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Abstract

In the present day quantum theories the �-

nite or in�nite products of the exponential op-

erations ea1ea2 . . . ean (and their continuous equiv-

alents) are of the known importance, but the

problem of how to represent them by a single

exponential operation eΩ where Ω is the "phase

operator" presents some combinatorial di�cul-

ties. The report below presents the algorithms

which make this task signi�cantly easier. In

some cases like the 1D oscillator with time de-

pendent elastic force they lead to interesting

exact solutions. In some other more dimen-

sional cases they traduce themselves into the

important non-linear matrix equations.
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INTRODUCTION

In the customary calculation trends of QM some �ne

algebraic problems for non-commuting exponents very

seldom appear. The report below is dedicated to the

exponential functions eaeb for the non-commuting a, b,

also for multiple equivalents ea1ea2 . . . ean where the ak =

−iHkδk represent distinct, non-commuting evolution ste-

ps, as well as to their limiting case i.e. the evolution

generated by the −iH(t)dt where H(t) is a time depen-

dent Hamiltonian. In all these cases, the question is,

how to express it by the single exponential eΩ(t), where

Ω(t) is the "phase operator"?

The attempts to solve the last problem by iterat-

ing the non-linear equation for Ω failed due to the fast

increasing complication of each step. (Magnus writes

about the "combinatorial mess"). However, who is in-

terested in a symbolic but simple solution of the prob-

lem (giving explicatively all the approximation steps in

form of multicommutator expressions), can see it in Sec-

tion 2.3 of this report.

In cases when the operation exponents represent the

�nite dimensional Lie algebra, the terms of the in�-

nite multiple commutator series start to repeat them-
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selves, summing up to some closed matrix expressions.

So it happens for quantum systems with Hamiltonians

quadratic in the canonical operators q1, ..., qn, p1, ...pn.

In the simplest case of 1D time dependent oscillator

Hamiltonians H(t) = p2

2 +β(t)q
2

2 with the variable elas-

tic force, the evolution can be represented by the time

dependent 2×2 symplectic matrix which in the symme-

try intervals of β allows the explicit solutions, o�ering

the soft imitations of the oscillator δ-kicks or the dis-

torted cases of the free evolution (see Section 3.2-3.4

with the corresponding stability maps). Certain many

dimensional models lead also to some interesting non-

linear matrix equations, with possible physical impor-

tance, though in general, they cannot be resolved with-

out the help of computers. In several places our report

o�ers no details, but only hints and references for inter-

ested readers.
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1 THE DISCRETE CASE

1.1 An auxiliary space

A simple exponential structure was considered in 70-

tieth by Jerzy Pleba«ski, who was interested in the

evolution operators generated by a continuous family

of time dependent Hamiltonians, each two commuting

to a number. Surprisingly, one of the most naive solu-

tion was obtained during the discussions at the Warsaw

Institute of Theoretical Physics in 1957, by consider-

ing just two exponents commuting to a number. The

solution was obtained a bit mysteriously, by repeating

the same problem in two identical copies of the Hilbert

space.

Suppose, we have two operators in a Hilbert space

H, commuting to a number α ∈ C. The problem is

to express eaeb as a single exponential eΩ. Then con-

sider a twin copy H′ of the same Hilbert space with

the twin copies a′, b′ of the operators a, b commuting

to the same number [a′, b′] = α. Now de�ne the tensor

product H⊗H′.
The operators a, b, a′, b′ can be interpreted as opera-

tors acting in whole H⊗H′, both a, b transforming only
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the component H without a�ecting H′ and inversely,

a′, b′ transforming H′ without a�ecting H. Hence, the

a, b and their functions commute with a′, b′. It is also es-

sential that in the commutator [a+b′, b+a′] two commu-

tators [a, b] = α and [b′, a′] = −α cancel, so the (a+b′)

and (b+a′) commute.

Now consider the exponential products:
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By multiplying both sides by e−(a+b) from the left and

by e−a
′
e−b

′
from the right one obtains:

The only operator which acts in H without touching

H′ but simultaneously acts in H′ without a�ecting H

is just a number. Hence:

e−(a+b)eaeb = κ ∈ C.

If however ea and eb generate the unitary operations in

H, then κ must also be a unitary operator, implying

κ = eiφ. Hence:

eaeb = eiφea+b.

