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The intentions for this presentation:

o To present the Composite String Model.

@ Associate the Infinite Dimensional Heisenberg Algebra to
Symmetric Functions (S-Functions).

o Show the connection between replicated S-functions with
Vertex Operator Traces.
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Introduction

Standard theory of closed strings

Assumes the string to be homogeneous.

The composite string model

String consists of two or more separately different pieces.

o Important conditions are:
(i) vs =+/T/p=c =1, tension T and the mass density p,
(ii) the transverse displacement ¥ = (o, 7) is continuous,
(iii) the transverse force Ty /0o is continuous.
o This model was introduced in 1990, Brevik, I., Nielsen, H.
B.
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Simplest Case

The simplest model is when
there are only two pieces:

@ length L; and Ly,
L= LI + LII')

o tensions 17 and Ty,

e mass density p; and pyy.
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Definitions

o Let 1) = (0, 7) be the transverse displacement of a point.
@ The right- and left-moving waves in regions I and I1:

i) ¢ = &™) 4 pemiwlot),

i) ¢ = &rpe o) 4 et

@ These expressions satisfy the fundamental wave equation:
0? 0?
[602 - or2

] W(o,7) = 0.
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Dispersion Equation

@ the transverse displacements must be continuous across the two junctions:

$1(0) = ¢r(L) — & +np = Ere™t 4 ek,
Gr(Lp) = rr(Ly) — &eM 4 pre™ ™M = et e

@ the transverse elastic force on the string must be continuous across the
junctions:

2,001

a

i
T ——
) Ia

o=L g

— 7, oYy

iy
- 7, 2
Sy o=1; do

o=0 U:LI

o The dispersion equation became
(1 —2)?cos(wL — 2wly) — (1 + )% cos(wL) + 4z = 0,

with z = T[/TH.

o Is invariant under the substitution z — 1/xz, let’s consider z in the interval
O0<ax<1.

o It allows the frequency spectrum to be calculated in terms of algebraic
equations if the ratio between L;; and L is an integer.
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Simple Cases

Dispersion
(1 — )% cos(wL — 2wLy) — (1 + x)? cos(wL) + 4z = 0

x=1,Tr =T — pr=p1I

Uniform String:

cos(wL) = 1.

y

sin(wLy)sin(wLyr) = 0.

There are two sequences:

= (1+ s)n, wn(s_l) _ (1+ 5_1)n,
Li;

nm

wn(s) = I

n € 7.
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Definitions

e To formulate the division in 4 pieces let’s introduce 2

o The boundary conditions became:

1 1 1 2
E f =M@ §I); §1> = M(z)é >§

5;2) _ M(3)§g); gg) _ M(4)§£1).

2
Il

( )
(121’)“’1( I) o+ (157)
MO — HE”‘“)w( R )

1-
) cos(2p) + oy

—
+
8

1-—
cos(2p) + oy

1—
cos(3p) +0'y<

X 2 transfer matrices:

1- .
cos(p) + oy (T) sin(p);

sin(2p);

—1

) sin(3p);

1+2
z sin(2p) — io, (%) sin(2p).
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Eigenfrequencies w

o Under stationary conditions the eigenfrequencies w of the string are all real
quantities, determined from the equation

det(M — 1) = 0, (1)

with M = MOMOMEO MO,

o If x =1, the system degenerates into that of a uniform string. Since the
velocity of sound is required to be equal to ¢ in everywhere, it is irrelevant
whether the string is composed of type I or I] material; the eigenvalue
spectrum is determined from equation

cos(wl) =1,

in either case. Thus w,L = 2mn, n > 0.
o The eigenvalue spectrum of the system is in general invariant under the
transformation z — 1/x.
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General Formalism

Recalling the notation:

e the tension ratio: x = T7/Tyy,

(1-=)
(1+z)’
o the eigenfrequencies w of the string:

e symbols: py = wL/N, and a =

det[Man(z,pn) — 1] =0,

where

2N

Moy (z,pv) = [ [MY (2, pn),
j=1

with j =1,2,--- ,2N.
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General Formalism

