Geometry and Topology on the Bethe Ansatz for the Periodic ASEP model

Axel Saenz

University of California, Davis

July 2, 2016

Axel Saenz Geometry and Topology on the Bethe Ansatz for the Periodic A

- Thank you for letting me speak!
- Joint work with Eric Brattain (UC Davis) and Norman Do (Monash University).
- The Completeness of the Bethe Ansatz for the Periodic ASEP (*arXiv:1511.03762v1*).

- Thank you for letting me speak!
- Joint work with Eric Brattain (UC Davis) and Norman Do (Monash University).
- The Completeness of the Bethe Ansatz for the Periodic ASEP (*arXiv:1511.03762v1*).

Theorem (E. Brattain, N. Do, A.S. 2015)

The Bethe ansatz is complete for the periodic ASEP model.

I will introduce the components of Theorem 1 :

- ASEP Model
 - Continuous Markov Process.
- Bethe Ansatz
 - Educated guess of the solution.
- Proof of Theorem 1 (Sketch!)
 - Counting all the solutions given by the ansatz.

Figure : ASEP on a line.

- A asymmetric
- S simple
- E exclusion
- P process

Figure : ASEP on a line.

- A asymmetric: non-equilibrium statistical mechanics.
- S simple: the hops are either one position the left or right.
- E exclusion: no two particles can be on the same position.
- P process: continuous Markov process.

Figure : ASEP on a line.

- A asymmetric: non-equilibrium statistical mechanics.
- S simple: the hops are either one position the left or right.
- E exclusion: no two particles can be on the same position.
- P process: continuous Markov process.

The advantage of this model is that while in spite of its simplicity, it carries a rich structure. Namely, it's an *Exactly Solvable Model* through the Bethe ansatz. This has made this model the poster child for non-equilibrium mechanics (e.g. driven lattice gases with hard core repulsion) and the KPZ universality class (e.g. 1 + 1 random growth interfaces).

Figure : ASEP on a line.

- L sites.
- N particles.
- Particles jump with probability p to the right and probability q to the left.
- The configuration of the system is represented by the position of the particles.

Figure : ASEP on a line.

- L sites.
- N particles.
- Particles jump with probability p to the right and probability q to the left.
- The configuration of the system is represented by the position of the particles.
 - i.e. (1, 3, 4, 5, 8, 11, 12, 14)

Figure : ASEP on a ring.

Our state space on a ring of length L is $\bigotimes_{i=1}^{L} \mathbb{C}_{i}^{2}$ with a basis $\{e_{S} | S \subset [L]\}$, where $\mathbb{C}_{i}^{2} = \langle e_{i}^{+}, e_{i}^{-} \rangle$ and

$$e_{S} = \left(\bigotimes_{i \in S} e_{i}^{+}\right) \otimes \left(\bigotimes_{i \in [L] \setminus S} e_{i}^{-}\right)$$

We have conservation of particles. We fix N and consider $span\{u_S | |S| = N\}$ the space of N particles on a ring of length L. We use the notation

$$\langle x_1,\ldots,x_N|=e_{\{x_1,\ldots,x_N\}}$$

to make the coordinate dependence more explicit.

Periodic ASEP Model

Figure : ASEP on a line.

• The transition rate matrix governing the process is a sum of local jumps operators

$$M = \sum_{i=1}^{L} M_{i}, \qquad M_{i} : \mathbb{C}_{i}^{2} \otimes \mathbb{C}_{i+1}^{2} \to \mathbb{C}_{i}^{2} \otimes \mathbb{C}_{i+1}^{2}$$
$$M_{i} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -q & p & 0 \\ 0 & q & -p & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• The fact that the sum of each column is zero represents the conservation of probability.

Figure : ASEP on a ring.

Given a state $\sum_{\vec{x}} \langle x_1, \ldots, x_N | u(x_1, \ldots, x_N; t)$ at time t, the state at time t + dt is given by

$$\left(\sum_{\vec{x}} \langle x_1, \ldots, x_N | u(x_1, \ldots, x_N; t)\right) M dt = \sum_{\vec{x}} \langle x_1, \ldots, x_N | du(x_1, \ldots, x_N; t + dt)$$

The coefficients $u(x_1, \ldots, x_N; t)$ can be thought of as the probability of being in state $\langle x_1, \ldots, x_N \rangle$ at time t given some initial conditions determined by $u(x_1, \ldots, x_N; 0)$.

