Deformation quantization with separation of variables on a split supermanifold

Alexander Karabegov

Abilene, Texas

June 23, 2016

Introduction

Star products with separation of variables on Kähler manifolds arise in the context of Berezin's quantization. The construction of these star products can be naturally generalized to super-Kähler manifolds.

In this talk I will describe star products with separation of variables on a split super-Kähler manifold ΠE obtained from a holomorphic vector bundle E over a Kähler manifold M. Such a star product *depends on a star product with separation of variables \star on M and some function Y on ΠE (a "nilpotent potential"). I will describe the canonical supertrace for this star product.

This construction is used in the heat kernel proof of the index theorem for a star product with separation of variables (work in progress).

Star products with separation of variables

Let *M* be a complex manifold and $C^{\infty}(M)[\nu^{-1},\nu]]$ be the space of formal Laurent series with a finite principal part,

$$f = \nu^r f_r + \nu^{r+1} f_{r+1} + \dots,$$

where ν is a formal parameter, $r \in \mathbb{Z}$, and $f_k \in C^{\infty}(M)$ for $k \ge r$. A star product with separation of variables of the anti-Wick type on M is an associative product \star on $C^{\infty}(M)[\nu^{-1},\nu]]$,

$$f \star g = fg + \sum_{r=1}^{\infty} \nu^r C_r(f,g),$$

where $C_r, r \ge 1$, is a bidifferential operator which differentiates the first argument in antiholomorphic directions and the second argument in holomorphic ones.

The star product \star induces a Kähler-Poisson bracket on M of type (1,1) with respect to the complex structure,

$$\{f,g\} := -i(C_1(f,g) - C_1(g,f)).$$

It is called a star product on the Kähler-Poisson manifold $(M, \{\cdot, \cdot\})$.

Normalization: We assume that the unit constant 1 is the unity of a star product.

Localization: A star product on M can be restricted (localized) to any open subset $U \subset M$.

Nondegeneracy: We call a star product with separation of variables on M nondegenerate if the corresponding Kähler-Poisson structure is nondegenerate and therefore is induced by a pseudo-Kähler structure on M.

Left and right star multiplication operators

For formal functions f, g on M we denote by L_f^* and R_g^* the left and the right *-multiplication operators by f and g, respectively, so that

$$L_f^{\star}g=f\star g=R_g^{\star}f.$$

The operators L_f^{\star} and R_g^{\star} commute.

For a local holomorphic function a and antiholomorphic function b the \star -multiplication operators L_a^{\star} and R_b^{\star} are the pointwise multiplication operators by a and b, respectively:

$$L_a^{\star} = a$$
 and $R_b^{\star} = b$,

so that

$$a \star f = af$$
 and $f \star b = fb$.

Given a star product with separation of variables \star on a complex manifold M, there exists a unique formal differential operator B globally defined on M such that for a local holomorphic function a and antiholomorphic function b,

$$B(ba) = b \star a.$$

It is called the formal Berezin transform of the star product \star . A star product with separation of variables can be recovered from its formal Berezin transform.

The dual star product

Given a star product with separation of variables \star of the anti-Wick type on $(M, \{\cdot, \cdot\})$ with the formal Berezin transform B, the star product \star' on $(M, \{\cdot, \cdot\})$ given by the formula

$$f \star' g := B^{-1}(Bf \star Bg)$$

is a star product with separation of variables *of the Wick type*, where the rôles of the holomorphic and antiholomorphic coordinates are swapped.

The opposite product

$$f \,\check{\star} g := g \,\star' f$$

is a star product with separation of variables of the anti-Wick type on $(M, -\{\cdot, \cdot\})$. The star product $\tilde{\star}$ is called *the dual star product to* \star . Its formal Berezin transform is B^{-1} .

