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Introduction

Star products with separation of variables on Kähler manifolds
arise in the context of Berezin’s quantization. The construction of
these star products can be naturally generalized to super-Kähler
manifolds.
In this talk I will describe star products with separation of variables
on a split super-Kähler manifold ΠE obtained from a holomorphic
vector bundle E over a Kähler manifold M. Such a star product ∗
depends on a star product with separation of variables ? on M and
some function Y on ΠE (a “nilpotent potential”). I will describe
the canonical supertrace for this star product.
This construction is used in the heat kernel proof of the index
theorem for a star product with separation of variables (work in
progress).



Star products with separation of variables

Let M be a complex manifold and C∞(M)[ν−1, ν]] be the space of
formal Laurent series with a finite principal part,

f = νr fr + νr+1fr+1 + . . . ,

where ν is a formal parameter, r ∈ Z, and fk ∈ C∞(M) for k ≥ r .
A star product with separation of variables of the anti-Wick type
on M is an associative product ? on C∞(M)[ν−1, ν]],

f ? g = fg +
∞∑
r=1

νrCr (f , g),

where Cr , r ≥ 1, is a bidifferential operator which differentiates the
first argument in antiholomorphic directions and the second
argument in holomorphic ones.



The star product ? induces a Kähler-Poisson bracket on M of type
(1,1) with respect to the complex structure,

{f , g} := −i(C1(f , g)− C1(g , f )).

It is called a star product on the Kähler-Poisson manifold
(M, {·, ·}).
Normalization: We assume that the unit constant 1 is the unity of
a star product.
Localization: A star product on M can be restricted (localized) to
any open subset U ⊂ M.
Nondegeneracy: We call a star product with separation of variables
on M nondegenerate if the corresponding Kähler-Poisson structure
is nondegenerate and therefore is induced by a pseudo-Kähler
structure on M.



Left and right star multiplication operators

For formal functions f , g on M we denote by L?f and R?g the left
and the right ?-multiplication operators by f and g , respectively,
so that

L?f g = f ? g = R?g f .

The operators L?f and R?g commute.
For a local holomorphic function a and antiholomorphic function b
the ?-multiplication operators L?a and R?b are the pointwise
multiplication operators by a and b, respectively:

L?a = a and R?b = b,

so that
a ? f = af and f ? b = fb.



Formal Berezin transform

Given a star product with separation of variables ? on a complex
manifold M, there exists a unique formal differential operator B
globally defined on M such that for a local holomorphic function a
and antiholomorphic function b,

B(ba) = b ? a.

It is called the formal Berezin transform of the star product ?.
A star product with separation of variables can be recovered from
its formal Berezin transform.



The dual star product

Given a star product with separation of variables ? of the
anti-Wick type on (M, {·, ·}) with the formal Berezin transform B,
the star product ?′ on (M, {·, ·}) given by the formula

f ?′ g := B−1(Bf ? Bg)

is a star product with separation of variables of the Wick type,
where the rôles of the holomorphic and antiholomorphic
coordinates are swapped.
The opposite product

f ?̃g := g ?′ f

is a star product with separation of variables of the anti-Wick type
on (M,−{·, ·}).
The star product ?̃ is called the dual star product to ?. Its formal
Berezin transform is B−1.



The Kähler-Poisson tensor

Let M be a complex manifold equipped with a Kähler-Poisson
structure, (U, {zk , z̄ l}) be a holomorphic coordinate chart on M,
and g lk be the Kähler-Poisson tensor on U. The Kähler-Poisson
bracket on M is

{u, v} = ig lk

(
∂u

∂zk
∂v

∂z̄ l
− ∂u

∂z̄ l
∂v

∂zk

)
.

If g lk is nondegenerate, its inverse gkl is a pseudo-Kähler metric
tensor and

ω−1 := igkldz
k ∧ dz̄ l

is a pseudo-Kähler form globally defined on M.



The operator C1

Given a star product with separation of variables ? on a complex
manifold M, the local expression for the operator C1 of ? is

C1(u, v) = g lk ∂u

∂z̄ l
∂v

∂zk
,

so that

u ? v = uv + νg lk ∂u

∂z̄ l
∂v

∂zk
+ . . .



The space Ω(M)

Given a complex manifold M which admits a pseudo-Kähler
structure, denote by Ω(M) the space of all formal forms

ω = ν−1ω−1 + ω0 + νω1 + . . .

on M such that all ωr , r ≥ −1, are closed forms of type (1,1) with
respect to the complex structure on M and ω−1 is some
pseudo-Kähler form on M.
Theorem. There is a natural bijection ω 7→ ?ω from Ω onto the
space of all nondegenerate deformation quantizations with
separation of variables of the anti-Wick type on M.
The form ω is called the classifying form of the star product ?ω.
We say that ?ω is a star product on the pseudo-Kähler manifold
(M, ω−1).



