Stable and unstable del Pezzo surfaces

Ivan Cheltsov

2nd July 2016

Fano manifolds

Let X be a complex projective manifold of dimension n. Put

$$-K_X = \bigwedge^n T_X.$$

Definition

The manifold X is a Fano manifold if $-K_X$ is an *ample* line bundle.

Example

The projective space \mathbb{P}^n is a Fano manifold.

Example

The Grassmannian Gr(r, m) is a Fano manifold.

Example

Let X be a smooth hypersurface in \mathbb{P}^m of degree d. Then

the manifold X is a Fano manifold $\iff d \leqslant m$.

Low dimensional Fano manifolds

- The only 1-dimensional Fano manifold is \mathbb{P}^1 .
- ► There are 10 families of 2-dimensional Fano manifolds.

Let S be a 2-dimensional Fano manifold. Put

$$d=K_S^2.$$

Then d is said to be the degree of the manifold S.

Theorem (Pasquale Del Pezzo)

One has

$$d \in \big\{1, 2, 3, 4, 5, 6, 7, 8, 9\big\}.$$

Moreover, one of the following cases holds:

1.
$$S = \mathbb{P}^2$$
 and $d = 9$,

2.
$$S = \mathbb{P}^1 imes \mathbb{P}^1$$
 and $d = 8$,

3. there is a blow up $\pi: S \to \mathbb{P}^2$ at $9 - d \leq 8$ points.

3-dimensional Fano manifolds are found by Iskovskikh, Mori, Mukai.

Del Pezzo surfaces

Definition

2-dimensional Fano manifolds are called *del Pezzo* surfaces.

Let S_d be a del Pezzo surface of degree d.

- S_9 is the projective plane \mathbb{P}^2 .
- S_8 is either $\mathbb{P}^1 \times \mathbb{P}^1$ or the Hirzebruch surface \mathbb{F}_1 .
- S_7 is the blow up of the plane \mathbb{P}^2 in 2 different points.
- S_6 is the blow up of the plane \mathbb{P}^2 in 3 different points.
- S_5 is a section of the Grassmannian

 $\operatorname{Gr}(2,5) \subset \mathbb{P}^9$

in its Plücker embedding by a linear space of codimension 4.

- S_4 is a complete intersection of two quadrics in \mathbb{P}^4 .
- S_3 is a cubic surface in \mathbb{P}^3 .
- S_2 is a quartic surface in $\mathbb{P}(1,1,1,2)$.
- S_1 is a sextic surface in $\mathbb{P}(1,1,2,3)$.

The surface S_d is toric $\iff d \ge 6 \iff \operatorname{Aut}(S_d)$ is infinite.

Kähler-Einstein del Pezzo surfaces

Let S_d be a del Pezzo surface of degree d.

- The Hirzebruch surface \mathbb{F}_1 is not Kähler–Einstein.
- ▶ The surface S₇ is not Kähler–Einstein.

Theorem (Tian, 1990)

All other del Pezzo surfaces are Kähler-Einstein.

Example

The Fubini–Study metric on \mathbb{P}^2 is Kähler–Einstein.

Theorem (Tian, 1987)

Let X be a Fano manifold of dimension n. If

$$\alpha(X) > \frac{n}{n+1},$$

then X is Kähler–Einstein, where $\alpha(X)$ is the α -invariant. By Fujita, $\alpha(X) \ge \frac{n}{n+1}$ also implies that X is Kähler–Einstein.

Constant scalar curvature Kähler (cscK) metrics

- Let X be a complex projective manifold.
- Let *L* be an ample line bundle on the manifold *X*.

Question

When does X admit cscK metric in $c_1(L)$?

If X is a Fano manifold and L = −K_X, then it admit cscK metric in c₁(L) ⇔ X is Kähler–Einstein.

Conjecture (Yau, Tian, Donaldson)

X admits cscK metric in $c_1(L) \iff (X,L)$ is K-stable.

- \Rightarrow -direction of this conjecture is known.
- This conjecture holds for toric surfaces (Donaldson).

Theorem (Chen, Donaldson, Sun)

The conjecture holds when X is a Fano manifold and $L = -K_X$.

Donaldson got the Breakthrough Prize for this theorem.

