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As it is well known [25, 15, 13, 37|, many of integrable Hamiltonian systems,
discovered during the last decades, on the Lie-algebraic properties of their
internal hidden symmetry structures. A first account of the Hamiltonian op-
erators and related differential-algebraic structures, lving in the background of
integrable systems was given by 1. Gelfand and 1. Dorfman [28, 22] and later was
extended by B. Dubrovin and S. Novikov [23, 24|, and also by A. Balinski and
5. Novikov [9]. There were also devised some new special differential-algebraic
techniques [41] for studying the Lax type integrability and the structure of
related Hamiltonian operators for a wide class of the Riemann tvpe hyvdrody-
namic hierarchies. Just recently a lot of works appeared [4, 5, 6, 35] being
devoted to the finite dimensional representations of the Novikov algebra. Their
Importance for constructing integrable multi-component nonlinear Camassa-
Holm type dynamical systems on functional manifolds was demonstrated by L
Strachan and B. Szablikowski in [47], where there was suggested in part the
Lie-algebraic imbedding of the Novikov algebra into the general Lie-Poilsson
orbits scheme of classification Lax type integrable Hamiltonian systems. It 1s
also worth of mentioning the related work [29] by D. Holm-R. Ivanov where
there were also constructed integrable multi-component nonlinear Camassa-
Holm tyvpe dyvnamical systems on functional manifolds.
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[n our work we succeeded in formal differential-algebraic reformulating the
classical Lie algebraic scheme and developed an effective approach to classi-
fication of the algebraic structures lying in the background of the integrahle
multicomponent Hamiltonian systems. In particular, we have devised a sim-
ple algorithm allowing to construct new algebraic structures within which the
corresponding Hamiltonian operators exist and generate integrable multicom-
ponent dynamical systems. We show, as examples, that the well known Novikov
algebraic structure, obtained before in [28, 9] as a condition for a matrix dif-
ferential expression to be Hamiltonian and in [12, 18, 30, 39] as that on a flat
torsion free left-invariant affine connection on affine manifolds, affine struc-
tures and convex homogeneous cones, appears within the devised approach as
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a differentiation on the Lie-algebra, naturally associated with a suitably con-
structed differential loop algebra. As a direct generalization of this example it is
obtained two new differentiations, whose background algebraic structures coin-
cide, respectively, with the well known [2, 27] right Leibniz algebra, introduced
n [lﬁ._ 17. 5’3]._ and with a new so-called non-associative "Riemann” algebra,
which naturally generate different Hamiltonian operators, describing a wide
class of multi-component hierarchies [14, 41] of integrable multi-component hy-

drodynamic Riemann type systems. Their reductions appeared to be closely
related both with the mentioned above integrable Camassa-Holm and with the

Degasperiz-Processi dynamical svstems, and are of special interest from the

equivalence transformation point of view, devised recently in [48]. A classical
Polsson manifold approach, closely related with that analyzed in the work and

allowing effectively enough to construct Hamiltonian operators, 12 also briefly
revisited.
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2. HAMILTONIAN OPERATORS AND THE RELATED ALGEBRAIC STRUCTURES

Assume (A;0) to be a finite dimensional algebra (in general noncommutive

and nonassociative) over the closed field I In addition, we will endow the
algebra A both with the natural Lie algebra extension (Ly;[-,-]) by means

of the usual commutator operation |-,-] : A x A — A and with the natural
nondegenerate ad-invariant symmetric trace-like [10, 11, 45, 47] bilinear form

e Lawly — K-

(2.1) < |a,b],e =< a,[b,¢| =
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for anv a,b and ¢ € L. Based on the algebra A one can construct the related

5! — A and endow it with a suitably

loop algebra A of smooth mappings o
generalized commutator operation |- ] AxA — A subject to the natural
pointwise multiplication operation o -AxA A The corresponding loop Lie
algebra L; is assumed to be naturally rigged with a generalized nondegenerate

bilinear form (-,-) : £y x Ly — K, which is symmetric

(2.2) (a,b) = Ll < a,b>dr=(ba)

for anv a,b £ "C’E'- and ad-invariant

(2.3) (la,8].¢) = (a, [b, c])
for any a,b and ¢ € L5 .
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Remark 2.1. If the symmetric bilinear form (2.2) additionally zatisfies the
shifting property

