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Composite String Symmetric functions

The intentions for this presentation:

To present the Composite String Model.

Associate the Infinite Dimensional Heisenberg Algebra to
Symmetric Functions (S-Functions).

Show the connection between replicated S-functions with
Vertex Operator Traces.
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Introduction

Standard theory of closed strings

Assumes the string to be homogeneous.

The composite string model

String consists of two or more separately different pieces.

Important conditions are:

(i) vs =
√
T/ρ = c = 1, tension T and the mass density ρ,

(ii) the transverse displacement ψ = ψ(σ, τ) is continuous,
(iii) the transverse force T∂ψ/∂σ is continuous.

This model was introduced in 1990, Brevik, I., Nielsen, H.
B.
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Simplest Case

The simplest model is when
there are only two pieces:

length LI and LII ,
L = LI + LII ,

tensions TI and TII ,

mass density ρI and ρII .

L IL
II
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Definitions

Let ψ = ψ(σ, τ) be the transverse displacement of a point.

The right- and left-moving waves in regions I and II:

i) ψI = ξIe
iω(σ−τ) + ηIe

−iω(σ+τ),
ii) ψII = ξIIe

iω(σ−τ) + ηIIe
−iω(σ+τ).

These expressions satisfy the fundamental wave equation:[
∂2

∂σ2
− ∂2

∂τ2

]
ψ(σ, τ) = 0.
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Dispersion Equation

1 the transverse displacements must be continuous across the two junctions:

ψI(0) = ψII(L) −→ ξI + ηI = ξIIe
iωL + ηIIe

−iωL,

ψI(LI) = ψII(LI) −→ ξIe
iωLI + ηIe

−iωLI = ξIIe
iωLI + ηIIe

−iωLI ,

2 the transverse elastic force on the string must be continuous across the
junctions:

TI
∂ψI
∂σ

∣∣∣∣
σ=0

= TII
∂ψII
∂σ

∣∣∣∣
σ=L

, TI
∂ψI
∂σ

∣∣∣∣
σ=LI

= TII
∂ψII
∂σ

∣∣∣∣
σ=LI

.

The dispersion equation became

(1− x)2 cos(ωL− 2ωLI)− (1 + x)2 cos(ωL) + 4x = 0,

with x = TI/TII .
Is invariant under the substitution x→ 1/x, let’s consider x in the interval
0 < x 6 1.
It allows the frequency spectrum to be calculated in terms of algebraic
equations if the ratio between LII and LI is an integer.
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Simple Cases

Dispersion
(1− x)2 cos(ωL− 2ωLI)− (1 + x)2 cos(ωL) + 4x = 0

x = 1, TI = TII → ρI = ρII

Uniform String:

cos(wL) = 1.

x→ 0

sin(ωLI) sin(ωLII) = 0.

There are two sequences:

ωn(s) =
nπ

LI
= (1 + s)n, ωn(s−1) =

nπ

LII
= (1 + s−1)n,

n ∈ Z.
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Definitions

To formulate the division in 4 pieces let’s introduce 2× 2 transfer matrices:

ξ
(1)
I =

(
ξ
(1)
I

η
(1)
I

)

The boundary conditions became:

ξ
(1)
I = M(1)ξ

(1)
II ; ξ

(1)
II = M(2)ξ

(2)
I ;

ξ
(2)
I = M(3)ξ

(2)
II ; ξ

(2)
II = M(4)ξ

(1)
I .