Ample cone of del Pezzo surfaces

Let S_d be a del Pezzo surface of degree d.

- Identify line bundles on S_d with their first Chern classes.
- Consider line bundles on S_d as classes in $H^2(S_d, \mathbb{Q}) = \mathbb{Q}^{10-d}$
- Identify H²(S_d, ℚ) = H₂(S_d, ℚ) using Poincare pairing.

Definition

Denote by $Amp(S_d)$ the cone in $H^2(S_d, \mathbb{Q})$ of ample line bundles. The cone $Amp(S_d)$ is the dual cone to the Mori cone

$$\operatorname{NE}(S_d) \subset H^2(S_d, \mathbb{Q})$$

that is generated by all curves in the surface S_d .

- The cone $NE(S_d)$ is a polyhedral cone.
- ▶ For $d \leq 7$, its rays are the curves *C* in *S*_d such that

$$C^{2} = -1$$

and $C = \mathbb{P}^1$. Such curves are called (-1)-curves.

(-1)-curves on cubic surface

Toric del Pezzo surfaces

- Let S_d be a del Pezzo surface of degree d.
- Let *L* be an ample line bundle on S_d .

If S_d admits cscK metric in $c_1(L)$, then $Aut_0(S_d, L)$ is reductive. Corollary

If $S_d = \mathbb{F}_1$, then S_d does not admit cscK metric in $c_1(L)$.

Corollary

If d = 7, then S_d does not admit cscK metric in $c_1(L)$.

Recall that Fubini–Study metric is a cscK metric.

Corollary

If $S_d = \mathbb{P}^2$, then S_d admits cscK metric in $c_1(L)$.

Corollary

If $S_d = \mathbb{P}^1 \times \mathbb{P}^1$, then S_d admits cscK metric in $c_1(L)$.

Del Pezzo surface of degree six

- Let S_6 be a del Pezzo surface of degree 6.
- Let *L* be an ample line bundle on S_6 .

There exists a blow up $\pi\colon S_6\to \mathbb{P}^2$ at 3 points such that

$$\lambda L = -K_{\mathcal{S}_d} + a_1 E_1 + a_2 E_2 + a_3 E_3,$$

where E_1 , E_2 , E_3 are π -exceptional curves, $\lambda \in \mathbb{Q}_{>0}$, and a_1 , a_2 , $a_3 \in \mathbb{Q}$. Remark

The ampleness of *L* implies $a_i < 1$ and $a_i + a_j > -1$ for all $i \neq j$.

Theorem (Donaldson)

The surface S_6 admits cscK metric in $c_1(L)$ if and only if either

$$a_1 + a_2 + a_3 = 0$$

or
$$a_1 = a_2 = a_3$$
.

Test configurations

- Let X be a complex projective manifold.
- Let *L* be an ample line bundle on the manifold *X*.

Let $\pi \colon \mathcal{X} \to \mathbb{P}^1$ be a flat morphism such that

- (a) all fibers of π over $\mathbb{P}^1 \setminus [0:1]$ are isomorphic to X,
- (b) the variety \mathcal{X} has *mild* singularities.

Let ${\mathcal L}$ be a line bundle on ${\mathcal X}$ such that

(a) L|_X = L, where X is any fiber of π over P¹ \ [0 : 1],
(b) the line bundle L is π-ample.

Suppose that there is an $\mathbb{C}^\star\text{-}\mathsf{action}$ on $\mathcal X$ such that

(a) both
$$\pi$$
 and \mathcal{L} are \mathbb{C}^* -equivariant,

(b) the fiber of π over [0:1] is \mathbb{C}^* -invariant.

Then $(\mathcal{X}, \mathcal{L}, \pi \colon \mathcal{X} \to \mathbb{P}^1)$ is a *test configuration* of the pair (X, L).