24) (aob,c)=(a,boc

for any a,b and ¢ € L7, then the ad-invariance condition (2.3) holds.
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The form (2.2) makes it possible to construct the natural identification

A~ A" _1n particular for a linear functional element uEA~A" we alsowil

write, by definition. 1ts left L, A - ﬁa L,a =uoa, and nght R, A=
ﬁh R, 0 :=woaq, shift mappings on A for any a € A Moreover, from (2.2

one easlly follows that for an element u £ A~A" onecan naturally define the

adjoint left L A* = A* and right R, &' = A* shif mappingz, satisfying
the relationships

2.) (La, b) = (a,uch), (Ra, b)=(abou)
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forany a,b &€ A Based on properties listed above, one can naturally 1dentify
the space %., adjoint with respect to the ad-invariant form (2.2) to the loop Lie
algebra L3, with the loop Lie algebra L7 itzelf and consider further the space

of smooth scalar functions ﬂ{ﬁi} on .f:-i jointly with the related Lie-Poisson
bracket on 1t:

(2.6) {f.9}, = (u,[VF(u), Vg(u)])

for any f.g £ 'E’{ﬂ*g}._ where by definition, the weak gradient mapping V
D(L;) — Ly iz defined forany h € D(L5) and all £ € L= at point u € L5 = L3
as

(2.7) (€, Vh(u)) = dh{u+=£)/dz|-=0.
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Owing to the definition [1, 3, 13, 10, 25|, the Lie-Poisson bracket (2.6)
satizfies the classical Jacobi condition, thereby being a verv powerful tool

for constructing the related Hamiltonian operators on the functional space
ﬂ{ﬂi}. In particular, we will call, following [28, 36|, a smooth mapping ¥ :
Ei — Hmn{ﬁz;ﬁi} a Hamiltonian operator if the related bracket

-

(2.8) {f.9}= B(u)Vg(u))

15 determined for any f,g € ﬂ{ﬁ | and satisfies the Jacobi identity.
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Taking into account that the canonical Lie-Piosson bracket (2.6) does not
involve essentially the loop Lie algebra structure of L, we will proceed further
to a new Lie algebra structure on L7 by means of its central extension. Namely,

let £; := L; &K denote the centrally extended Lie algebra £; endowed with
the bracket

2.9) (a;), (b6;8)] := ([a, b]; wy(a, b))}

for any a,b € L; and a, 8 € K, where the 2-cocycle wy 1 Ly x Ly = K isa
skew-symmetric bilinear form satizfying the Jacobi identity:

(2.10) wyl[a, 0], ¢) +wy([b,c|,a) +wsle,al,8) =0
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for any a,b and ¢ € L;. It is evidently that the existence of nontrivial central
extensions on the Lie algebra L; strongly depends on the algebraic structure
of the algebra A lying in the background of the whole construction presented

above. Yet there exist some general algebraic properties which allow to proceed
further with success. Namely, assume that a smooth mapping D : Eﬁ — End

L7 defines for u € ﬂi ~ L7 a weak differentiation of the Lie algebra L3, that
13
(2.11) (¢,Dyla, b]) = (¢, [Dya, b] + [a, Dy b))

for any a.band ¢ € ﬁ& ~ L. Then the following important proposition
35, 45] holds.
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Proposition 2.2. Let a smooth mapping D, - Lz — L+ be for any u € ﬂi“ 0
skew-symmetric differentiation of the Lie algebra L. Then the e:rpms&z’u-n‘

2.12) wi(a,) = (a,Dyd)

foranya,b €Ly andu € Ei: ~ L3 defines a nontrivial 2-cocycle on the Lie
algeora Ly,

A proof iz by means of direct checking the Jacobi identity (2.10) and i
omitted.
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There alzo exist other tools to construct a priort nontrivial differentiations

on the Lie algebra L. For instance, as a simple consequence of Proposition 2.2
the following theorem [22, 35, 45] holds.