The Kähler-Poisson tensor

Let M be a complex manifold equipped with a Kähler-Poisson structure, $(U, \{z^k, \overline{z}^l\})$ be a holomorphic coordinate chart on M, and g^{lk} be the Kähler-Poisson tensor on U. The Kähler-Poisson bracket on M is

$$\{u,v\} = ig^{lk} \left(\frac{\partial u}{\partial z^k} \frac{\partial v}{\partial \overline{z}^l} - \frac{\partial u}{\partial \overline{z}^l} \frac{\partial v}{\partial z^k} \right)$$

If g^{lk} is nondegenerate, its inverse g_{kl} is a pseudo-Kähler metric tensor and

$$\omega_{-1} := ig_{kl}dz^k \wedge d\bar{z}^l$$

is a pseudo-Kähler form globally defined on M.

Given a star product with separation of variables \star on a complex manifold M, the local expression for the operator C_1 of \star is

$$C_1(u,v) = g^{lk} \frac{\partial u}{\partial \bar{z}^l} \frac{\partial v}{\partial z^k},$$

so that

$$u \star v = uv + \nu g^{lk} \frac{\partial u}{\partial \bar{z}^l} \frac{\partial v}{\partial z^k} + \dots$$

The space $\Omega(M)$

Given a complex manifold M which admits a pseudo-Kähler structure, denote by $\Omega(M)$ the space of all formal forms

$$\omega = \nu^{-1}\omega_{-1} + \omega_0 + \nu\omega_1 + \dots$$

on M such that all $\omega_r, r \ge -1$, are closed forms of type (1,1) with respect to the complex structure on M and ω_{-1} is some pseudo-Kähler form on M.

Theorem. There is a natural bijection $\omega \mapsto \star_{\omega}$ from Ω onto the space of all nondegenerate deformation quantizations with separation of variables of the anti-Wick type on M.

The form ω is called the classifying form of the star product \star_{ω} . We say that \star_{ω} is a star product on the pseudo-Kähler manifold (M, ω_{-1}) . The star product \star_{ω} is completely determined by the following property. Let $U \subset M$ be an arbitrary contractible coordinate chart and Φ be a local potential of ω on U, so that

$$\Phi =
u^{-1} \Phi_{-1} + \Phi_0 + \dots$$
 and $\omega = i \partial \overline{\partial} \Phi$.

Then

$$L^{\star}_{\frac{\partial \Phi}{\partial z^{k}}} = \frac{\partial \Phi}{\partial z^{k}} + \frac{\partial}{\partial z^{k}} \text{ and } R^{\star}_{\frac{\partial \Phi}{\partial \overline{z}^{l}}} = \frac{\partial \Phi}{\partial \overline{z}^{l}} + \frac{\partial}{\partial \overline{z}^{l}}$$

on U.

The dual form

Given a form $\omega \in \Omega(M)$, the dual star product of \star_{ω} corresponds to a form $\tilde{\omega} \in \Omega(M)$,

$$\widetilde{(\star_\omega)} = \star_{\widetilde{\omega}}.$$

If $\omega = \nu^{-1}\omega_{-1} + \omega_0 + \dots$, then $\tilde{\omega} = -\nu^{-1}\omega_{-1} + \tilde{\omega}_0 + \dots$. The mapping $\omega \mapsto \tilde{\omega}$ is an involution on $\Omega(M)$. We call $\tilde{\omega}$ the dual form of ω .

A local trace density

Given a nondegenerate star product with separation of variables \star_{ω} on M, for any contractible coordinate chart $U \subset M$ and any potential $\Phi = \nu^{-1}\Phi_{-1} + \ldots$ of ω on U there exists a potential $\Psi = -\nu^{-1}\Phi_{-1} + \ldots$ of the dual form $\tilde{\omega}$ on U satisfying the equations

$$\frac{\partial \Phi}{\partial z^k} = -B\left(\frac{\partial \Psi}{\partial z^k}\right) \text{ and } \frac{\partial \Phi}{\partial \bar{z}^l} = -B\left(\frac{\partial \Psi}{\partial \bar{z}^l}\right),$$

where B is the formal Berezin transform for the product $\star_\omega.$ The potential Ψ is determined up to a formal additive constant. Then

$$e^{\Phi+\Psi} dz dar{z},$$

where $dzd\bar{z}$ is a Lebesgue measure on U, is a local trace density for the product \star_{ω} .