Donaldson-Futaki invariant

- Let X be a complex projective manifold of dimension n.
- ▶ Let *L* be an ample line bundle on the manifold *X*. Put

$$\nu(L)=\frac{-K_X\cdot L^{n-1}}{L^n}.$$

Let $(\mathcal{X}, \mathcal{L}, \pi \colon \mathcal{X} \to \mathbb{P}^1)$ is a *test configuration* of the pair (X, L). Definition

The *Donaldson–Futaki invariant* of $(\mathcal{X}, \mathcal{L}, \pi \colon \mathcal{X} \to \mathbb{P}^1)$ is the number

$$\mathsf{DF} = \frac{n}{n+1}\nu(L)\mathcal{L}^{n+1} + \mathcal{L}^n \cdot \left(\mathcal{K}_{\mathcal{X}} - \pi^*(\mathcal{K}_{\mathbb{P}^1})\right)$$

If DF < 0, then the pair (X, L) is said to be *K*-unstable.

Definition

The pair (X, L) is said to be *K*-stable if

- **DF** \ge 0 for all test configurations,
- **DF** > 0 for all non-isotrivial test configurations.

Unstable del Pezzo surfaces

- Let S_d be a del Pezzo surface of degree $d \ge 6$.
- Let *L* be an ample line bundle on S_d .

There exists a blow up $\pi\colon \mathcal{S}_d o \mathbb{P}^2$ at r=9-d points such that

$$\lambda L = -\mathcal{K}_{\mathcal{S}_d} + \sum_{i=1}^r a_i E_i,$$

where E_1, \ldots, E_r are π -exceptional curves, $\lambda \in \mathbb{Q}_{>0}$, and $a_1, a_2, a_3 \in \mathbb{Q}$. Theorem (Ross, Thomas) If $a_i \gg a_1$ for i > 1, then (S_d, L) is K-unstable.

They used so-called slope-stability to prove this theorem.

Theorem (Cheltsov, Martinez-Garcia) If $a_i \gg a_1$ and $a_i \gg a_2$ for i > 2, then (S_d, L) is K-unstable.

We used slope-stability and flops to prove this theorem.

Dervan's theorem

- Let X be a Fano manifold of dimension n.
- ▶ Let *L* be an ample line bundle on *X*. Put

$$\nu(L)=\frac{-K_X\cdot L^{n-1}}{L^n}>0.$$

Theorem (Dervan)

Suppose that $-K_X - \frac{n}{n+1}\nu(L)L$ is numerically effective

$$\alpha(X,L) > \frac{n}{n+1}\nu(L).$$

Then the pair (X, L) is K-stable.

• The α -invariant $\alpha(X, L)$ can be defined as

$$\sup \left\{ \lambda \in \mathbb{Q} \; \middle| \begin{array}{c} \text{the log pair } (X, \lambda D) \text{ is log canonical} \\ \text{for every effective } \mathbb{Q}\text{-divisor } D \sim_{\mathbb{Q}} L \end{array} \right\}$$

Stable del Pezzo surfaces

- Let S_d be a del Pezzo surface of degree d.
- Let L be an ample line bundle on S_d .

Theorem (Cheltsov, Martinez-Garcia) Suppose that $d \leq 2$ and

$$-K_{\mathcal{S}_d}-\frac{2}{3}\Big(\frac{-K_{\mathcal{S}_d}\cdot L}{L^2}\Big)L$$

is numerically effective. Then (S_d, L) is K-stable.

Example

Suppose that d = 1. Let E be a (-1)-curve on S_1 . Put

$$L = -K_S + \lambda E,$$

where $\lambda \in \mathbb{Q}$ such that $-\frac{1}{3} < \lambda < 1$. Then (S_1, L) is K-stable if

$$3-\sqrt{10}<\lambda<\frac{1}{9}(\sqrt{10}-1).$$

Cubic surfaces

- Let S_3 be a smooth cubic surface in \mathbb{P}^3 .
- Let E_1 , E_2 , E_3 , E_4 , E_5 , E_6 be disjoint lines on S_3
- Let λ be a rational number. Put

$$L = -K_S + \lambda \sum_{i=1}^{6} E_i.$$

• Then *L* is ample
$$\iff -\frac{1}{5} \leqslant \lambda < 1$$
.

Theorem (Arezzo, Pacard) Suppose that $1 > \lambda \gg 0$. Then (S_3, L) is K-stable.

Theorem (Cheltsov, Martinez-Garcia) Suppose that $0 \le \lambda \le \frac{1}{10}$. Then (S_3, L) is K-stable.

• We expect that (S_3, L) is *K*-stable for every $\lambda \in (-\frac{1}{5}, 1)$.