Theorem 2.3. Let o nondegenerate

R:L;—=L;

linear skew-symmetric endomorphism
satisfy the well known Yang-Baxter commutator condition:

(2.13) [Ra,Rb] = R[Ra,b] + [a, R

for any a,b € Ly . Then the inverse mapping R™" : Ly — Ly 15 a skew-
symmetric diﬂ??‘f‘ﬂtiﬂtwn of the Lie algebra L; and the expression

(2.14) wala, b) = {a_,’R._ b)
defines for any a,b € L5 a 2-cocycle on L3
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Az an interesting and useful consequence of Theorem 2.3 consists in the fact
that the following subspaces

1
(2.15) L=

177

(I£R)L;

are Lie sub-algebras of L7, splitting it into the direct sum £E£ T E”E._T = L;. In

particular, the R-structures on the Lie algebra L can be effectively exploited
for constructing additional Hamiltonian operators on ﬂi.
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To demonstrate this in more details, we will endow, following 28], the space
L% with the natural differential-algebraic structure assuming it to be a poly-

-
Fa

nomial differential algebra A(u), generated by an element u &£ A* and its
derivatives v/ = Diu,j € L., with respect to the standard differentiation
D, = 8/0z, x € &', on A On the algebra E.«.{*u] one can naturally define
the space of gradient wise differentiations T';(u) consisting of all linear uni-
form mapping £ : i(u} — Der ;‘E(u} where by definition, [¢,, D;| = 0 for any
h € E.{’H:I and the linear expreszsion £, : Ei(u”l — i(u} acts on any element

fE Eﬁ.(u”l as

2.16) (601)(w) = = F(u+ 5h)lema = ') o,
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where f'(u) ﬁ;(u} — ﬁ[u} 15 the standard Frechet derivative on ﬂ(u} at point
u € A* ~ A Taking into account the action of the differentiations —+lu) on
ca

ﬁ{u} one
(EIT} ['E.l'!.r'fg] = 'E[.".',.g-}r

where, by definition, the element {h, g} = g'(h) — h'(g) & ;‘E{u} Following
further [25], on the differential algebra 4 (u) one can determine a space of scalar

n rig it with a natural Lie algebra structure

functionals F;(u) as the set of equivalent elements f ~ h € < E{ﬂ],l = for

"

which f—h ~ D,g for some element g €< A(u),1 > wherel £ AU {1} isthe
identity element, satisfying the conditions lca=ao1 =a for all a £ 4. The
functional set 75 (u) can be naturally identified with the set of scalar integrals

{f= f < f(u),1 > dz : f(u) € Fz(u)}, for which evidently f = b,
ol
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if f =~ h € F;(u). On the space of functionals F;(u) there exists a natural
differential ¢ : Fs(u) — .-’11(1?&(14:)} defined for any f & Fi(u) as

215) 66) = [ < @08 > s,
51

where the conjugation mapping * + " 13 taken with respect to the bilinear form
(2.2) on A introduced before. Owing to the definition of the functional gradient

Vilu) = f"*(u)(1) forall u € A, the expression (2.18) can be equivalently
rewritien as

(2.19) 5F(¢x) = (VF(u),h).
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Bazed now on the action (2.19), one can successively determine the whole

Grassmann algebra ;"L{E_a.(ﬂ]] of differential forms on the differential algebra
Afu), generated by an element u £ A In particular, if a clozed nondegenerate

differential 2-form w'?! 13{511{&11, 5w'? =0, is given on ﬁ;{ﬂ} then via the
well known [1, 3, 13] differential geometric expression

(2.20) ~w (€5, 6) = {f,5}um,
where, by definition, for any f,§ € Fo(u)
(221) 6f() =w?(E7,") = (6u,VF(w), 63() =w? (&) = (bu, Vg(u))

B

on the differential algebra A(u) one determines for any u £ A* ~ A the
corresponding Hamiltonian operator ¥(u) : L5 — .E!L via the identification

(2.22) {f. 5} = (F(u)Vf(u), Va(u)).
D



Within the notions introduced above one can easily state the following [35,
44, 45] proposition.