Given a star product with separation of variables \star_{ω} on a pseudo-Kähler manifold (M, ω_{-1}) , on any contractible coordinate chart $U \subset M$ there exists a derivation of the product \star of the form

$$\delta = \frac{d}{d\nu} + A_{\rm s}$$

where A is a formal differential operator on U.

A canonical trace density

There exists a global trace density μ for the product \star on M uniquely determined by the conditions that (i)

$$\mu = \frac{1}{m!\nu^m} \left(\omega_{-1}\right)^m + \dots,$$

where m is the complex dimension of M, and that (ii) on any contractible chart U the equality

$$\frac{d}{d\nu}\int_{U}f\,\mu=\int_{U}\delta(f)\,\mu$$

holds for any function f with compact support on U. It is called the canonical trace density for the product \star .

Functions on a split supermanifold

Let *E* be a holomorphic vector bundle of rank *d* over a complex manifold *M* and ΠE be the corresponding split supermanifold. If *E* is trivializable over an open subset $U \subset M$, consider a holomorphic trivialization $\Pi E|_U \cong U \times \mathbb{C}^{0|d}$.

Let $\theta^{\alpha}, \overline{\theta}^{\beta}$ be the odd fiber coordinates on $U \times \mathbb{C}^{0|d}$. We consider the ordered subsets of $[d] := \{1, 2, \dots, d\}$ as tensor indices and set

$$\theta^{I} = \theta^{\alpha_{1}} \dots \theta^{\alpha_{k}}$$
 and $|I| = k$

for $I = \{\alpha_1, \dots, \alpha_k\} \subset [d]$. A function f on $\Pi E|_U$ can be written in coordinates as

$$f = f_{IJ}\theta^{I}\bar{\theta}^{J},$$

where $f_{IJ} \in C^{\infty}(U)$ and summation over repeated indices is assumed.

A product on a split supermanifold

Given a star product with separation of variables \star on M, an open subset $U \subset M$ such that E is trivializable over U, and a formal function u on $\Pi E|_U$ such that u-1 is nilpotent. Fix a holomorphic trivialization $\Pi E|_U \cong U \times \mathbb{C}^{0|d}$ and set $u = u_{IJ}\theta^I \bar{\theta}^J$. We call the function u admissible with respect to the product \star if there exists a matrix (v^{JK}) on U such that

$$u_{IJ} \star v^{JK} = \delta_I^K$$
 and $v^{JK} \star u_{KL} = \delta_L^J$.

We define a product * on formal functions on $\Pi E|_U$ by the formula

$$f * g = u^{-1}((uf)_{KQ} \star v^{QP} \star (ug)_{PL})\theta^{K}\bar{\theta}^{L}.$$

The admissibility of u and the product * do not depend on the choice of trivialization of $\Pi E|_U$.

Properties of the product *

The product * is not necessarily a star product (i.e., it is not necessarily a deformation of the supercommutative product on $\Pi E|_U$).

The product * has the property of separation of variables. If $a = a_I \theta^I$ and $b = \beta_J \overline{\theta}^J$, where a_I is holomorphic and b_J is antiholomorphic on U, then

$$a * f = af$$
 and $f * b = fb$.

If the function u is globally defined on ΠE , then the product * is also globally defined on ΠE .