Where:

M(1) = I
(

1 + x−1

2

)
+ σx

(
1− x−1

2

)
cos(p) + σy

(
1− x−1

2

)
sin(p);

M(2) = I
(

1 + x

2

)
+ σx

(
1− x

2

)
cos(2p) + σy

(
1− x

2

)
sin(2p);

M(3) = I
(

1 + x−1

2

)
+ σx

(
1− x−1

2

)
cos(3p) + σy

(
1− x−1

2

)
sin(3p);

M(4) = I
(

1 + x

2

)
cos(2p) + σx

1− x
2

cos(2p) + σy
1− x

2
sin(2p)− iσz

(
1 + x

2

)
sin(2p).
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Eigenfrequencies w

Under stationary conditions the eigenfrequencies ω of the string are all real
quantities, determined from the equation

det(M− 1) = 0, (1)

with M = M(1)M(2)M(3)M(4).
If x = 1, the system degenerates into that of a uniform string. Since the
velocity of sound is required to be equal to c in everywhere, it is irrelevant
whether the string is composed of type I or II material; the eigenvalue
spectrum is determined from equation

cos(ωL) = 1,

in either case. Thus ωnL = 2πn, n ≥ 0.
The eigenvalue spectrum of the system is in general invariant under the
transformation x→ 1/x.
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General Formalism

Recalling the notation:

the tension ratio: x = TI/TII ,

symbols: pN = ωL/N , and α = (1−x)
(1+x) ,

the eigenfrequencies ω of the string:

det[M2N (x, pN )− 1] = 0,

where

M2N (x, pN ) =

2N∏
j=1

M(j)(x, pN ), (2)

with j = 1, 2, · · · , 2N .
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General Formalism

The component matrices can be expressed as

M(j)(x, pN ) =



1+x
2x

(
1 −α e−ijpN

−α eijpN 1

)
, if j is odd

1+x
2

(
1 α e−ijpN

α eijpN 1

)
, if j is even

(3)

for j = 1, 2,..., (2N − 1). At the last junction, for j = 2N , the
matrix will be of a particular form

M′(2N)(x, pN ) =
1 + x

2

(
e−iNpN α e−iNpN

α eiNpN eiNpN

)
. (4)
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General Formalism

The matrix M2N will depend on x only through the variable
α(x). It is possible to scale the matrices as

M2N (x, pN ) = [(1 + x)2/4x]Nm2N (α, pN ).

The new matrices can be calculated as

m2N (α, pN ) =

2N∏
j=1

m(j)(α, pN ) , (5)

where

m(j)(α, pN ) =

(
1 ∓α e−ijpN

∓α eijpN 1

)
(6)

for j = 1, 2,..., (2N − 1).
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Exact Solution

Establishing a recursion formula, for a string that is divided into 2(N + 1)
pieces:

m2(N+1) =
[
m(1) · · · · ·m′(2N)

]
·
[
(m′(2N))−1 ·m(2N) ·m(2N+1) ·m′(2N+2)

]
.

All these matrices have pN+1 as their second argument.
One can therefore write

m2(N+1)(α, pN+1) = m2N (α, pN+1) ·Λ(α, pN+1). (7)

where the matrix Λ is a product of four matrices,

Λ = (m′(2N))−1 ·m(2N) ·m(2N+1) ·m′(2N+2),

evaluated at pN+1.
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Exact Solution

Then it is possible to find that

Λ(α, p) =

(
a b
b∗ a∗

)
, (8)

where

a = e−ip − α2 , (9)

b = α(e−ip − 1) . (10)

The matrix Λ does not depend on N explicitly, but only
through the variable p = pN+1 = ωL/(N + 1).

This fact will enable us to give an explicit solution, since
then

m2N (α, pN ) = ΛN (α, pN ) . (11)
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Diagonalization

The eigenvalues λ± of Λ are roots of the polynomial

P (λ) = det(Λ− λ1) = λ2 − 2(cos p− α2)λ+ (1− α2)2 ,

giving

λ± = cos p− α2 ±
[(

cos p− α2)2 − (1− α2)2
]1/2

. (12)

These eigenvalues are in general complex.

Powers of the matrix Λ are

ΛN = K

(
λN+ 0
0 λN−

)
K−1 , (13)

where K is a matrix whose columns consist of the
eigenvectors of Λ.



Composite String Symmetric functions

Diagonalization

From (13) we get

det(ΛN ) = λN+λ
N
− , tr(ΛN ) = λN+ + λN− . (14)

And the relationships

λ+λ− = (1− α2)2, λ+ + λ− = 2(cos p− α2). (15)

Although the eigenvalues λ± are in general complex, the
combinations λ+λ− and (λ+ + λ−) are always real.
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Oscillator coordinates

Consider henceforth the motion of a two-piece classical
string in flat D-dimensional space-time.