Proposition 2.4. Assume that the Lie algebra Ly allows a skew-symmetric
nondegenerate R-structure homomorphism R : Ly — L4, satisfying the gener-
alized Yang-Baxter condition

(2.23) Ra, Rb] — R([Ra, b] + [a, Rb]) = —ala, b]

for any a,b € L3 and a € [&. Then differential 2-forms w ) "LE{A (u)),7 =
1.2, on the algebra ﬁh{u} defined as

(2.24) wi” (V7 Vg) = (VF(u), R7V(u))

and

(2.25) wy(V7,V3) = (u, [RVF(u), RVg(u)])

for any f,g‘.‘r - ’E{H} are closed. Moreover, the corresponding Hamilfonian
operators, determined from the relationships (2.24) and (2.25) via the iden-
tifications

(226)  wiV(V:V3) =01V, V3), wi(V;:V;):=(9:VF,V3),

are compatible, that is the sum Ay 4 pd; - Ly — Ei for arbitrary A\, u € K is
also a Hamiltonian operator. )
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In a similar way as above one can state that the validity of the following

35, 31, 44, 45] 50 called "quadratic" compatibility proposition.

Proposition 2.5. Let o skew-symmetric R-structure R : Ly — Ly on the
Lie algebra L5 satisfy the Yang-Baxter condition (2.23). Then the following
brackets

229) {f,gh = (wo Vf(u),R(uo V§(u))) - ( Vf(u)ou, R(V§(u) ow))
and
(230)  {f.g} = (u,[RVf(u), Vg(u)] + [Vf(u), RVg(u))

defined for any f,7 € F+(u), are Poissonian and compatible on E{u}.
D
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3. ALGEBRAIC STRUCTURES RELATED WITH HAMILTONIAN OPERATORS

We start with posing the following problem:

Problem: What conditions should an a priori taken algebra A satisfy that
the respectively constructed operator ¥u) - L3 — E‘{:, uEA ~ E_n;, appeared
to be Hamiltonian?

From the analysis provided above we know well that if this operator ¥(u) :
Ly — IZ* ~ L3 corresponds to some 2-cocycle on the Lie algebra L7, then
1t 1mll he a priort Hamiltonian. Moreover, owing to Theorem 2.3 |f this 2-
cocycle is generated by some differentiation Dy, - Ly — L7, u € At ~ ﬁ_n., on the
Lie algebra L, the problem posed above reduces to dlreﬂ checking the related
Leibniz property (2.11) in L;.
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Example 1. To realize this scheme we proceed with considering for any

il

LEA ~A a simple skew-symmetric differentiation D, .= L} D, + D.L,, :
Ly — L; acting as

31)  (aDub) : =(a(LD:+DsLu)b) =

= (uoa,Dgb)+(a,Duobd)+ (a,uoc Db
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for any a,b € Ly, being parametrized by an arbitrary yet fixed element u €

"

A"~ A and modeling exactly the Hamiltoman operator analyzed before in
28 9. To verify that the expression (3.1) is a differentiation on the Lie
algebra Ly, it is enough to check that the following three-linear weak Leibniz
relationship

3.2) (a,D,[b,¢]) = (a,[D,b,¢] + [b,D,cl]
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holds for any a,band ¢ £ L;. As a result of simple enough calculations, taking
Into account that elements u € ’Ei-" and Dyu & ﬁi are functionally independent,

one obtains that the expression (3.1} is a skew-symmetric weak differentiation
of the Lie algebra ﬂ; Iff there are imposed on the algebra A the following two

algebraic constraints:

(3.3) Loy = Lo, Ls), [Re, Re] =0,
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where for any a.b € A the expressions Lob = ac b and Rzb := bo a denote,
respectively, the induced left and right shifts on the algebra A. The obtained

commutator expressions (3.3) on the algebra A coincide exactly with those
that determine [38] the Novikov algebra by means of the relationships

(3.4) (aob)joec = (aoc)ob,

(aobjoc—(boajoc = aolboc)—bolacc),

which hold for any a,b and ¢ € A, and derived before in [28, 9].
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Thus, we have stated once more that the expression (3.1) determines a
Hamiltonian operator on the functional space F;(u), which a priori is com-
patible with that defined by the canonical Lie-Poisson bracket (2.6), owing

to 1tz central extension origin. The same scheme can be, evidently, applied to
other skew-symmetric operators on the Lie algebra E;, being not necessary

differential.