The product * is \mathbb{Z}_2 -graded with respect to the parity of the functions on $\Pi E.$

Denote by δ_K the operator on the functions on $U \times \mathbb{C}^{0|d}$ which maps $f = f_{IJ}\theta^I \bar{\theta}^J$ to $f = f_{KJ}\bar{\theta}^J$. For any function f on $U \times \mathbb{C}^{0|d}$ there exist uniquely defined functions f_I^K on U such that

$$L_f^* = u^{-1} \left(L_{f_I^{\kappa}}^{\star} \theta^I \delta_{\kappa} \right) u.$$

The mapping

$$(f_l^K) \mapsto f = \left(u^{-1} \left(L_{f_l^K}^{\star} \theta^I \delta_K \right) u \right) 1$$

is an isomorphism of the algebra of matrices (f_I^K) over the algebra $(C^{\infty}(U)[\nu^{-1},\nu]],\star)$ onto the algebra $(C^{\infty}(U \times \mathbb{C}^{0|d})[\nu^{-1},\nu]],\star)$.

Canonical supertrace

We define a canonical supertrace σ for the product \ast on U using the isomorphism

$$(f_I^K) \mapsto f = \left(u^{-1} \left(L_{f_I^K}^* \theta^I \delta_K \right) u \right) 1$$

Assume that the functions f_{I}^{K} have compact supports on U. Then

$$\sigma(f) = \int_U \sum_I (-1)^{|I|} f_I^I \mu,$$

where μ is the canonical trace density for the product \star .

The supertrace σ does not depend on the choice of trivialization of $\Pi E|_U$.

It can be given by an integral of f with respect to a Berezin density.

Nilpotent potential

We call an even nilpotent function $Y = \nu^{-1}Y_{-1} + Y_0 + \nu Y_1 + ...$ on $U \times \mathbb{C}^{0|d}$ a nondegenerate nilpotent potential if the matrix

$$\left(\overrightarrow{\frac{\partial}{\partial\theta^{\alpha}}}Y_{-1}\overrightarrow{\frac{\partial}{\partial\bar{\theta}^{\beta}}}\right)$$

is nondegenerate at every point of U.

Theorem

Given any star product with separation of variables \star on U and any nondegenerate nilpotent potential Y on $U \times \mathbb{C}^{0|d}$, the function $u = \exp Y$ is admissible with respect to the product \star . The corresponding product \star is a star product with separation of variables on $U \times \mathbb{C}^{0|d}$.

Example

Let *E* be a holomorphic Hermitian vector bundle over a complex manifold *M*. If $h_{\alpha\beta}$ is the fiber metric on *E*, then there is a global function *h* on ΠE given locally by the formula

 $h=h_{\alpha\beta}\theta^{\alpha}\bar{\theta}^{\beta}.$

The function $Y = \nu^{-1}h$ is a global nondegenerate nilpotent potential on ΠE .

If \star is a star product with separation of variables on M, then $u = \exp(\nu^{-1}h)$ is a global admissible function on ΠE and the corresponding product * is a global star product with separation of variables on ΠE .

A nondegenerate superpotential

Let \star_{ω} be a nondegenerate star product with separation of variables on a contractible open set $U \subset \mathbb{C}^m$ and Y be a nondegenerate nilpotent potential on $U \times \mathbb{C}^{0|d}$. Denote by * the corresponding star product with separation of variables on $U \times \mathbb{C}^{0|d}$. Let Φ be a potential of ω on U. We call

$$X = \Phi + Y$$

a nondegenerate superpotential on $U \times \mathbb{C}^{0|d}$. We have

$$L^*_{\frac{\partial X}{\partial z^k}} = \frac{\partial X}{\partial z^k} + \frac{\partial}{\partial z^k} \text{ and } L^*_{\frac{\partial X}{\partial \theta^\alpha}} = \frac{\partial X}{\partial \theta^\alpha} + \frac{\partial}{\partial \theta^\alpha}$$

Graded right *-multiplication operators

Denote by R_f^* the graded right *-multiplication operator by f such that if f, g are homogeneous, then

$$R_f^*g = (-1)^{|f||g|}g * f.$$

We have

$$L_f^*g - R_f^*g = [f,g]_*,$$

where $[f,g]_*$ is the supercommutator of f and g with respect to the product *.

