}{2} \frac{d^2}{dx^2} + V(x),$$

$$V(x) \to +\infty$$
, $|x| \to \infty$.

1D case
Maslov theory for smooth potentials
Definition of the operator with δ-potential
Lagrangian manifold
Asymptotical eigenvalues

Introduction 1D case Maslov theory for smooth potentials Definition of the operator with δ -potential Lagrangian manifold

 Λ — curve on the phase plane.

$$\frac{1}{2}p^2+V(x)=E.$$

iition of the operator with δ-potential Lagrangian manifold Asymptotical eigenvalues Jump of the Maslov index

Theorem

Let E be solution of the Bohr — Sommerfeld equation

$$\frac{1}{2\pi h}\int_{\Lambda} p dx + \frac{1}{2} = m \in \mathbb{Z}.$$

Then there exists an eigenvalue λ of \hat{H} :

$$\lambda = E + o(h)$$
.

Maslov theory for smooth potentials
Definition of the operator with δ-potential
Lagrangian manifold
Asymptotical eigenvalues
Jump of the Maslov index

δ -potential

$$\hat{H} = -\frac{h^2}{2}\frac{d^2}{dx^2} + V(x) + \alpha\delta(x - x_0).$$

Formal definition:

$$\hat{H}_0 = -\frac{h^2}{2}\frac{d^2}{dx^2} + V(x), \quad x \in \mathbb{R} \backslash x_0.$$

Boundary conditions

$$\psi(x_0+0)=\psi(x_0-0),$$

$$\psi'(x_0+0)-\psi'(x_0-0)=\frac{2\alpha}{h^2}\psi(x_0).$$

1D case
Maslov theory for smooth potentials
Definition of the operator with δ-potential
Lagrangian manifold
Asymptotical eigenvalues

Introduction
1D case
Maslov theory for smooth potentials
definition of the operator with 8-potential

Maslov theory for smooth potentials finition of the operator with δ-potentia Lagrangian manifolo Asymptotical eigenvalues Jump of the Maslov index

Asymptotical eigenvalues Jump of the Maslov index

Theorem

Let E be solution of the equation

$$\cos(\frac{1}{2h}(S_1+S_2)) = \frac{\alpha}{hp(x_0)} \Big(\sin(\frac{1}{2h}(S_1+S_2)) - \cos(\frac{1}{2h}(S_1-S_2)) \Big).$$

Then there exists an eigenvalue λ of \hat{H} :

$$\lambda = E + o(h)$$
.

Maslov theory for smooth potentials
Definition of the operator with δ-potential
Lagrangian manifold
Asymptotical eigenvalues
Jump of the Maslov index

Limit cases

$$rac{lpha}{h}
ightarrow {
m 0}$$
 ,

$$\frac{S_1+S_2}{2\pi h}+\frac{1}{2}=m\in\mathbb{Z},$$

$$\frac{\alpha}{h} \to \infty$$
,

$$\frac{S_1}{2\pi h} + \frac{1}{4} = m_1 \in \mathbb{Z}, \quad \frac{S_2}{2\pi h} + \frac{3}{4} = m_2 \in \mathbb{Z}.$$

Maslov theory for smooth potentials.

$$\hat{H} = -\frac{h^2}{2}\Delta + V(x).$$

Let Λ be compact invariant manifold of the classical Hamilton system on T^*M with the Hamilton function $H = \frac{1}{2}|p|^2 + V(x)$.

Theorem

(V.P. Maslov) Let ∧ satisfies quantization condition

$$\frac{1}{2\pi h}[\theta] + \frac{1}{4}[\mu] \in H^1(\Lambda, \mathbb{Z})$$

and let \hat{H} be self-adjoint. Then there exists a point λ of the spectrum, such that

$$\lambda = H|_{\Lambda} + O(h^2).$$

$$\theta = \sum_{j} p_{j} dx_{j}.$$

$$\frac{1}{2\pi h}\int_{\gamma} \theta + \frac{1}{4}\mu(\gamma) = m \in \mathbb{Z}.$$

 μ — Maslov index. $\pi: T^*M \to M$ — natural projection, Σ — cycle of singularities of π .

$$\mu(\gamma) = \gamma \circ \Sigma.$$

Example: integrable Hamiltonian system, $H = \frac{1}{2}|p|^2 + V(x)$. Λ — Liouville tori, I — action variables. Quantization conditions

$$\frac{1}{h}I_j+\frac{1}{4}\mu_j=m_j\in\mathbb{Z}.$$

Definition of the operator with delta-potential δ_P (Berezin, Faddeev). 2 properties

- Ĥ is self-adjoint;
- If $\psi(P) = 0$, then $\hat{H}\psi = -\frac{h^2}{2}\Delta\psi$.

Formal definition. $\hat{H}_0 = -\frac{h^2}{2}\Delta|_{\psi \in H^2(M), \psi(P)=0}$. \hat{H} is a self-adjoint extension of \hat{H}_0 .

