The Realization Formula(e)

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore

June, 2016

Thanks!

Thanks to the organizers for this opportunity and warm hospitality.

Let
$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 be a contraction.

Let $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a contraction.

Consider the function

$$f(z) = a + \frac{zbc}{1 - zd}$$

on the open unit disc.

Let $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a contraction.

Consider the function

$$f(z) = a + \frac{zbc}{1 - zd}$$

on the open unit disc.

If we compute $f(z)\overline{f(z)}$, then it comes out to be not more than 1. One uses the fact that U is a contraction.

Let $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a contraction.

Consider the function

$$f(z) = a + \frac{zbc}{1 - zd}$$

on the open unit disc.

If we compute $f(z)\overline{f(z)}$, then it comes out to be not more than 1. One uses the fact that U is a contraction.

We become more ambitious.

The formula for the disc

Let there be a Hilbert space ${\cal H}$ and a contraction

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \mathbb{C} \oplus H \to \mathbb{C} \oplus H$$

and consider $f(z) = A + zB(I - zD)^{-1}C$.

The formula for the disc

Let there be a Hilbert space ${\cal H}$ and a contraction

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \mathbb{C} \oplus H \to \mathbb{C} \oplus H$$

and consider $f(z) = A + zB(I - zD)^{-1}C$.

Again the fact that U is a contraction implies that $f(z)\overline{f(z)}$ would be not more than 1.

The formula for the disc

Let there be a Hilbert space ${\cal H}$ and a contraction

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \mathbb{C} \oplus H \to \mathbb{C} \oplus H$$

and consider $f(z) = A + zB(I - zD)^{-1}C$.

Again the fact that U is a contraction implies that $f(z)\overline{f(z)}$ would be not more than 1.

The surprise is that all H^∞ functions on the unit disc with sup norm not more than 1 is of this form: a function f is in in $H^\infty(\mathbb{D})$ and satisfies $\|f\| \leq 1$ if and only if there is a Hilbert space H and a contraction (iff an isometry iff a unitary operator)

$$U = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \mathbb{C} \oplus H \to \mathbb{C} \oplus H$$

such that $f(z) = A + zB(I - zD)^{-1}C$.

Finding the realization formula for f as above depends on f being a contractive multiplier on the Hardy space.

Finding the realization formula for f as above depends on f being a contractive multiplier on the Hardy space.

Because of that, the following is a positive semi-definite kernel.

$$\frac{1 - f(z)\overline{f(w)}}{1 - z\overline{w}}$$

Finding the realization formula for f as above depends on f being a contractive multiplier on the Hardy space.

Because of that, the following is a positive semi-definite kernel.

$$\frac{1 - f(z)\overline{f(w)}}{1 - z\bar{w}}$$

One writes the GNS decomposition of this positive definite kernel and observes that a certain equality holds. That gives an isometry.

Finding the realization formula for f as above depends on f being a contractive multiplier on the Hardy space.

Because of that, the following is a positive semi-definite kernel.

$$\frac{1 - f(z)\overline{f(w)}}{1 - z\overline{w}}$$

One writes the GNS decomposition of this positive definite kernel and observes that a certain equality holds. That gives an isometry.

This technique is known as that of a lurking isometry.

Bidisk

It was shown by Agler that a function f is in $H^\infty(\mathbb{D}^2)$ and has norm less than or equal to 1 if and only if there is a graded Hilbert space $\mathcal{L}=\mathcal{L}_1\oplus\mathcal{L}_2$ and a unitary operator $V:\mathbb{C}\oplus\mathcal{L}\to\mathbb{C}\oplus\mathcal{L}$ which can be written in the block form as

$$V = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

so that writing P_1 for projection of \mathcal{L} onto \mathcal{L}_1 and P_2 for projection of \mathcal{L} onto \mathcal{L}_2 ,