The transition rate matrix translates into the *master equation* on the coefficients

$$\frac{du}{dt} = \sum_{i=1}^{N} \left[pu(x_i-1)\tilde{\delta}_{i,i-1} + qu(x_i+1)\tilde{\delta}_{i+1,i} - pu(x_i)\tilde{\delta}_{i+1,i} - qu(x_i)\tilde{\delta}_{i,i-1} \right]$$

- $u(x_i \pm 1)$ is a shorthand for $u(x_1, \ldots, x_{i-1}, x_i \pm 1, x_{i+1}, \ldots, x_N; t)$.
- Define $\tilde{\delta}_{i,j} = 0$ if $x_i = x_j + 1$ and $\tilde{\delta}_{i,j} = 1$ otherwise.

Periodic boundary conditions impose:

$$u(x_1,\ldots,x_N;t)=u(x_2,\ldots,x_N,x_i+L;t).$$

• The initial state $Y = (y_1, \ldots, y_N)$ imposes:

$$u(x_1,\ldots,x_n)=\delta_{X,Y}.$$

Figure : Hans Bethe

We use the Bethe ansatz to solve the eigenvalue problem.

$$\frac{d}{dt}\sum_{\vec{x}}\langle \vec{x}|u(\vec{x};t)=E\sum_{\vec{x}}\langle \vec{x}|u(\vec{x};t)=\left(\sum_{\vec{x}}\langle \vec{x}|u(\vec{x};t)\right)M.$$

Method introduced to by H. Bethe in 1931 to solve the 1D Heisenberg XXZ spin-chain model. Since, it has been used in many 1D models that are restricted by some boundary conditions (e.g. periodic boundaries, reservoirs at the boundaries, monodromies).

• If all the particles are far apart from each other, there is no interactions. The master equation is:

$$\begin{split} \frac{\partial u}{\partial t} &= \sum_{i=1}^{N} \left[pu(x_i - 1) \tilde{\delta}_{i,i-1} + qu(x_i + 1) \tilde{\delta}_{i+1,i} - pu(x_i) \tilde{\delta}_{i+1,i} - qu(x_i) \tilde{\delta}_{i,i-1} \right] \\ &= \sum_{i=1}^{N} \left[pu(x_i - 1) + qu(x_i + 1) - pu(x_i) - qu(x_i) \right] \\ &= \sum_{i=1}^{N} \left[pu(x_i - 1) + qu(x_i + 1) - u(x_i) \right] \end{split}$$

• The interactions are recorded by the boundary conditions:

$$pu(x_i, x_i) + qu(x_i + 1, x_i + 1) - u(x_i, x_i + 1) = 0$$

The Bethe ansatz proposes solutions of the form:

$$u_{\vec{z}}(x_1,\ldots,x_N) = \sum_{\sigma \in S_N} A_{\sigma} \prod_{i=1}^N z_{\sigma(i)}^{x_i}.$$

- S_N is the symmetric group on N elements.
- The solutions are parametrized by vectors $\vec{z} \in \mathbb{C}^N$.
- The coefficients $A_{\sigma} \in \mathbb{C}$ are set to satisfy the boundary conditions.

$$u_{\vec{z}}(x_1,\ldots,x_N) = \sum_{\sigma \in S_N} A_{\sigma} \prod_{i=1}^N z_{\sigma(i)}^{x_i}.$$

Recall, the boundary conditions:

$$pu(x_i, x_i) + qu(x_i + 1, x_i + 1) - u(x_i, x_i + 1) = 0$$

$$u_{\vec{z}}(x_1,\ldots,x_N) = \sum_{\sigma \in S_N} A_{\sigma} \prod_{i=1}^N z_{\sigma(i)}^{x_i}.$$

