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A rigorous one-one correspondence is established between one-dimensional systems of bosons and of
spinless fermions. This correspondence holds irrespective of the nature of the interparticle interactions,
subject only to the restriction that the interaction have an impenetrable core. It is shown that the Bose
and Fermi eigenfunctions are related by y2#=y¥A4, where A (x;,-+-x,) is 4+1 or —1 according as the order
2q- - -r, when the particle coordinates x; are arranged in the order x,<x,<--- <z, is an even or an odd
permutation of 1---n. The energy spectra of the two systems are identical, as are all configurational prob-
ability distributions, but the momentum distributions are quite different. The general theory is illustrated
by application to the special case of impenetrable point particles; the one-one correspondence between
bosons with this particular interaction and completely noninteracting fermions leads to a rigorous solution

of this many-boson problem.

1. INTRODUCTION

N the following section a very simple and general
relationship will be established between one-di-
mensional systems of impenetrable bosons and fermions.
We shall find that the restrictions both to one dimension
and to interactions with a completely impenetrable
core are essential. Nevertheless, there are at least two
motivations for studying such a relationship. First, one
is enabled to obtain a rigorous solution of the many-
boson problem for the case of impenetrable point
particles in a one-dimensional periodic box, and this
solution may serve as a useful testing ground for various
approximation methods. Second, the relationship for
the case of more general interactions may permit com-
parison of approximation methods designed for Fermi

where V includes all interactions except the hard cores’
and is otherwise completely unrestricted. Consider first
any Fermi wave function ¢¥ satisfying (2); ¢* is anti-
symmetric in the particle coordinates. We define a
““unit antisymmetric function” 4 as follows:

A2y - nn)=]I sgn(x;j—x1), (3)

>l

where sgn(x) is the algebraic sign of x; an equivalent
definition is that 4 is +1 or —1 according as the
order pq---r, when the x; are arranged in the order
xp<x,<+++<xy is an even or an odd permutation of
1---n. Then the product

yP=yr4 (4)

is svmmetric in the narticle coordinates. and hence
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Every instance of an integrable one-dimensional
many-body system with zero-range two-body
interactions can be traced to a multidimensional
kaleidoscope

Example: 4 hard-

core bosons on a line
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Kaleidoscopes are the systems o

- mirrors where the

seams between the mirrors are
there.

“Inside kaleido e’
expl ratorium’
San Francisco

0 not seem to be




It 1s proven that the existing list of kaleidoscopes,
or reflection groups,

AN, B, Cx, Dx; Go, Fu, Ee, E7, Es; Lo(m), Fla SIS

classical exceptional

crystallographic = non-crystallographic =
closed mirror chamber one mirror must be missing

1s complete.

“Inside kaleido e’
expl ratorium’
San Francisco
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Gutkin-Sutherland, Emsiz-Opdam-Stokman
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Affine

~ reflection groups
with non-forking 7J,
Coxeter diagrams
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/~ Solvable systems \t
of hard-cores in a box Y« /

Lfor A, on a circle)
Oricinal result s —



%é ALSO NEED FINITE REFLECTION GROUPS,
BOTH FOR TECHNICAL REASONS AND FOR
FUTURE PRO%FCTS
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%‘% ALSO NEED FINITE REFLECTION GROUPS,
BOTH FOR TECHNICAL REASONS AND FOR

FUTURE PROJECTS
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Afhne reflection groups —
—> solvable billiards

(short summary
of known results
and new results)



ALCOVE OF AN AFFINE REFLECTION GROUP AS A
SOLVABLE QUANTUM HARD-WALL BILLIARD

o) = -1 PRexplEH7] |
where
/ g = an element of the finite
éfl\ nucleus CJ% othh -
full atfine group G ,

éf)
O
>

2|g| = parity of g,

5 ~
k € lattice reciprocal to the lattice G.

After Gutkin-Sutherland, Emsiz-Opdam-Stokman

(covers Robin’s boundary conditions, includes completeness)



ALCOVE OF AN AFFINE REFLECTION GROUP AS A
SOLVABLE QUANTUM HARD-WALL BILLIARD

Integrals of motion in mvolution =
invariant polynomials (Chevalley
polynomials) ot the non-athne
nucleus , with coordinates
replaced by momenta (in the bilhard
coordinate system).