Remark 3.1. The same way one can construct a new dual Novikov algebra A,
related with the differentiation D, = R} D, + D, R, : ﬂ;j — ’f‘E'- for which
the following relationships

(3.5) Rig4 = [Ro, Ral, [La,Ls] =0,
hold for anv a,b and ¢ € A
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Example 2. We will check a skew-symmetric expression D, = L;B;' +
DL, Ly —=L; for u€ A'~A on L5, acting as
3.6) (@,D,0) = (uoa, D;'b)+(a,D; (uob)

for any a.b € EE'- where the "inverse differentiation” D' - E’E — E; 13

naturally defined by means of the identity relationship D, - D-' =T on A
From (3.6) one easily obtains that

(37)  (a,Dyb)=(uoa,D;'0 > +(a,u0 D;'b) - (a, Dyuo D) + ...
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for any a, b € L, being equivalent to a suitable pseudo-differential expression.
Based on (3.7) one can easily enough derive that the expression (3.6) deter-
mines a skew-symmetric differentiation on the Lie algebra L iff the following
algebraic constraints on the algebra A

(3-3} Hpon = [R'GI.:-RI!:']:- Roop + Bppg =0

are satisfied for any a,b € A. The found above constraintz (3.5) mean that the
corresponding algebra A coincides exactly with the so called [33] right Leibniz
algeora, defined by the following relationships

cof(boa)=(coa)ob—(cob)oa,
cofmob)+colboa)=0

for any a,b and ¢ € A, also intensively studied [2, 16, 17, 33, 27| in the

[iterature.

D

3.9)
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Erxample 5. Now we will consider a skew-symmetric expression D, =
D,L:D;' - D;'L,D,: Ly — Ly for ue A*~ A on L, acting as
{ﬂjf}u b) : =(Dyuc a__ﬂm_]bjl + (a, Dyu G,D;]El] +(ucab)—(a,uch) —
13.10)
—(a,Duo D b) + (a, D3uc D°) + ..
for any a, b € ’EE'- being equivalent to a surtable pseudo-differential expression.
Having checked the corresponding Leibniz property (3.2), we can obtain that

(3.10) determines a skew-symmetric differentiation on the Lie algebra L; iff
the following algebraic constraints

(3”1 [Rn,Rb] =0, Laos = Raos = Lipea
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hold for anv a, b € A. The latter is equivalent to the following relationships on
the algebra A -

(coa)ob

(cob)oa,
(3.12)
(aobjoc = cofacb)=(boa)oc,

zatisfied for any a, b and ¢ € A. The obtained non-associative algebraic structure

(3.12), called Riemann algebra owing to its applications to the integrable Rie-
mann type multi-component hierarchies, can be obtained az a special reduction

of the Novikov algebra (3.4) and characterized by the following Theorem.
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Theorem 3.2. Let an algebra A satisfy the algedraic conditions (5.12). Then
the associated Lie algebra Ly = (A, [,+]) is nilpotent of length 2.

Proof. Really, since relationships (3.12) entail that [4, A] C A* C Z(A), where
Z(A) 15 the center of the algebra A, the statement above holds. ]

It 15 here worthy to mention that similar four-dimensional over the complex

numbers field C algebras, whose associated Lie algebras are n-th nilpotent,
were before studied in [19].
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Concerning the expression (3.10), we can easily observe that for the case of

the loop algebra A it 13 formally equivalent to the skew-symmetric differenti-
ation Dy, = (Lp_ JD; + D Lpu) - Ly — Ly | acting as

(b,Dya) : =(Dguca, D;'b)+(a,DuoD; b)+
3.13)
- < Dj’uﬂ aoh > -I—f.DEuD aoh>—..

for any a,b and ¢ € L+ Really, owing to (2.6), the component (u,|a,b]) =
([u,a,b) = (Adya,b) for any a,b € L; generates the trivial 2-cocycle
@2(a,b) = (Adya,b), since the adjoint mapping Ad, : L; — L; determines,
evidently, a skew-symmetric differentiation of the Lie algebra L.
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It 13 noteworthy to remark here that simultaneously we have stated that the

expressions  (3.1), (3.6) and (3.13) determine Hamiltonian operators on 2
suitably constructed functional space }'E{*u], a priort compatible with that

defined by the canonical Lie-Poisson bracket (2.6) owing to their central ex-
tension ongin. In particular, following the algebraic scheme of the before men-

tioned work 47|, based on the derived above right Lorenz algebra (3.9) and
the new Riemann algebra (3.12) one can describe a wide class of multicompo-

nent completely integrable dynamical systems containing, as follows from the

recent results in [41], infinite hierarchies of the hydrodynamical Riemann type
Systems.
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For mstance, consider the generalized Riemann type dynamical system