$$f((z) = A + B(z_1P_2 + z_2P_2)[I - (z_1P_1 + z_2P_2)D]^{-1}C.$$

The symmetrized bidisc is

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}.$$

The symmetrized bidisc is

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}.$$

It has a few alternate descriptions. One of them is

$$\Gamma = \{(s, p) \in \mathbb{C}^2 : |s - \overline{s}p| \le 1 - |p|^2\}.$$

The symmetrized bidisc is

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}.$$

It has a few alternate descriptions. One of them is

$$\Gamma = \{(s, p) \in \mathbb{C}^2 : |s - \overline{s}p| \le 1 - |p|^2\}.$$

Another is

$$\Gamma = \{(\beta + \overline{\beta}p, p) : |p| \leq 1 \text{ and } |\beta| \leq 1\}.$$

The symmetrized bidisc is

$$\Gamma = \{(z_1 + z_2, z_1 z_2) : |z_1|, |z_2| \le 1\}.$$

It has a few alternate descriptions. One of them is

$$\Gamma = \{(s, p) \in \mathbb{C}^2 : |s - \overline{s}p| \le 1 - |p|^2\}.$$

Another is

$$\Gamma = \{(\beta + \overline{\beta}p, p) : |p| \leq 1 \text{ and } |\beta| \leq 1\}.$$

In fact,
$$\beta = (s - \overline{s}p)/(1 - |p|^2)$$
.

The Realization formula

We would like to motivate it first.

The Realization formula

We would like to motivate it first.

Note that the easier part of the proof of the formula for the unit disk is to show that an f of the form

$$f(z) = A + zB(I - zD)^{-1}C$$

indeed has modulus no bigger than one (holomorphicity is clear). This assertion of the modulus being not bigger than one depends on T being a contraction.

The Realization formula

We would like to motivate it first.

Note that the easier part of the proof of the formula for the unit disk is to show that an f of the form

$$f(z) = A + zB(I - zD)^{-1}C$$

indeed has modulus no bigger than one (holomorphicity is clear). This assertion of the modulus being not bigger than one depends on T being a contraction.

That would remain the same if the operators A,B,C and D are not constants, but operator valued functions defined on the open unit disk which satisfy the property that the 2×2 operator matrix valued function

$$T(z) = \begin{pmatrix} A(z) & B(z) \\ C(z) & D(z) \end{pmatrix} : \mathbb{C} \oplus H \to \mathbb{C} \oplus H$$

is a contraction valued function.

In that case, f(z) becomes

$$f(z) = A(z) + zB(z)(I - zD(z))^{-1}C(z).$$
 (1)

As long as T(z) is a contraction, f(z) will have modulus less than or equal to one. This is one of the ideas we exploit in case of the symmetrized bidisk.

In that case, f(z) becomes

$$f(z) = A(z) + zB(z)(I - zD(z))^{-1}C(z).$$
 (1)

As long as T(z) is a contraction, f(z) will have modulus less than or equal to one. This is one of the ideas we exploit in case of the symmetrized bidisk.

Consider, then, two Hilbert spaces $\mathcal H$ and $\mathcal K$ and an isometry V on $\mathbb C\oplus\mathcal H\oplus\mathcal K$. Obviously, V has a block operator matrix decomposition:

$$V = \begin{pmatrix} P & Q & R \\ S & T & U \\ W & X & Y \end{pmatrix} : \begin{pmatrix} \mathbb{C} \\ \mathcal{H} \\ \mathcal{K} \end{pmatrix} \to \begin{pmatrix} \mathbb{C} \\ \mathcal{H} \\ \mathcal{K} \end{pmatrix}. \tag{2}$$

The following 2×2 principal submatrices

$$\begin{pmatrix} P & R \\ W & Y \end{pmatrix}, \begin{pmatrix} Q & R \\ X & Y \end{pmatrix}, \begin{pmatrix} S & U \\ W & Y \end{pmatrix} \text{ and } \begin{pmatrix} T & U \\ X & Y \end{pmatrix}$$

of V are contractions.