Recall, the boundary conditions:

$$pu(x_i, x_i) + qu(x_i + 1, x_i + 1) - u(x_i, x_i + 1) = 0$$

Then:

$$A_{\sigma}(z_1,\ldots,z_N) = \prod_{\text{inversions }(i,j)} - rac{p+qz_iz_j-z_i}{p+qz_iz_j-z_j}$$

• An inversion of a permutation σ is a pair (i, j) such that i < j and $\sigma(i) > \sigma(j)$.

$$u_{\vec{z}}(x_1,\ldots,x_N) = \sum_{\sigma \in S_N} A_{\sigma} \prod_{i=1}^N z_{\sigma(i)}^{x_i},$$

and the coefficients:

$$A_{\sigma}(z_1,\ldots,z_N) = \prod_{\text{inversions }(i,j)} - \frac{p + qz_iz_j - z_i}{p + qz_iz_j - z_j}$$

The periodicity constraint:

$$u(x_1,\ldots,x_N)=u(x_2,\ldots,x_N,x_i+L).$$

$$u_{\vec{z}}(x_1,\ldots,x_N) = \sum_{\sigma \in S_N} A_{\sigma} \prod_{i=1}^N z_{\sigma(i)}^{x_i},$$

and the coefficients:

$$A_{\sigma}(z_1,\ldots,z_N) = \prod_{\text{inversions }(i,j)} - rac{p+qz_iz_j-z_i}{p+qz_iz_j-z_j}$$

The periodicity constraint:

$$u(x_1,\ldots,x_N)=u(x_2,\ldots,x_N,x_i+L).$$

Then, we obtain the Bethe ansatz equations:

$$z_j^L = (-1)^{N-1} \prod_{i=1}^N \frac{p + qz_j z_i - z_j}{p + qz_j z_i - z_i}$$
 for $j = 1, 2, \dots, N$

Theorem (E. Brattain, N. Do, A.S. 2015)

The Bethe ansatz is complete on the periodic ASEP model for generic parameters L, N, and p.

Theorem (E. Brattain, N. Do, A.S. 2015)

The Bethe ansatz is complete on the periodic ASEP model for generic parameters L, N, and p.

- We treat *p* as a complex number.
- The generic condition states that *p* lies in a Zariski open set, and no conditions on *L* or *N*.
- We show that there exists $\binom{L}{N}$ non-trivial solutions to the Bethe ansatz.
- The solutions are linearly independent.

Lets consider the two particle case (i.e. N = 2) to highlight our expectations and possible difficulties. The proposed solutions are:

$$u(x_1, x_2) = A_{12}z_1^{x_1}z_2^{x_2} + A_{21}z_1^{x_2}z_2^{x_1},$$

with the coefficients related by:

$$A_{12} = -A_{21} \frac{p + qz_1z_2 - z_1}{p + qz_1z_2 - z_2},$$

and the Bethe equations:

$$z_1^L = -\frac{p+qz_1z_2-z_1}{p+qz_1z_2-z_2}, \qquad z_2^L = -\frac{p+qz_1z_2-z_2}{p+qz_1z_2-z_1}.$$

Note that if $z = z_1 = z_2$

- $A_{12}z_1^{x_1}z_2^{x_2} + A_{21}z_1^{x_2}z_2^{x_1} = (A_{12} + A_{21})z^{x_1 + x_2}.$
- $A_{12} = -A_{21} \frac{p+qz_1z_2-z_1}{p+qz_1z_2-z_2} = -A_{21}.$
- So, $u(x_1, x_2) = 0$.

This is what we call an *inadmissible* solution. In the two particle case, we show that all the inadmissible solutions are of the form $z_1 = z_2$, and in for general L and N, we classify all the *inadmissible* conditions. Back in the N = 2, case

$$(z_1z_2)^L = \left(-\frac{p+qz_1z_2-z_1}{p+qz_1z_2-z_2}\right)\left(-\frac{p+qz_1z_2-z_2}{p+qz_1z_2-z_1}\right) = 1.$$

Thus, in solving the Bethe equations, we will let $z_2 = \epsilon z_1^{-1}$ for some L^{th} root of unity.