Assume now that L = π, in conformity with usual practice.
Thus pN = πω/N .

Let Xµ(σ, τ) (µ = 0, 1, 2, · · · (D − 1)) specify the
coordinates on the world sheet.

The general expression for Xµ in the form

Xµ = xµ +
pµτ

πT̄
+Xµ

I , region I,

Xµ = xµ +
pµτ

πT̄
+XII , region II,

where xµ is the center of mass position, pµ is the total
momentum of the string and T̄ = 1

2(TI + TII) denotes the
mean tension.
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The Case of Extreme Tensions

Further, Xµ
I and Xµ

II are decomposed into oscillator
coordinates,

Xµ
I =

i

2
`s
∑
n6=0

1

n

[
αnIe

iω(σ−τ) + α̃nIe
−iω(σ+τ)

]
, (16)

Xµ
II =

i

2
`s
∑
n 6=0

1

n

[
αnIIe

iω(σ−τ) + α̃nIIe
−iω(σ+τ)

]
. (17)



Composite String Symmetric functions

The Case of Extreme Tensions

Now assuming that TII has a finite value, so that the
limiting case x→ 0 corresponds to TI → 0.

Since now α→ 1, thus λ− = 0, λ+ = cos pN − 1.

So we obtain the remarkable simplification that all the
eigenfrequency branches degenerate into one single branch
determined by cos pN = 1.

That is, the eigenvalue spectrum becomes

ωn = 2Nn, n = ±1,±2,±3, ... (18)
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The Case of Extreme Tensions

Then, choosing the fundamental length equal to
`s = (πTI)

−1/2, we can write the expansion in region I as

Xµ
I =

i

2
√
πTI

∑
n6=0

1

n

[
αµne

2iNn(σ−τ) + α̃µne
−2iNn(σ+τ)

]
. (19)

When x→ 0 the junction conditions reduce to the
equations

ξI + ηI = 2ξII = 2ηII , (20)

which show that the right– and left– moving amplitudes ξI
and ηI in region I can be chosen freely and that the
amplitudes ξII , ηII in region II are thereafter fixed.
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The Case of Extreme Tensions

The expansion in region II can be written as

Xµ
II =

i

2
√
πTI

∑
n6=0

1

n
γµne
−2iNnτ cos(2Nnσ), (21)

where we have defined γµn as

γµn = αµn + α̃µn, n 6= 0. (22)

The oscillations in region II are thus standing waves.
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The Hamiltonian

The Hamiltonian is

H =

∫ π

0

[
Pµ(σ)Ẋµ − L

]
dσ =

1

2

∫ π

0
T (σ)(Ẋ2 +X ′2)dσ, (23)

where L is the Lagrangian.
With lightcone coordinates, region I,

∂−X
µ =

N√
πTI

∞∑
−∞

αµne
2iNn(σ−τ),

∂+X
µ =

N√
πTI

∞∑
−∞

α̃ne
−2iNn(σ+τ), (24)

and in region II

∂∓X
µ =

N

2
√
πTI

∞∑
−∞

γµne
±2in(σ∓τ), (25)

where we have defined

αµ0 = α̃µ0 =
pµ

NTII

√
TI
π
, γµ0 = 2αµ0 . (26)
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The Hamiltonian

Inserting these expressions into the Hamiltonian

H =

∫ π

0
T (σ) (∂−X · ∂−X + ∂+X · ∂+X) dσ

= NTI

∫ π/(2N)

0
(∂−X · ∂−X + ∂+X · ∂+X) dσ

+NTII

∫ π/N

π/(2N)
(∂−X · ∂−X + ∂+X · ∂+X) dσ (27)

the hamiltonian is given by

H =
1

2
N2

∞∑
−∞

(α−n · αn + α̃−n · α̃n) +
N2

4x

∞∑
−∞

γ−n · γn. (28)
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Quantization

The commutation rules in region I:

TI [Ẋ
µ(σ, τ), Xν(σ′, τ)] = −iδ(σ − σ′)ηµν , (29)

in region II

TII [Ẋ
µ(σ, τ), Xν(σ′, τ)] = −iδ(σ − σ′)ηµν , (30)

ηµν being the D-dimensional flat metric.