A hint to a Bethe Ansatz <=>
Liouwville’s integrability connection



AN EXAMPLE OF A BILLIARD SOLVING

Above, we used Go, the symmetry
oroup of a hexagon, O,

as an example.




Non-torking athine reflection
oroups — solvable particle

systems



o
d particles on a line in a box d-dimensional billiard "4

s = |
O O /(A (R e @

.0 >

inter-particle contact

(d-1)-taces

particle-wall contact _‘l -

left-mid and mid-right
contacts 1n a - ‘

- - H G
consecutive triplet o .I —

two (d-1)-taces at
an angle

(e ma )
mims

e ——

contacts 1n two |. ‘l 4 two (d-1)-tfaces
unrelated consecutive doublets at 90°




A solvable particle
system assoclated with
the athne reflection

oroup F



Our subject of 1s F4, the symmetry group
of an octacube, ¥ | a unique to 4D

W |0
Platonic solid, with no 3D analogue, and

1ts many-body realization.




Our subject of 15 F4, the symmetry group
of an octacube, ¥/ , a unique to 4D

Platonic solid, with no 3D analogue, and
1ts many-body realization.

The “Octacube” and its designer,
Adrian Ocneanu, PennState




The “Octacube” and its designer, Adrian Ocneanu, PennState



RHOMBIC DODECAHEDRON, THE 3D
COUSIN OF THE OCTACUBE




RHOMBIC DODECAHEDRON, THE 3D
COUSIN OF THE OCTACUBE




RHOMBIC DODECAHEDRON, THE 3D
COUSIN OF THE OCTACUBE




RHOMBIC DODECAHEDRON, THE 3D

COUSIN OF THE OCTACU%
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RHOMBIC DODECAHEDRON, THE 3D
COUSIN OF THE OCTACUBE




RHOMBIC DODECAHEDRON, THE 3D
COUSIN OF THE OCTACUBE




RHOMBIC DODECAHEDRON, THE 3D
COUSIN OF THE OCTACUBE




tintouven:

arhombic dodecahedron, custom made for M.O.

Rhombic dodecahedron is the closest, albeit still distant cousin of the octacube, a unique four-
dimensional Platonic solid with no three-dimensional analogues. The symmetry of a 4D space tiled
by the octacubes is a key to the solution of a problem about four quantum particles with mass
ratios 6:2:1:3 in a box.

7/10/15 — 11:45pm
FILED UNDER: #handmade #metal #geometry

www.tintouen. fr

/ TINTOUEN se trouve aux puces de Saint-Ouen, \
! venez par la 4 station porte de Clignancourt
! marchez vers Saint-Ouen, passez le peériph et
: descendez la rue des rosiers jusqu’au petit
i
1

Eassage d'entrée du marché Vernaison au 129.
e stand est a droite au pied des marches...
Broc. Sam et Dim 10h-18h. Atelier Mar a Ven /

/ We are in Saint-Ouen flea-markets, 5mn away
! from metro (4) station porte de Clignancourt
! Walk straight to Saint-Ouen, rue des rosiers
! Look for Marché Vernaison small entrance at:
! 129 rue des rosiers

! Shop is just down the steps on your right...
\ Open 1l0am to 6pm, Sat-Sun. Workshop Tue-Fri.

1/27/15 — 10:58am



http://www.tintouen.fr

Repeat the steps above with two tesseracts and
you will get an octacube. But unlike in 3D, 1n 4D
you will get a Platonic sohd.



T'he rhombic dodecahedron and the octacube are
the 3D and 4D members of a family, that goes through
all numbers of dimensions: in every dimension,
the resulting polyhedron #/es the corresponding
space




BUILDING A PARTICLE SYSTEM
FROM THE F;4 COXETER DIAGRAM



| S | Ragieerrom “[T]he angel of geometry and the devil

boston.com of algebra share the stage, illustrating

% Trending now on { ; 33
vLocal Search Site Search Globe.com the d#ﬁcultl eS Of bOth .

1
HOME TODAY'S GLOBE m YOURTOWN BUSINESS SPORTS LIFESTYLE Hermann Weyl

Local National World Campaign2010 Business Education Health Science G

HOME / NEWS / BOSTON GLOBE / IDEAS

The man who saved geometry

Crying "Death to Triangles!' a generation of mathematicians tried to eliminate
. geometry in favor of algebra. Were it not for Donald Coxeter, they might have
. succeeded.