The operators L_f^* and R_g^* supercommute. If X is a nondegenerate superpotential for the product * on $U \times \mathbb{C}^{0|d}$, then

$$R^*_{\frac{\partial X}{\partial \bar{z}^l}} = \frac{\partial X}{\partial \bar{z}^l} + \frac{\partial}{\partial \bar{z}^l} \text{ and } R^*_{\frac{\partial X}{\partial \bar{\theta}^\beta}} = \frac{\partial X}{\partial \bar{\theta}^\beta} + \frac{\partial}{\partial \bar{\theta}^\beta}.$$

The super Kähler-Poisson tensor for the product *

For a star product with separation of variables * of the anti-Wick type on $U \times \mathbb{C}^{0|d}$ the operator C_1 is of the form

$$\mathcal{L}_{1}(f,g) = rac{\partial f}{\partial ar{z}^{l}} A^{lk} rac{\partial g}{\partial z^{k}} + rac{\partial f}{\partial ar{z}^{l}} B^{llpha} rac{\partial}{\partial heta^{lpha}} g + \ f rac{\partial}{\partial ar{ar{ heta}}} C^{eta k} rac{\partial g}{\partial z^{k}} + f rac{\partial}{\partial ar{ar{ heta}}} D^{eta lpha} rac{\partial}{\partial heta^{lpha}} g,$$

where the matrix

$$\left(\begin{array}{cc}A^{lk} & B^{l\alpha}\\ C^{\beta k} & D^{\beta\alpha}\end{array}\right)$$

is an even Poisson tensor of type (1,1) on $U \times \mathbb{C}^{0|d}$ (so that $A^{lk}, D^{\beta\alpha}$ are even and $B^{l\alpha}, C^{\beta k}$ are odd).

A star product with separation of variables * of the anti-Wick type on $U\times \mathbb{C}^{0|d}$ is called nondegenerate if the matrix

$$\left(\begin{array}{cc}A^{lk} & B^{l\alpha}\\ C^{\beta k} & D^{\beta\alpha}\end{array}\right)$$

is nondegenerate at every point of U (i.e., when the matrices A^{lk} and $D^{\beta\alpha}$ are nondegenerate).

A star product with separation of variables * on $U \times \mathbb{C}^{0|d}$ is nondegenerate if and only if there exists a nondegenerate superpotential X such that

$$L^*_{\frac{\partial X}{\partial z^k}} = \frac{\partial X}{\partial z^k} + \frac{\partial}{\partial z^k}, L^*_{\frac{\partial X}{\partial \theta^{\alpha}}} = \frac{\partial X}{\partial \theta^{\alpha}} + \frac{\partial}{\partial \theta^{\alpha}},$$
$$R^*_{\frac{\partial X}{\partial \overline{z}^l}} = \frac{\partial X}{\partial \overline{z}^l} + \frac{\partial}{\partial \overline{z}^l} \text{ and } R^*_{\frac{\partial X}{\partial \overline{\theta}^{\beta}}} = \frac{\partial X}{\partial \overline{\theta}^{\beta}} + \frac{\partial}{\partial \overline{\theta}^{\beta}}.$$

The superpotential X is unique up to a summand a + b, where a is holomorphic and b is antiholomorphic.

Equivalently, a nondegenerate star product * is determined by a formal pseudo-Kähler form

$$\Omega = \nu^{-1}\Omega_{-1} + \Omega_0 + \dots$$

on the supermanifold $U imes \mathbb{C}^{0|d}$ such that

 $\Omega = i\partial\bar{\partial}X,$

where the operators ∂ and $\overline{\partial}$ are extended to $U \times \mathbb{C}^{0|d}$.