(31-1} .Dtﬂ] = Us, ..Dt?.-llg = Ugq, ..., ..Dt?.thr = ﬂ?

where, by definition, D, = 8/dt + w1 D,, u; =< u,¢; > j=1N, foru ¢
A* ~ A and the set {e; €A:j=1,N} for afixed N € L. is the basis for
a suitable representation of the new N-dimensional non-assoclative Riemann
algebra (3.12). The differentiation Dy, : L7 — L3, defined by (3.10) allows to
calculate with respect to the mentioned above representation for cases N =2
and N = 3 the corresponding Hamiltoman operators, coinciding with those
constructed before in [41] modulo the trivial constant 2-cocycles on the loop
Lie algebra L.
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Example §. Really, based on the relationships (3.12) for the case N = 2,

one easily obtains the skew-svmmetric two-dimensional matrix differentiation
representation

— 0 w D!
(3.15) D, = ( Di'uiz weD;'+D7'us, )

colnciding, modulo the trivial constant 2-cocycle

(3.16) @y(a,0) = fo(D;"a,b),
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determined for any a,b £ L; and a suitable symmetric bilinear form f;

Axh— [, with the Hamiltonian operator

ﬂ_] U1 .D_]
317 U = 3 e '
(3.17) mv ( D;'uy, D'+ D;'uy, )

on the space ﬂ(u} for the Riemann type dynamical system (3.14), whose
Hamiltonian representation

315) = (1, 02)T =~y () VBl 1, 20)

holds for the Hamiltonian function Hy € F+(u), defined as

-I 2T
(3.19) H, = Ef (w2 Dpuy — w1 Dyus dx.
0
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Proceeding similarly to the case N = J, one can eazily obtain the skew-

: . : - NP | )
symmetric three-dimensional matrix differentiation Dy - Ly — L5 represen-
tation

0 uy . D! 0
(3.20) D= D7'wiy w.D;'+D 'up. DIlug,
0 g, D 0

coinciding, modulo the trivial constant 2-cocycle

(3.21) w2(a,b) = f3(D;"a,b)
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determined for any a.b € £y and a suitable symmetric bilinear form f; :

AxA— [, with the Hamiltonian operator

D! u D71 0
(3.22) N(w)= | DF'uie weD;'+D;'wr, D7lug,
0 Uz D7 0

on the space E(u} for the Riemann type dynamical system (3.14), whose
Hamiltonian representation

d
(3.23) %(u]-ﬂhuﬁ';ﬁ = —1g(u)VHz|u1, us, ug|

holds for a suitably constructed Hamiltonian function Hy € F;(u).
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Ezample 5. Proceed now to an interesting observation r:-:-nr:e_;ning an infinite
hierarchy [41] of the generalized Riemann type hydrodynamic systems

(3.24) Diuy = up, Dsup = ug, ..., Dyun_1 = (Dylin)°, Deliy =0

on the functional space :ﬂl{u], where s, N € Z. and the algebra A is generated
by the relationships (3.9). For the case s =2 and N =3 the found before
skew-symmetric three-dimensional matrix differentiation fli_jlgj Ly = Ls
representation (3.20) in the form

0 uy ;D] 0
(3.25) D)= | D'w, w.D;'+D 'uy, D'z,
0 T 0
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proves to coinclde, modulo the trivial constant 2-cocycle
(3.26) D2 5(a,b) = f5(D; " a,b)

determined for any a.b € i,'}: and a suitable symmetric bilinear form f5 :

AxA— K, exactly with the Hamiltonian operator

D! uy D77 0
(3.27) fag (W)= | D'z woD;'+D;'ua, D;'sa
0 g ;D7 0

on the space ﬁ;(u} for the Riemann type dynamical system (3.24), whose
Hamiltonian representation

d _ _ _
(3.28) E':“huz-.ﬂar = — M3 (“}?Hﬁm (U1, Uy, Ug)



Il

AGH
holds for the Hamiltonian function Hy, = € Fz(u), defined as
1 [
(3.29) Hyyo =3 : [2u1(Dptiz)” — u; — uj Dyus|dz.