The component matrices can be expressed as

/ ..
1 —a e UPN
== ( T . ) , if jis odd
1 e PN
1+7‘” - , if j is even
{ o eIPN 1

for j =1, 2,..., (2N — 1). At the last junction, for j = 2N, the
matrix will be of a particular form

14z [ e NPy qe VPN
M) = 5T S ) @

(3)
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General Formalism

The matrix Moy will depend on x only through the variable
a(z). Tt is possible to scale the matrices as

MgN(:IZ,pN) = [(1 + a:)2/4x]Nm2N(a,pN).

The new matrices can be calculated as
may (o, pN) Hm (o, pw) (5)
where

. 1 :Foze_iij
m)(a, py) = <¢aem 1 ) (6)

for j =1,2,.., (2N —1).
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Exact Solution

e Establishing a recursion formula, for a string that is divided into 2(N + 1)
pieces:

myyi) = m® ... m/(2N)] . [(m/(2N))71 o m@N) L @NF1) | m/(2N+2)] )

All these matrices have py11 as their second argument.
@ One can therefore write

my(vy1)(@pye1) = mon(a,py41) - Ao, ). (7)
where the matrix A is a product of four matrices,

A— (m/(ZN))—l - mCN) N+ | /(2N+2)

evaluated at py41.
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Exact Solution

@ Then it is possible to find that

M) = (o) ®
where

a = e P—a?, (9)

b = ale™-1). (10)
The matrix A does not depend on N explicitly, but only
through the variable p = py41 = wL/(N + 1).

o This fact will enable us to give an explicit solution, since
then

mgN(Ol,pN) = AN(a’pN)‘ (11)
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Diagonalization

@ The eigenvalues A+ of A are roots of the polynomial

P(\) = det(A — A1) = X2 —2(cosp — &®)A + (1 — a?)?,

giving
2 212 242112
A+ = cOsp—« :l:[(cosp—a) —(l—a)] . (12)
These eigenvalues are in general complex.
o Powers of the matrix A are
N
AN = K<A0+ )\9\,>K1, (13)

where K is a matrix whose columns consist of the
eigenvectors of A.
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Diagonalization

e From (13) we get

det(AN) = ANV tr(AN) =AY+ AN (14)
@ And the relationships

MAo = (1—a?? A+ A =2(cosp—a?). (15)

@ Although the eigenvalues A+ are in general complex, the
combinations Ay A\_ and (A + A_) are always real.
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Oscillator coordinates

o Consider henceforth the motion of a two-piece classical
string in flat D-dimensional space-time.

o Assume now that L = m, in conformity with usual practice.
Thus py = mw/N.

e Let X*(o,7) (0=0,1,2,--- (D — 1)) specify the
coordinates on the world sheet.

o The general expression for X* in the form
X“—:r“—i——T—I—X region I,
Xt =gt —|— — —|— Xy, region II,
'l
where z# is the center of mass position, p* is the total

momentum of the string and T' = (77 + Tys) denotes the
mean tension.
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The Case of Extreme Tensions

e Further, X} and X/, are decomposed into oscillator
coordinates,

76 Y- [a,ﬂe“ ™) +&n1e*iw("+f)}, (16)
n;é(]

Xir =54 - [Oénneiw(a_ﬂ + &nlle_iw(a—‘rﬂ} Y
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The Case of Extreme Tensions

o Now assuming that 777 has a finite value, so that the
limiting case x — 0 corresponds to 17 — 0.

Since now o — 1, thus A\_ =0, Ay =cospy — 1.

(]

So we obtain the remarkable simplification that all the
eigenfrequency branches degenerate into one single branch
determined by cospy = 1.