Given the Bethe equations:

$$z_1^L = -\frac{p+qz_1z_2-z_1}{p+qz_1z_2-z_2}, \qquad z_2^L = -\frac{p+qz_1z_2-z_2}{p+qz_1z_2-z_1},$$

and $z_2 = \epsilon z_1^{-1}$ for some L^{th} root of unity. We have:

$$z_1^L = -rac{p+q\epsilon-z_1}{p+q\epsilon-\epsilon z_1^{-1}},$$

which is equivalent to the degree L polynomial

$$(p+\epsilon q)z_1^L - \epsilon z_1^{L-1} - z_1(p+\epsilon q) = (z_1 \pm \epsilon^{1/2})f(z_1,p)$$

The factor $(z_1 \pm \epsilon^{1/2})$ correspond to the *inadmissible* solutions and the \pm is determined by the parity of *L*.

In order to make the previous argument precise we recall:

Theorem (Lefschetz)

Given two (differentiable) functions $\psi, \phi : C \to X$ on compact orientable manifolds. The number of solutions (up to multiplicity) of the equation $\psi(pt) = \phi(pt)$ is given by the Lefschetz coincidence number:

$$\lambda(\psi,\phi) = \sum_{n=0}^{\dim_{\mathbb{R}} X} (-1)^n \operatorname{Tr}(\psi_n \phi^n).$$

where $\psi_n : H_n(C) \to H_n(X)$ is the pushforward in homology and $\phi^n : H_n(X) \to H_n(C)$ is the Poincaré dual of the pullback in cohomology.

Example: Lefschetz Theorem on Two Particles

Let
$$X = C = \mathbb{C}^3$$
 and the define $\psi, \phi : C \to X$ by
 $\phi(z_1, z_2, w_{12}) = (z_1^L, z_2^L, w_{12})$
 $\psi(z_1, z_2, w_{12}) = (w_{12}, w_{12}^{-1}, -\frac{p + qz_1z_2 - z_1}{p + qz_1z_2 - z_2}).$

The coincidence equation $\phi(pt) = \psi(pt)$ becomes

$$\begin{aligned} z_1^L &= w_{12} \\ z_2^L &= w_{12}^{-1} \\ w_{12} &= -\frac{p+qz_1z_2-z_1}{p+qz_1z_2-z_2}, \end{aligned}$$

equivalent to the Bethe equations

$$z_1^L = -\frac{p+qz_1z_2-z_1}{p+qz_1z_2-z_2}, \qquad z_2^L = -\frac{p+qz_1z_2-z_2}{p+qz_1z_2-z_1},$$

For
$$X = C = \mathbb{C}^3$$
 and $\psi, \phi : C \to X$ by
 $\phi(z_1, z_2, w_{12}) = (z_1^L, z_2^L, w_{12})$
 $\psi(z_1, z_2, w_{12}) = (w_{12}, w_{12}^{-1}, -\frac{p + qz_1z_2 - z_1}{p + qz_1z_2 - z_2}).$

The Lefschetz Theorem doesn't quite apply since \mathbb{C}^3 is not compact and the third component of ϕ is not well-defined on the locus:

 $p + qz_1z_2 - z_2 = 0 = p + qz_1z_2 - z_1.$

We fix this by letting $\mathbb{C}^3 \hookrightarrow (\mathbb{CP}^1)^3 = X$ and C = Blow(X).

The next step is to compute the trace of the maps

 $\psi_n: H_n(C) \to H_n(X)$ $\phi^n: H_n(X) \to H_n(C).$

In this case, we have $H_*(X) = \bigoplus_{n=0}^6 H_n(X) \cong \mathbb{C}^8$ and $\bigoplus_{n=0}^6 H_n(C) \cong H_*(X) \oplus H$ and the Lefschetz coincidence $\lambda(\psi, \phi)$ is the trace of an 8 by 8 matrix. In the end, we establish a bijection

 $\lambda(\psi, \phi) = #\{$ Rooted Planted Forest $\}.$

Along with combinatorics, this establishes Theorem 1.

Thank you for your attention!

Random Growth

Figure : Random Growth.

- Occupied position is to slope $-\frac{1}{2}$ as vacant position is to slope $\frac{1}{2}$.
- Height function h(x, t).
- Initial Conditions.