The result is easily (though just symbolically) extended

to any number of operators or to the quantum evolution

generated by the time dependent Hamiltonians H(t)

commuting to numbers [H(t), H(t′)] = α(t, t′).

It is worth noticing that the auxiliary structures were

used as a legitimate tool to prove some mathematical
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facts not only for the exponential multiplication. The

analogous techniques are recently used by S.L. Woronow-

icz by associating the Heisenberg with 'anti-Heisenberg'

descriptions in his research on quantum groups.

Pleba«ski, meanwhile, considered the argument ex-

tremely peculiar, and he wanted more security. We

have shown the lemma to Iwo Biaªynicki-Birula, who

found that the solution though strange, was correct.

But later on, he found also that the whole result was

just an incomplete form of the very old problem of

Baker�Campbell�Hausdor� (BCH) formula. So it was

indeed, and to check it for a pair (or family) of operators

commuting to a number, a simple di�erential equation

works the best.

1.2 The di�erential equation

Suppose a, b are elements of a certain topological alge-

bra A with some elements a, b commuting to a number

[a, b] = α ∈ C. Then consider the 1-parameter families

eλa and eλb (λ ∈ R). Assume they are continuous and

di�erentiable. Now, apply the derivative d
dλ assuming

that it is linear and with ordinary properties when act-

ing on products. Both eλa and eλb are di�erentiable,

obeying the obvious rules d
dλe

λa = aeλa = eλaa (simi-
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larly for b). Now consider the product

U(λ) = eλaeλbe−λ(a+b).

Its derivative is:

dU

dλ
= eλa(a+b)eλbe−λ(a+b)−eλaeλb(a+b)e−λ(a+b). (1.1)

This can be simpli�ed by an obvious lemma. The for-

mula of Baker [1]:

eλBAe−λB = A + λ[B,A] +
λ2

2!
[B, [B,A]] + . . .

is obtained by developing formally the left side into the

Taylor series in λ. It becomes specially elementary if

only few multicommutators don't vanish. This happens

precisely for B = b and A = a, when already the �rst

commutator is a number [b, a] = −α and commutes

with all the rest. So:

eλbae−λb = a− λα

implying the permutation rules

eλba = (a− λα)eλb

(and the similar one by interchanging a and b and chang-

ing the sign of α). By employing it to the second part

of the formula (1.1) one can interchange eλb with (a+b)
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obtaining to the right of eλa the sum of 5 terms in which

a+ b cancels with −(a+ b) leaving in place only the nu-

meral term −λα, commuting with everything. Hence:

dU(λ)

dλ
= λαU(λ)

is operator valued di�erential equation which can be

easily solved:

U(λ) = e
λ2

2 αU(0) = e
λ2

2 [a,b]U(0)

implying:

eλaeλb = e
λ2

2 αeλ(a+b) = eλ(a+b)+λ2

2 [a,b],

i.e. the �rst approximation step for the general Baker-

Campbell-Hausdor� formula � explaining the exact value

of the phase factor iφ in our previous argument. The

generalization for the multiple or continuous exponents

commuting always to the numbers can be readily ob-

tained.

In the similar formal way, one can show also that

even if [a, b] is not a number, but both double commu-

tators are: [a, [a, b]] ∈ C and [b, [b, a]] ∈ C, then the

multiplication formula becomes:

eλaeλb = eλ(a+b)+λ2

2 [a,b]+λ3

12 ([a,[a,b]]+[b,[b,a]]).
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The cases when all n-th order commutators are num-

bers, or a general exponent in form of an in�nite mul-

ticommutator series require already the use of the "po-

larization derivative" of Hausdor� [2, 1, 3]. The related

challenge is the composition of the continuous exponen-

tial products.

As interesting might be a dual Zassenhaus problem

[4] of how to decompose the exponential eλ(a+b) into the

product of simpler ones. One of the proposed decom-

positions is

eλ(a+b) = eλaeλbe−
λ2

2 [a,b]e
λ3

6 (2[b,[a,b]]+[a,[a,b]]) . . . .

The same result of Friedrichs [6] implies as well that

all increasing order exponents in this in�nite product

are Lie elements (and so, can be always written e.g. in

Dynkin's multicommutator notation).