ALCOVES OF
REFLECTION GROUPS
(AND MANY OTHER
[ —— . GEOMETRIC

::;b;lﬂ Roberts OBJECTS ) ARE

: September 10, 2006

E-mail | @ Reprints | Textsize |9 3
FOR A LOT OF PEOPLE, talk of geometry induces flashbacks to high school C A T A L O G E D U s l N G

math class anxieties-fumbling with compasses and protractors and memorizing
triangle theorems. So the idea that geometry was once on the brink of extinction C E T E
. as an academic subject does not elicit much regret or nostalgia. (Full article: 1299 O X R D l A G R A M s

words)



BUILDING A PARTICLE SYSTEM
FROM THE F;4 COXETER DIAGRAM

rt / angles between the generating mirrors
of a reflection group

k. \ .

3

e

generating mirrors of the reflection group

©




BUILDING A PARTICLE SYSTEM
FROM THE F;4 COXETER DIAGRAM

Fy
0 3 4 3
© O O @ @
mo-mi m1-ma mo=-ms m3-m4 mM4-ms
ml(mo+m1+m2) M3<MQ+7?23+7724>
arctan | i 8=t /ad  orctan| mp—— |
arctan| mg(m1+m2+m3)] =n/  arctan| fhad agii ) =
mims msns

mo, mi, mo, ms, m4, ms >0

1mo ms nm4 .
2 sy m5




BUILDING A PARTICLE SYSTEM
FROM THE F;4 COXETER DIAGRAM

Fy
4
© & O O @
mo-mi m1-ms mo-ms3 m3-14 M4-ms
ml(mo+m1+m2) M3<MQ+7?23+7724>
arctan| g |~ m/0 aictan) ——— | 011/
arctan| mg(m1+m2+m3)] = n/3 arctan| fhad agii ) | =
mims msms

mo, mi, mo, ms, m4, ms >0

1mo ms nm4 .




BUILDING A PARTICLE SYSTEM
FROM THE F;4 COXETER DIAGRAM

Iy

© < O & &

mo-mi mi-ma mo-mnis3 ms3-1i4 ni4-nis

Single solution:
mo=90, m1=0bm, mo=2m, ms=m, ms=3m, ms=0
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L ¢ RESULTS

Periodicity cell:
octacube (24 octahedral 3-faces at all signs and
pPetilitations of (1, =1, O, 0))

Energy spectrum:

2H?
Enl,n?,n?),m} 6 72 [in(m-l-ng-l-ng-l-m)

46 +n22+n32+n42+n2n3+n2n4+ngn4]
=l ) . L
B ),

104,

Number of states below E

1000 -

1000 2000 5000 1x10% 2x10%

Energy, E [h?/m3L?]
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L ¢ RESULTS

Ground state wavefunction:
consists of 1152 plane
waves (the same for

any other eigenstate)




e RESULTS

Four integrals of motion 1n mvolution:

L1, f2, #3, £1) =
(e1ta2) He1-p2) te1tps) Hei-ps) Hertps) Her-p) +
(e2ts) Hpa-ps) Heatp) Heaps) Heste) Hes-pa)

[ = 2, 6, 8, 12, \ Invariant

with S = polyr;o;nials

A B i i e e
2 vz p g @
o ol Bale il v 2 ;
= = 2
A3 ol | D3 =
= E=p
= | A4 003 1 DL
) o

¥ A Remark: Ir < E 7t

@ -("]_[\0):][ ('] o [}[ (v P—SL{J‘[LE i(;rrnna;ll(t:SAN.l—>fermlon1C momentum



Summary



SUMMARY

~ Extablished a map between athne reflection groups
with non-forking Coxeter diagrams and exactly solvable
quantum hard-core tew-body problems on a line;

~ Worked the Fi (symmetry of an octacube, g&¥%
to the end. The resulting integrable four-body

system consists of four hard-cores with mass ratios
el -0 o 90—

y
i

~ For Fi, found all four integrals of motion: Chevalley

polynomials of square roots of particle kinetic
energies.
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