The star product ?ω is completely determined by the following
property. Let U ⊂ M be an arbitrary contractible coordinate chart
and Φ be a local potential of ω on U, so that

Φ = ν−1Φ−1 + Φ0 + . . . and ω = i∂∂̄Φ.

Then

L?∂Φ

∂zk
=

∂Φ

∂zk
+

∂

∂zk
and R?∂Φ

∂z̄ l
=
∂Φ

∂z̄ l
+

∂

∂z̄ l

on U.



The dual form

Given a form ω ∈ Ω(M), the dual star product of ?ω corresponds

to a form ω̃ ∈ Ω(M),

(̃?ω) = ?ω̃.

If ω = ν−1ω−1 + ω0 + . . . , then ω̃ = −ν−1ω−1 + ω̃0 + . . . .
The mapping ω 7→ ω̃ is an involution on Ω(M). We call ω̃ the dual
form of ω.



A local trace density

Given a nondegenerate star product with separation of variables ?ω
on M, for any contractible coordinate chart U ⊂ M and any
potential Φ = ν−1Φ−1 + . . . of ω on U there exists a potential
Ψ = −ν−1Φ−1 + . . . of the dual form ω̃ on U satisfying the
equations

∂Φ

∂zk
= −B

(
∂Ψ

∂zk

)
and

∂Φ

∂z̄ l
= −B

(
∂Ψ

∂z̄ l

)
,

where B is the formal Berezin transform for the product ?ω. The
potential Ψ is determined up to a formal additive constant.
Then

eΦ+Ψdzdz̄ ,

where dzdz̄ is a Lebesgue measure on U, is a local trace density
for the product ?ω.



A local ν-derivation

Given a star product with separation of variables ?ω on a
pseudo-Kähler manifold (M, ω−1), on any contractible coordinate
chart U ⊂ M there exists a derivation of the product ? of the form

δ =
d

dν
+ A,

where A is a formal differential operator on U.



A canonical trace density

There exists a global trace density µ for the product ? on M
uniquely determined by the conditions that (i)

µ =
1

m!νm
(ω−1)m + . . . ,

where m is the complex dimension of M,
and that (ii) on any contractible chart U the equality

d

dν

∫
U
f µ =

∫
U
δ(f )µ

holds for any function f with compact support on U.
It is called the canonical trace density for the product ?.



Functions on a split supermanifold

Let E be a holomorphic vector bundle of rank d over a complex
manifold M and ΠE be the corresponding split supermanifold. If E
is trivializable over an open subset U ⊂ M, consider a holomorphic
trivialization ΠE |U ∼= U × C0|d .
Let θα, θ̄β be the odd fiber coordinates on U × C0|d . We consider
the ordered subsets of [d ] := {1, 2, . . . , d} as tensor indices and set

θI = θα1 . . . θαk and |I | = k

for I = {α1, . . . , αk} ⊂ [d ].
A function f on ΠE |U can be written in coordinates as

f = fIJθ
I θ̄J ,

where fIJ ∈ C∞(U) and summation over repeated indices is
assumed.



A product on a split supermanifold

Given a star product with separation of variables ? on M, an open
subset U ⊂ M such that E is trivializable over U, and a formal
function u on ΠE |U such that u − 1 is nilpotent. Fix a
holomorphic trivialization ΠE |U ∼= U × C0|d and set u = uIJθ

I θ̄J .
We call the function u admissible with respect to the product ? if
there exists a matrix (vJK ) on U such that

uIJ ? v
JK = δKI and vJK ? uKL = δJL .

We define a product ∗ on formal functions on ΠE |U by the formula

f ∗ g = u−1((uf )KQ ? v
QP ? (ug)PL)θK θ̄L.

The admissibility of u and the product ∗ do not depend on the
choice of trivialization of ΠE |U .



Properties of the product ∗

The product ∗ is not necessarily a star product (i.e., it is not
necessarily a deformation of the supercommutative product on
ΠE |U).
The product ∗ has the property of separation of variables. If
a = aI θ

I and b = βJ θ̄
J , where aI is holomorphic and bJ is

antiholomorphic on U, then

a ∗ f = af and f ∗ b = fb.

If the function u is globally defined on ΠE , then the product ∗ is
also globally defined on ΠE .
The product ∗ is Z2-graded with respect to the parity of the
functions on ΠE .



Denote by δK the operator on the functions on U × C0|d which
maps f = fIJθ

I θ̄J to f = fKJ θ̄
J . For any function f on U × C0|d

there exist uniquely defined functions f KI on U such that

L∗f = u−1
(
L?
f KI
θI δK

)
u.

The mapping

(f KI ) 7→ f =
(
u−1

(
L?
f KI
θI δK

)
u
)

1

is an isomorphism of the algebra of matrices (f KI ) over the algebra
(C∞(U)[ν−1, ν]], ?) onto the algebra (C∞(U × C0|d)[ν−1, ν]], ∗).