Moreover, one can additionally calculate such a constant 2-cocycle on the Lie
algebra L;

By3(a,0) = fi"(D7'a,0) + £ (a,b),

determmed for any a,b € £ by means of two suitably symmetric bilinear

B B

forms f-ﬂ )-AxAh—Kand skew-symmetric bilinear forms f}f] AxA—-K
which naturally generates the compatible with (3.27) Hamiltonian operator

1

0 1 0
(3.30) Dz (u)= | =1 0 0
0 0 1/2D77
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on the space E{ﬂ} for the same Riemann type dynamical system (3.24), whose
Hamiltonian representation

a -
(3.31) E{ﬂ]..ugrﬁg}r = ~Vypp (u)VH;, (u1,1, )

holds for the Hamiltonian function Hp =~ € F+(u), defined as

-I 2
(3.32) H; =— f wy Dpuy —uy Dyuy — 2(Dyiig) ]dr.
0

3|3 9
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It is interesting to note here, as was already remarked in [42], that the
generalized Riemann type hydrodynamic system (3.24) for 5 = 3N = 3
reduces to the well-known integrable Degasperiz-Processl dynamical svstem
21, 20| for the function u = u; :

(3.33) Ut — Ugpgt + AUy — FUglpy — Ullzer = 0.

Respectively, for s =2 N = 3 the generalized Riemann type hvdrodynamic
system (3.24) for the function u -= u; reduces to the well known |7 integrable
Camasza-Holm dynamical svstem
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whose different multi-component extensions were recently extensively studied
in [26, 29, 8, 47]. As the mentioned above relationships present a nontrivial
interest from mathematical point of view, they are worthy of further investiga-
tion. In particular, these reductions are of special interest from the equivalence
transformation point of view, devised recently in [48].
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4. THE POISSON MANIFOLDS APPROACH REVISITING

It 13 interesting to look at the construction of the Hamiltonian operators
presented above and revizit 1t from the standard point of view, considering them
as those defined on the naturally associated [1, 3, 15, 13, 36, 37, 43| cotangent
space T" (M) to some linear functional manifold M = A Then a Hamiltonian
operator on M is defined [1] as smooth mapping 9 : M — Hom(T* (M ); T(M)),
such that for any fixed u € M the bracket

(4.1) {f,9} = (V(u),9(u) Vg(u)),
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where f, g : M — K are arbitrary smooth mappings from the functional space

D(M) = F;(u), satisfies the Jacobi identity. The bracket (4.1) is determined
on M by means of the natural convolution (-, ) on the produet T"(M ) x T (M),
and respectively, the gradient Vf(u) € T°(M) of a function f € D(M) is
calculated via the relationship

(42) (V(u), ) = dffu+ sh] delecs
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for any h € T(M). It is well known [28, 32| that a linear operator ¥(u) :
T"(M)—T(M), determined at any point u £ M, iz Hamiltonian iff the suit-
ably defined Nijenhuis bracket

(43} [9(w), 9(u)]] =0

identically on M. Namely, based on this condition (4.3) in the works [28, 46]
there were formulated criteria for the operator #(u) : T*(M) — T(M) to be
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Hamiltonian on the functional manifold M. Yet these criteria appear to be very
complicated and related with a large amount of cumbersome calculations even
In the caze of simple enough differential expressions. S0, we have reanalyzed
thizs problem from a slightly different point of view. First. recall that the
Jacobi identity for the bracket (4.1) is completely equivalent to the fact that
the bracket operator defined as Ds(g) = {f,g} for a fixed f € D(M) and
arbitrary ¢ € D(M) acts as a differentiation on the space (D(M);{-,-}):

(4.4) D¢{g,h} = {Ds(g),h} + {9, D5(h)},
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where g, h € D(M ) are taken arbitrary. The latter can be eazily reformulated as
follows: take any element ¢ € T*( M), such that the Frechet derivative ¢'(u) =
©""(u) at any u € M with respect to the convolution (-,-) on T* (M) x T(M),

and construct at any u € M a vector fleld K : M —= T(M) az
(4.9) K(u) = du)olu).