Definition of the operator with delta-potential δ_P (Berezin, Faddeev). 2 properties

- Ĥ is self-adjoint;
- If $\psi(P) = 0$, then $\hat{H}\psi = -\frac{h^2}{2}\Delta\psi$.

Formal definition. $\hat{H}_0 = -\frac{h^2}{2}\Delta|_{\psi \in H^2(M), \psi(P)=0}$. \hat{H} is a self-adjoint extension of \hat{H}_0 .

Explicit description of the domain. For $\psi \in D(\hat{H})$ we have a decomposition

$$\psi = aF(x) + b + o(1),$$

$$F=-rac{1}{4\pi d(x,P)},\quad \mathrm{dim}M=3,\quad F=rac{1}{2\pi}\log d(x,P),\quad \mathrm{dim}M=2.$$

Boundary condition

$$a = \frac{2\alpha}{h^2}b.$$

Explicit description of the domain.

For $\psi \in D(\hat{H})$ we have a decomposition

$$\psi = aF(x) + b + o(1),$$

$$F=-rac{1}{4\pi d(x,P)},\quad \mathrm{dim}M=3,\quad F=rac{1}{2\pi}\log d(x,P),\quad \mathrm{dim}M=2.$$

Boundary condition

$$a=\frac{2\alpha}{h^2}b.$$

Symmetric manifold

Let M be 2D surface of revolution or 3D spherically symmetric manifold, $M \cong S^2$ or $M \cong S^3$.

$$M \subset \mathbb{R}^3$$
, $y = (f(z)\cos\varphi, f(z)\sin\varphi f(z), z)$

or

$$M \subset \mathbb{R}^4$$
, $y = (f(z)\cos\theta\cos\varphi, f(z)\cos\theta\sin\varphi f(z), f(z)\sin\theta, z)$

$$z \in [z_1, z_2],$$

 $f = \sqrt{(z - z_1)(z_2 - z)}w(z), w$ — analytic.

Result: Lagrangian manifold

$$\Lambda_0: p \in T_P^*M, \quad |p| = 2E, \Lambda = \bigcup_t g_t \Lambda_0, g_t$$
 — geodesic flow.

$$\Lambda \cong \mathit{T}^2, \quad \mathrm{dim} \mathit{M} = 2, \Lambda \cong \mathit{S}^2 \times \mathit{S}^1, \quad \mathrm{dim} \mathit{M} = 3.$$

1D case
Maslov theory for smooth potentials
Definition of the operator with δ-potential
Lagrangian manifold
Asymptotical eigenvalues

Trajectories

1D case
Maslov theory for smooth potentials
Definition of the operator with δ-potential

Lagrangian manifold

Asymptotical eigenvalues

Lagrangian manifold

Result: eigenvalues

Theorem

Let E be solution of the equation

$$\tan(\frac{1}{2h}\oint_{\gamma}(p,dx)) = \frac{2}{\pi}(\log(\frac{\sqrt{2E}}{h}) + \frac{\pi h^2}{\alpha} + c), \quad n = 2,$$

c is Euler constant.

$$\tan(\frac{1}{2h}\oint_{\gamma}(p,dx))=\frac{2h^3}{\sqrt{2E}\alpha},\quad n=3.$$

Theorem

Here γ is closed geodesic.

There exists an eigenvalue λ of \hat{H} , such that

$$\lambda = E + o(h)$$
.

Critical values of α .

2D-case. Let

$$\frac{\alpha \log 1/h}{h^2} \to 0$$
 or $\frac{\alpha \log 1/h}{h^2} \to \infty$.

Then E up to small terms satisfies

$$\frac{1}{2\pi h}\int_{\gamma}(p,dx)+\frac{1}{2}=m\in\mathbb{Z}.$$

Critical value

$$\alpha \sim \frac{h^2}{\log(1/h)}$$
.

Critical values of α .

3D case.

Let $\alpha/h^3 \to 0$. Then E satisfies

$$\frac{1}{2\pi h}\int_{\gamma}(p,dx)+\frac{1}{2}=m\in\mathbb{Z}.$$

Let $\alpha/h^3 \to \infty$. Then E satisfies

$$rac{1}{2\pi h}\int_{\gamma}(p,dx)=m\in\mathbb{Z}.$$

Critical value $\alpha \sim h^3$.

In 3D case the analog of the Maslov index jumps as α passes through the critical value. $\Lambda_0: p \in T_P^*M, |p| = 2E,$ $F: \Lambda_0 \to \Lambda_0, F(p) = -p$

General formula for big α

$$\frac{1}{2\pi h}\int_{\gamma}(p,dx)+\frac{1}{4}(\mu(\gamma)+(\deg F-1))=m\in\mathbb{Z}.$$

THANK YOU FOR YOUR ATTENTION!