WHY ALL THIS CAN BE OF INTEREST FOR

PHYSICS?
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2 THE CONTINUOUS CASE

2.1 The limiting process

Some interesting consequences of the traditional Baker�

Campbell�Hausdor� formula arise for increasing num-

ber of the exponential operators with in�nitesimally

small exponents

But good news! If δk −→ 0 the results suggest the dif-

ferential equation for U(t):
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A bad news: it is O.K. to represent U(t) but can suggest

wrong inspirations about its exponent!
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2.2 Approximations of Magnus and Wilcox

To obtain more information about the exponent Ω, Mag-

nus [7] and Wilcox [9] introduced the parameter λ into

the continuous Baker�Campbell�Hausdor� problem
dU

dt
(λ, t) = λA(t)U(λ, t), U(λ, 0) = 1.

They assume that U(λ, t) = eΩ(λ,t). Then they are look-

ing for Ω in form of a symbolic series

Ω(λ, t) =

∞∑
n=1

λn∆n(t)

and tried to �nd it by using the integral equation in-

spired by Hausdor� [3]∫ 1

0

eµΩdΩ

dt
e−µΩdµ = λA(t).

Magnus obtain ∆1, ∆2 and ∆3 and conclude the rest is

"combinatorial mess". Wilcox obtained still ∆4. Among

them only ∆1 and ∆2 are easy to guess:

∆1(t) =

∫ t

0

A(t1)dt1,

∆2(t) =
1

2

∫ t

0

dt1

∫ t1

0

[A(t1), A(t2)]dt2.

The remaining ∆3 and ∆4 are indeed involved even in

multi commutator terms [5, 9, 11]. Yet, much simpler

results follow directly from U(λ, t).
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2.3 The search for explicit expressions

An authentic breakthrough came from the formal series

expression for the U(t).

where

(2.1)

and

θ(t) =

{
1 t ≥ 0

0 t < 0
, θij = θ(ti − tj).
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where

It is important to notice that the formula for Z2 can be

obtained from the expression for Z by an operation X

of dropping some θ'as:
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It turns out that X is the di�erentiation which acts on

θ:

Henceforth, the operationX permits to write down the

continuous analog of Baker�Campbell�Hausdor� formula

with all terms linear in Z:
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where Ln(t1, . . . , tn) are numerical integration kernels
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Since every product θ2,1θ3,2 . . . θk,k−1 contains only the

�nite number of θ'as, then the all higher order deriva-

tives
dn

dθn
, with n > k, vanish and every Ln(t1, . . . , tn)

reduces itself into an explicitly known, �nite combina-

tion of θ-products. For instance:

L1 =1,

L2 =θ2,1 −
1

2
,

L3 =θ3,2θ2,1 −
1

2
θ2,1 −

1

2
θ3,2 +

1

3
,

L4 =θ4,3θ3,2θ2,1 −
1

2
θ4,3θ3,2 −

1

2
θ4,3θ2,1 −

1

2
θ3,2θ2,1+

+
1

3
θ2,1 +

1

3
θ3,2 +

1

3
θ4,3 −

1

4
,

etc.

It is interesting to apply also the integral expression

e−
d
dθ − 1

− d
dθ

=

∫ 1

0

e−µ
d
dθ dµ.

By using the permutation rule

e−µ
d
dθ θij = (θij − µ) e−µ

d
dθ
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one obtains:

Ln(t1, . . . , tn) =

(
e−

d
dθ − 1

− d
dθ

)
θ21 . . . θn,n−1 =

=

∫ 1

0

e−µ
d
dθ (θ21 . . . θn,n−1) dµ =

=

∫ 1

0

(θ21 − µ) . . . (θn,n−1 − µ) dµ.

An interesting consequence was derived in [11]:

Ample discussions of the results in [10, 11] were o�ered

by J. Czy» [12] and I.M. Gelfand [13].
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Due to the theorem of Friedrichs, all terms of the ex-

plicit formula (2.1) are the Lie elements of the free alge-

bra containing the operators A(t). However, if applied

to A(t) of a �nite dimensional Lie group, the increasing

multicommutator terms will show repetitions leading to

�nite dimensional matrix algebras. The simplest case of

this mechanism are the quantum theories of oscillators

with time dependent elastic forces.
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3 VARIABLE OSCILLATORS

3.1 Classical�Quantum equivalence

Between the quantum systems with Hamiltonians quadratic

in canonical variables, the simplest solutions are ob-

tained for 1D oscillators (1 position + 1 momentum)

permitting to simplify the theory due to a notable phe-

nomenon: the 2×2 matrices of the evolution of classical

and quantum (q, p) variables are exactly the same!