Then the differentiation condition (4.4) can be equivalently rewritten [1, 36,
13, 37, 43] as the correspondingly vanishing Lie derivative of the operator 9(u) -
T*(M)— T(M) along the vector field (4.3

(4.6) Lyd=0 K -9K" - K'9=0
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at any u € M for every "self-adjoint" element ¢ € T"(M). Equivalently,

a taken linear operator ¥(u) : T*(M) — T(M) iz Hamiltonian iff the Lie
derivative (4.6) weakly vanishes for all "self-adjoint" elements ¢ € T"(M).
Moreover, as it was observed in [34], it is enough to check the condition (4.6)
only on the subspace of elements ¢ € T*(M), satisfying the condition y'(u) =0
for any u € M.

[n particular, 1t 15 enough to check that a skew-symmetric matrix-differential
operator on M of the form

(4.7) ?u) = alu)D, + D,a"(u),
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where, by definition, an n-dimensional squared matrix a(u) = {Z Ust;

L

ij
s=1

i,j = In,n € Z.), u € M, satisfies the condition (4.6) iff the linearly

independent elements from Spr:m{e_,- c A :j=T1n! generate the finite di-
K
menszional non-associative Novikov algebra (3.4) and satisfy the conditions

€0 g = Za e, for all i,j = 1,n. Similarly, one can verify that the skew-

a=]
symmetric inverse-differential operator

(48) 9(u) = a(u)D;" + D a" (u),
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where, as above a(u) := () usaj; 1u € M.i,j=Tnn€L.), thesign” 1’
3=1
means the usual matrix transpotion, 15 Hamiltonian 1ff the basic non-associative

algebra A : =5ptm{e_r- - j =1,n} coincides with the right Leibniz algebra (3.9)

and the conditions e; c e; = Za e, for any 1,7 = 1,_?1 hold. The skew-
=]
symmetric inverse-differential operator (4.8) can be naturally generalized to

the expression
(4.9) ?(u) = Dya(u)D; ' — D7 'a” (u)D,,
which can be rewritten equivalently as

(4.10) ?(u) = a(Dyu)D;" + D7 'a"(Dyu) + a(u) — a' (u).
D
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The condition (4.6) for the operator (4.10) to be Hamiltonian reduces to

the constraints on the related non-associative algebra A : =span{e; : j =
4

1,n} exactly coinciding with (3.12), and analyzed in some details in Section
J.

As was already mentioned, based on the matrix representations of the right

Leibniz algebra (3.9) and the new non-associative Riemann algebra (3.12) one
can construct differentiations Dy, : £; — L5 on the associated Lie algebra L
venerating many different Hamiltonian operators suitable for describing a wide
class of multi-component hierarchies 14, 41, 42| of integrable hydrodynamic
Riemann type systems and their different reductions.



J

2. CONCLUSION

In this work we succeeded in formal differential-algebraic reformulating the

criteria [28, 46, 34| for a given differential expression to be Hamiltonian and de-
veloped an effective approach to classification of the algebraic structures lying

In the background of the integrable multicomponent Hamiltonian systems. We
have devized a simple algorithm allowing to construct new algebraic structures
within which the corresponding Hamiltonian operators exist and generate inte-
erable multicomponent dynamical systems. We showed, as examples, that the
well known Novikov algebraic structure, obtained before in |28, 9| as a condition
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for a matrix differential expression to be Hamiltonian, appears within the de-
vized approach as a differentiation on the Lie-algebra, naturally associated with

a zuitably constructed differential loop algebra. By means of a direct gener-
alization of thizs example it 15 obtained new differentiations. whose background
algebraic structures coincide, respectively, with the right Leibniz algebra, intro-
duced in [16, 17, 33] and with a new "Riemann" non-associative algebra, which
generate Hamiltonian operators, describing a wide class of multi-component
hierarchies [14, 41] of integrable multicomponent hydrodynamic Riemann type
systems. Their reductions appeared to be closely related both to the integrable
Camaszsa-Holm and with the Degasperis-Process1 dyvnamical systems, and are
of special interest from the equivalence transformation point of view, devised

recently in [48]. We also briefly revisited a classical Poisson manifold approach
to constructing Hamiltonian operators on functional manifolds.
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