Inserting the expansions for Xµ and Ẋµ in regions I and II,

in region I
[αµn, α

ν
m] = nδn+m,0η

µν , (31)

with a similar relation for α̃n.

In region II,
[γµn , γ

ν
m] = 4nx δn+m,0 η

µν . (32)
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Quantization

Introducing the annihilation and creation operators by

αµn =
√
naµn, αµ−n =

√
naµ†n ,

γµn =
√

4nx cµn, γµ−n =
√

4nx cµ†n , (33)

and find for n ≥ 1 the standard form

[aµn, a
ν†
m ] = δnmη

µν ,

[cµn, c
ν†
m ] = δnmη

µν . (34)
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Quantization

From Eq.(28) we get, when separating out the n = 0 term,

H = − M2

πTII
+

1

2
N
∞∑
n=1

ωn

(
a†n · an + ã†n · ãn + 2 c†n · cn

)
.

(35)

Here a†n · an ≡ aµ†n anµ, and ωn = 2Nn as before.
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Heisenberg Algebra and Symmetric Functions

This algebra is generated by operators {αi| i ∈ Z}, with commu-
tation relations

[αn, αm] = nδn+m,0.

These algebras can be realized on the space of symmetric func-
tions by the association

α−n = pn(x), αn = n
∂

∂pn(x)
,

with pn(x) =
∞∑
i=1

xni .

An alternative is a basis consisting of all Schur functions sλ(x).
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The polynomial ring Λ(X)

Let Z[x1, . . . , xn] be the polynomial ring, or the ring of
formal power series, in n commuting variables x1, . . . , xn.

The symmetric group Sn acting on n letters acts on this ring by
permuting the variables. For π ∈ Sn and f ∈ Z[x1, . . . , xn] we
have πf(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

The interest is in the subring of functions invariant under
this action, πf = f , that is to say the ring of symmetric
polynomials in n variables: Λ(x1, . . . , xn) = Z[x1, . . . , xn]Sn .

This ring may be graded by the degree of the polynomials, so
that Λ(X) = ⊕n Λ(n)(X), where Λ(n)(X) consists of homogenous
symmetric polynomials in x1, . . . , xn of total degree n.
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Symmetric Functions

For each partition λ, the Schur function is defined by

sλ(X) ≡ sλ(x1, x2, . . . , xn) =

∑
σ∈Sn

sgn(σ)Xσ(λ+δ)∏
i<j(xi − xj)

, (36)

where δ = (n− 1, n− 2, . . . , 1, 0).
The study of projective representations of Sn led Schur to intro-
duce the Q-functions, defined by:

Q(λ1,...,λp)(x1, . . . , xn)
def
= 2p

n∑
ji,...,jp=1

xλ1j1 · · ·x
λp
jp

uj1 · · ·ujp
A(xjp , . . . , xj2 , xj1),

(37)
where

A(y1, . . . , yp) =
∏

1≤i<j≤p

yi − yj
yi + yj

, uj =
∏

1≤i≤n,i 6=j

xj − xi
xj + xi

. (38)
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Symmetric Functions

Hall-Littlewood Functions

One generalization of the idea of symmetric functions is that of
the Hall-Littlewood function [3, 4] in the variables x1, x2, . . . , xn
defined for a partition of length `(λ) ≤ n by

Qλ(x1, . . . , xn; t)
def
= (1−t)`(λ)

∑
σ∈Sn

σ

xλ11 · · ·xλnn ∏
1≤i<j≤n

xi − txj
xi − xj

 ,

where σ acts as σ(xλ11 · · ·xλnn ) = xλ1σ(1) · · ·x
λn
σ(n), and t is some

parameter. When t = 0, Qλ reduces to the S-function sλ.
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Symmetric Functions