That is, the eigenvalue spectrum becomes

wnp =2Nn, n==41,£2,4£3,... (18)
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The Case of Extreme Tensions

@ Then, choosing the fundamental length equal to
ls = (ﬂT])*1/2, we can write the expansion in region I as

X;L _ Z [aueQan o—T) + dze—QiNn(U"rT)} _ (19)

2\/7rT

When & — 0 the junction conditions reduce to the
equations

§r+nr = 281 = 20y, (20)

which show that the right— and left— moving amplitudes &;
and 7y in region I can be chosen freely and that the
amplitudes 77, nrr in region II are thereafter fixed.
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The Case of Extreme Tensions

@ The expansion in region II can be written as

Xt = 2\/772 7“6_2’]\[”7(308(2]\7110), (21)

where we have defined 5 as
Yn = o, +ay, nF#0. (22)

The oscillations in region II are thus standing waves.
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Symmetric functions

The Hamiltonian

o The Hamiltonian is

H= /Oﬂ [P,A,(U)X

where £ is the Lagrangian.

B [,] do = 5/ T(0)(X? 4+ X"?)do,
0

o With lightcone coordinates, region I,

0_XH =

(9+XN =

and in region II

DL XH =

where we have defined

B s
Qp = Qg =

a;n¢821Nn(<7—7') ,

N oo
V7l ;

N &
~ _—2iNn(o+7)
ane ,
2

N & ;
w,+2in(cFT)

P [T
NT; Vo«

B 9o
Yo = 20q.

(23)
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The Hamiltonian

o Inserting these expressions into the Hamiltonian

H= / )(O-X -0_X +0,X -0,X)do

7/(2N)
:NT]/ (8,X8,X—|—8+X0+X)d0'
0

w/N
+NT[[/ (O,X c0_X + 8+X . 8+X) do
w/(2N)

the hamiltonian is given by

NZ &

T _
H:isz(a—n'an+a—n'an)+727—n‘7n~

4z

—0o0 —0o0
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Quantization

@ The commutation rules in region I:

TI[X“(U, 7), X" (o', 7)] = —id(o — o' )",
@ in region II

T [ X*(o,7), X" (o', 7)) = —id (0 — '),

n*" being the D-dimensional flat metric.

Inserting the expansions for X* and XM in regions I and II,

@ in region I
14 4
[O‘Za am] — n5ﬂ+m,0n“ 5
with a similar relation for &,.

o In region II,
(V1> Y] = 4N Spgemo "

(29)

(30)

(31)

(32)
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Quantization

o Introducing the annihilation and creation operators by
ot =/mat, o, =/na,
V= Vinzdi, A", = Vinz i, (33)
and find for n > 1 the standard form
[atys apt] = Sumn™”

[k, cil] = S (34)

n7m
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Quantization

e From Eq.(28) we get, when separating out the n = 0 term,

M2l &
H:—m+§Nan(aL-an+dll -an+2cL.cn).
n=1

(35)

Here aL CQy = afﬁTaW, and w, = 2Nn as before.
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Heisenberg Algebra and Symmetric Functions

This algebra is generated by operators {«;| i € Z}, with commu-
tation relations

[ana am] = NOntm,0-

These algebras can be realized on the space of symmetric func-
tions by the association

a_p =pp(x), anp=mn

with p,(z) = Z xy

An alternatlve is a basis consisting of all Schur functions s)(x).
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The polynomial ring A(X)

e Let Z[z1,...,x,] be the polynomial ring, or the ring of
formal power series, in n commuting variables x1, ..., x,.

The symmetric group S, acting on n letters acts on this ring by
permuting the variables. For 7 € S, and f € Z[z1,...,x,] we

have 7Tf(l‘1, oo 7$n) = f(xw(l)a s a'xw(n))'

o The interest is in the subring of functions invariant under
this action, wf = f, that is to say the ring of symmetric
polynomials in n variables: A(x1,...,x,) = Z[z1, ..., T,]5".