25



Note that the two unitary operators U1, U2 which gen-

erate the same transformation of the q, p pairs can di�er

only by a C-number phase. Indeed:

One can consider the operators U1 and U2 equivalent

in any physical experiment. Atte! To underline the

relation between the evolution operator U = U(t, t0)

the corresponding evolution matrix will be denoted u =

u(t, t0).

26



Consequences: The classical canonical transforma-

tions determine the unitary evolution operators. =⇒
The classical motion permits reconstruct the quantum

evolution for general time dependent elastic force−β(t)q.

3.2 Kick operations

The general solutions of both classical and quantum

problem requires the computer solutions of the com-

mon 2× 2 evolution matrix u(t). However, the problem

admits some extremely simple exact solutions.
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Both are easily obtained from the general law of Baker

[1]:
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Here, the sides of the hexagon represent the 6 identical

free evolution intervals for the time τ and all vertices

stand for the oscillator potential kicks with 1
τ forces. By

the same the sequence of 11 operators only must invert

the free evolution during the time τ :
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3.3 The general operations

The description of the soft manipulations in general re-

quires the computer solutions for the matrix equations:

du

dt
(t, τ ) = Λ(t)u(t, τ ),

du

dτ
(t, τ ) = −u(t, τ )Λ(τ ).

An interesting observation was, however, that if β(t)

and therefore Λ(t) is symmetric with respect to some

given moment t = t0, then some results of the evolution

can be exactly predicted. Assume for simplicity t0 = 0

and consider the evolution matrix u = u(t,−t) in a

symmetric interval [−t, t]. Then the equation for u has

the anticommutator form:
du

dt
= Λ(t)u + uΛ(t)

or explicitly

du

dt
=

(
u21 − βu12 Tr u

−βTr u u21 − βu12

)
=

= (u21 − βu12)1 + Tr u

(
0 1

−β 0

)
.

Therefore,

d

dt
(u12u21) = Tr u (u21 − βu12) =

33



= Tr u
1

2

d

dt
Tr u =

1

4

d

dt
(Tr u)2

and integrating

d

dt

[
u12u21 −

1

4
(Tr u)2

]
= 0

⇓
u12u21 −

1

4
(Tr u)2 = C = const.

The initial condition u(0, 0) = 1 imply C = −1 and so

u12u21 = −1

4
(Tr u)2 − 1. (3.1)

Hence, one arrives at the following lemma.

Lemma 3.1. Whenever the evolution matrix u(t) =

u(t,−t) for symmetric β(t) reaches the threshold val-

ues Tr u = ±2, (3.1) implies that either u12 or u21 (or

both) must vanish and simultaneously u11 = u22 = ±1,

leading to the soft evolution cases imitating the oscilla-

tor kicks, incidents of distorted free evolution, or just

one of the evolution loops, all of them with or without

simultaneous parity transformation (see [16, 17]).

3.4 The manipulation by time dependent magnetic �elds

The above results were applied to the evolution oper-

ators induced by homogeneous variable magnetic �elds
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B(t). If the time dependence of B(t) is not too vio-

lent, the non-relativistic approximation still holds up to
1
c2
-terms, (see [14, 15, 16, 17, 18]) the motion of charged

particles obeys the 2 dimensional oscillators with time-

dependence radial force. The stability and instability

areas for �elds of two frequencies ω and 2ω were de-

termined in [16], leading to the following map of A.

Ramirez:

The Ramirez map in [16]. The point on the blue and

red stability borders represent the �eld parameters per-

mitting to approximate the free evolution with modi�ed
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(faster, slower or inverted) evolution time, or the softly

achieved radial oscillator pulses.

Below, the motion of the center of a Gaussian wave

packet of a charged particle, in a pulsating magnetic

�eld [16]. The centers perform displacements opposite

to the initial velocity.
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The search for variable oscillator pulses, permitting

to achieve some physically interesting result, in spite

of its narrow subject, is still an open area. In par-

ticular, you might be interested to consult [19] (non-

hermitian problems), also [20] (non-linear equations for

higher dimensional models) [21] (the exponential for-

mula for higher dimensional matrices, though the phys-

ical applications are still an open problem).
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