Generalized symmetric functions

One can define functions Pλ(x; ξ) which span the ring ΛF . Us-
ing the Gram-Schmidt orthogonalization procedure [2], one can
derive a unique orthogonal basis for ΛF . The interest is in the
cases:

ξn = α

(
qκn − q−κn

q2n − q−2n

)
= α[κ/2]q = α

(
sin(2πκϑn)

sin(4πϑn)

)
, (39)

where α ∈ R and κ ∈ Z.

Hall-Littlewood symmetric functions correspond to the
case when ξn = (1− tn)−1.

Maconald’s functions correspond to the case
ξn = (1− qn)/(1− tn).
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Replicated Functions

Introducing the symmetric functions with replicated variables.
We want to be able to define the function Pλ(X(τ); q, κ, α) so
that when τ = m, an integer, we have

Pλ(X(τ); q, κ, α) := Pλ(

m︷ ︸︸ ︷
x1, . . . , x1,

m︷ ︸︸ ︷
x2, . . . , x2, . . . ; q, κ, α) (40)

Using some orthogonality relations it is possible to define these
functions Pλ(X(τ); q, κ, α) of the replicated variable X(τ) to be:

Pλ(X(τ); q, κ, α) =
∑
µ

Bλµ(τ)Pµ(X; q, κ, α), (41)

where Bλµ(τ) is a polynomial related with transition matrices
between the power sums and the functions Pλ.
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Vertex Operator Traces

Vertex operators

Have played a fruitful role in string theory, mathematical constructions of group
representations as well as combinatorial constructions.

Consider here a general vertex operator which is able to connect with the symmet-
ric and spectral functions. We specially note that realizations of (homogeneous)
vertex operators are important in the high level representations theory of quan-
tum affine algebras. Define a generalized vertex operator as

V (−→τ ∗ Z; −→η ∗W ; ξ) = exp

(∑
m>0

1

mξm
pm(τ1z

m
1 + · · ·+ τnz

m
n )

)

× exp

(∑
m>0

1

mξm
D(pm)(η1w

m
1 + · · ·+ ηnw

m
n )

)
,(42)

where D(pm) = mξm
∂

∂pm
.
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Vertex Operator Traces

The matrix elements of the above vertex operator in a basis of (Kerov’s) sym-
metric functions take the form:

〈Pµ(x; ξ), V Qν(x; ξ)〉 =
∑
σ

Pµ/σ(−→τ ∗ Z; ξ)Qν/σ(−→η ∗W ; ξ) (43)

Calculating the regularized trace of the vertex operator V is the same as calculate
[2]

Sp/1 =
∑
µν

p|µ|Pµ/ν(−→τ ∗ Z; ξ)Qµ/ν(−→η ∗W ; ξ). (44)

Suppose that the Kerov functions with replicated arguments obey a very general
Cauchy identity ∑

λ

r|λ|Pλ(X(τ); ξ) Qλ(Y (η); ξ) = Jτηr (X,Y ; ξ) , (45)

so that for the functions Pλ(X; ξ) with ξλ defined by (39) for example, the ex-
pression on the right has the form

Jτηr (X,Y ; ξ) =
∏
i,j

(
(xiyjq

κ+2r; q2κ)∞
(xiyjqκ−2r; q2κ)∞

)τη/α

=
∏
i,j

(
R(s = (Ω(xiyjr;ϑ) + 2)(1− i%(ϑ))− 2)

R(s = (Ω(xiyjr;ϑ)− 2)(1− i%(ϑ))− 2)

)τη/α
.
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Vertex Operator Traces

We then form the generating function J =
∑

λµAλµ Pλ(A)Qµ(B),
which allow us to finaly arrive at

Sp/1 =

∞∑
j=1

1

(1− pj)

n∏
i,j=1

J
τiηj
pj

(zi, wj ; ξ).
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