This ring may be graded by the degree of the polynomials, so

that A(X) = @, A (X), where A (X) consists of homogenous

symmetric polynomials in x1,...,x, of total degree n.
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Symmetric Functions

For each partition A, the Schur function is defined by

teSn Sgn(U)XU(/\J”S)
Hz’<j (i — @)

sx(X) = sa(x1, 22, ., 2p) =

, (36)

where § = (n — 1,n—2,...,1,0).
The study of projective representations of S, led Schur to intro-
duce the Q-functions, defined by:

>\P
Q(/\l’m’)\p)(l'l,..., 1€l = 9P Z %A(m‘jp,...,ﬁj2,x]‘1)7
.]z’ »Jp_l ]1 ujp
(37)
where
Yi —Yj Tj— X
Ayt, -+ yp) = u; = oLt (38
(U1 90) e w= I P 89

1<i<j<p 1<i<n,i#j
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Symmetric Functions

e Hall-Littlewood Functions

One generalization of the idea of symmetric functions is that of
the Hall-Littlewood function [3, 4] in the variables x1,xa, ...,z
defined for a partition of length ¢(A) < n by

def Ti — trs
Q)\(xla'--axn;t> = (1—t)£()\)z o $1\1xi\bn H A

Ti— s
oESy 1<i<j<n “* J

ALpAn) = gAML
where o acts as o(z] xp) = o0 ()

parameter. When ¢t = 0, Q) reduces to the S-function sy.

T and ¢ is some
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Symmetric Functions

o Generalized symmetric functions

One can define functions Py(z;&) which span the ring Ap. Us-
ing the Gram-Schmidt orthogonalization procedure [2], one can
derive a unique orthogonal basis for Ar. The interest is in the
cases:

g — g sin(2wkdn)
= ) = 2], = —_— 39
e <q2” —go ) T = Sy ) Y
where o € R and k € Z.
o Hall-Littlewood symmetric functions correspond to the
case when &, = (1 — )71
@ Maconald’s functions correspond to the case

§n=01—¢")/1—1").
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Replicated Functions

Introducing the symmetric functions with replicated variables.
We want to be able to define the function P,\(X(T);q7 K, Q) SO
that when 7 = m, an integer, we have

m m

P/\(X(T);q,/i, a) = P\(T1,..., 21,72, ...,22,...;¢, k) (40)

Using some orthogonality relations it is possible to define these
functions Py (X(T); q, K, a) of the replicated variable X to be:

PA(X"); g, 5, ) ZBAM (X5, 5, Q) (41)

where B),(7) is a polynomial related with transition matrices
between the power sums and the functions Pj.
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Vertex Operator Traces

Vertex operators

Have played a fruitful role in string theory, mathematical constructions of group
representations as well as combinatorial constructions.

Consider here a general vertex operator which is able to connect with the symmet-
ric and spectral functions. We specially note that realizations of (homogeneous)
vertex operators are important in the high level representations theory of quan-
tum affine algebras. Define a generalized vertex operator as

V(T Z; 77« W5 €) = exp (Z mlgpm(min+~-+rnz;{l)>

m>0
1
X exp (Z e Dm) (' - 4 nnwm),(u)
m>0 mem

where D(py,) = mgmapim.
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Vertex Operator Traces

The matrix elements of the above vertex operator in a basis of (Kerov’s) sym-
metric functions take the form:

(Pul@;€), VQu (w3 €)) Z 0o (T 5 Z3€)Quyo (7 = W) (43)

Calculating the regularized trace of the vertex operator V is the same as calculate

2]
S = Zp'* WP (7 5 25€)Qup (1 + W5 €). (44)

Suppose that the Kerov functions with replicated arguments obey a very general
Cauchy identity

DR e QA Y ™) = JT(X,Y3), (45)
A

so that for the functions Py(X;€) with &, defined by (39) for example, the ex-
pression on the right has the form

mx. v (@™ )0\
TX,Y5E) = m

i,J
3 Q (iy;r;9) +2)(1 —io(d)) — 2)\™"*
- H 72 Yziy;r;¥) = 2)(1 —io(V)) — 2)) '
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Vertex Operator Traces

We then form the generating function J = >_, , Ax, PA(%) Qu(B),
which allow us to finaly arrive at

o n

1 o,
S = (=) T (2 w3 €).

j=1 1,j=1
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