Canonical supertrace

We define a canonical supertrace σ for the product ∗ on U using
the isomorphism

(f KI ) 7→ f =
(
u−1

(
L?
f KI
θI δK

)
u
)

1

Assume that the functions f KI have compact supports on U. Then

σ(f ) =

∫
U

∑
I

(−1)|I |f II µ,

where µ is the canonical trace density for the product ?.
The supertrace σ does not depend on the choice of trivialization of
ΠE |U .
It can be given by an integral of f with respect to a Berezin density.



Nilpotent potential

We call an even nilpotent function Y = ν−1Y−1 + Y0 + νY1 + . . .
on U × C0|d a nondegenerate nilpotent potential if the matrix(−−→

∂

∂θα
Y−1

←−−
∂

∂θ̄β

)

is nondegenerate at every point of U.

Theorem
Given any star product with separation of variables ? on U and any
nondegenerate nilpotent potential Y on U × C0|d , the function
u = expY is admissible with respect to the product ?. The
corresponding product ∗ is a star product with separation of
variables on U × C0|d .



Example

Let E be a holomorphic Hermitian vector bundle over a complex
manifold M. If hαβ is the fiber metric on E , then there is a global
function h on ΠE given locally by the formula

h = hαβθ
αθ̄β.

The function Y = ν−1h is a global nondegenerate nilpotent
potential on ΠE .
If ? is a star product with separation of variables on M, then
u = exp(ν−1h) is a global admissible function on ΠE and the
corresponding product ∗ is a global star product with separation of
variables on ΠE .



A nondegenerate superpotential

Let ?ω be a nondegenerate star product with separation of variables
on a contractible open set U ⊂ Cm and Y be a nondegenerate
nilpotent potential on U × C0|d . Denote by ∗ the corresponding
star product with separation of variables on U × C0|d .
Let Φ be a potential of ω on U. We call

X = Φ + Y

a nondegenerate superpotential on U × C0|d . We have

L∗∂X
∂zk

=
∂X

∂zk
+

∂

∂zk
and L∗∂X

∂θα
=
∂X

∂θα
+

∂

∂θα
.



Graded right ∗-multiplication operators

Denote by R∗f the graded right ∗-multiplication operator by f such
that if f , g are homogeneous, then

R∗f g = (−1)|f ||g |g ∗ f .

We have
L∗f g − R∗f g = [f , g ]∗,

where [f , g ]∗ is the supercommutator of f and g with respect to
the product ∗.
The operators L∗f and R∗g supercommute.
If X is a nondegenerate superpotential for the product ∗ on
U × C0|d , then

R∗∂X
∂z̄ l

=
∂X

∂z̄ l
+

∂

∂z̄ l
and R∗∂X

∂θ̄β
=
∂X

∂θ̄β
+

∂

∂θ̄β
.



The super Kähler-Poisson tensor for the product ∗

For a star product with separation of variables ∗ of the anti-Wick
type on U × C0|d the operator C1 is of the form

C1(f , g) =
∂f

∂z̄ l
Alk ∂g

∂zk
+
∂f

∂z̄ l
B lα

−−→
∂

∂θα
g +

f

←−−
∂

∂θ̄β
Cβk

∂g

∂zk
+ f

←−−
∂

∂θ̄β
Dβα

−−→
∂

∂θα
g ,

where the matrix (
Alk B lα

Cβk Dβα

)
is an even Poisson tensor of type (1,1) on U × C0|d (so that
Alk ,Dβα are even and B lα,Cβk are odd).



Classification of nondegenerate star products on ΠE

A star product with separation of variables ∗ of the anti-Wick type
on U × C0|d is called nondegenerate if the matrix(

Alk B lα

Cβk Dβα

)
is nondegenerate at every point of U (i.e., when the matrices Alk

and Dβα are nondegenerate).



A star product with separation of variables ∗ on U × C0|d is
nondegenerate if and only if there exists a nondegenerate
superpotential X such that

L∗∂X
∂zk

=
∂X

∂zk
+

∂

∂zk
, L∗∂X

∂θα
=
∂X

∂θα
+

∂

∂θα
,

R∗∂X
∂z̄ l

=
∂X

∂z̄ l
+

∂

∂z̄ l
and R∗∂X

∂θ̄β
=
∂X

∂θ̄β
+

∂

∂θ̄β
.

The superpotential X is unique up to a summand a + b, where a is
holomorphic and b is antiholomorphic.



Equivalently, a nondegenerate star product ∗ is determined by a
formal pseudo-Kähler form

Ω = ν−1Ω−1 + Ω0 + . . .

on the supermanifold U × C0|d such that

Ω = i∂∂̄X ,

where the operators ∂ and ∂̄ are extended to U × C0|d .