The following 2×2 principal submatrices

$$\begin{pmatrix} P & R \\ W & Y \end{pmatrix}, \begin{pmatrix} Q & R \\ X & Y \end{pmatrix}, \begin{pmatrix} S & U \\ W & Y \end{pmatrix} \text{ and } \begin{pmatrix} T & U \\ X & Y \end{pmatrix}$$

of V are contractions.

Associate with each of them a function on $\mathbb G$ that depends on the submatrix and a chosen complex number α in the closed unit disk. The functions are

$$A(s,p) = P + (2\alpha p - s)R((2 - \alpha s) - (2\alpha p - s)Y)^{-1}W(3)$$

$$B(s,p) = Q + (2\alpha p - s)R((2 - \alpha s) - (2\alpha p - s)Y)^{-1}X$$

$$C(s,p) = S + (2\alpha p - s)U((2 - \alpha s) - (2\alpha p - s)Y)^{-1}W$$

$$D(s,p) = T + (2\alpha p - s)U((2 - \alpha s) - (2\alpha p - s)Y)^{-1}X$$

Note that the functions have been so prepared that

$$A(s,p) \in \mathcal{B}(\mathbb{C},\mathbb{C}) \text{ and } B(s,p) \in \mathcal{B}(\mathcal{H},\mathbb{C})$$

$$C(s,p) \in \mathcal{B}(\mathbb{C},\mathcal{H}) \text{ and } D(s,p) \in \mathcal{B}(\mathcal{H},\mathcal{H}).$$

Thus if we now define the colligation associated with V and α as the 2×2 operator matrix function defined on $\mathbb G$ by

$$(s,p) \to T_{V,\alpha}(s,p) = \begin{pmatrix} A(s,p) & B(s,p) \\ C(s,p) & D(s,p) \end{pmatrix} \tag{4}$$

then it is a $\mathcal{B}(\mathbb{C} \oplus \mathcal{H})$ valued function on \mathbb{G} .

We are now ready to state the Realization Theorem. It will involve the following 2×2 diagonal operator matrix which we shall call the **evaluation operator**. For $(s,p) \in \mathbb{G}$ and two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 as above, the evaluation operator is the following strict contraction on $\mathcal{H}_1 \oplus \mathcal{H}_2$:

$$\mathcal{E}(s,p) = \left(\begin{array}{cc} \frac{s}{2}I_{\mathcal{H}_1} & 0 \\ 0 & pI_{\mathcal{H}_2} \end{array} \right).$$

Realization theorem. The following are equivalent.

H f is a function in $H^{\infty}(\mathbb{G})$ with $||f||_{\infty} \leq 1$.

R There is a complex number α in the closed unit disk, two Hilbert spaces $\mathcal H$ and $\mathcal K$ such that $\mathcal H=\mathcal H_1\oplus\mathcal H_2$ and an isometry

$$V = \begin{pmatrix} P & Q & R \\ S & T & U \\ W & X & Y \end{pmatrix} : \mathbb{C} \oplus \mathcal{H} \oplus \mathcal{K} \to \mathbb{C} \oplus \mathcal{H} \oplus \mathcal{K}$$
 (5)

such that the associated colligation $T_{V,\alpha}$, as defined in (4), is contraction valued and

$$f(s,p) = A(s,p) + B(s,p)\mathcal{E}(s,p)(I - D(s,p)\mathcal{E}(s,p))^{-1}C(s,p).$$
(6)

A commuting pair of bounded operators (S,P) is called a Γ -contraction if the closed symmetrized bidisc Γ is a spectral set for (S,P).

A commuting pair of bounded operators (S,P) is called a Γ -contraction if the closed symmetrized bidisc Γ is a spectral set for (S,P).

In other words,

$$||f(S, P)|| \le \sup\{|f(s, p)| : (s, p) \in \Gamma\}$$

holds for every polynomial f in two variables.

A commuting pair of bounded operators (S,P) is called a Γ -contraction if the closed symmetrized bidisc Γ is a spectral set for (S,P).

In other words,

$$||f(S, P)|| \le \sup\{|f(s, p)| : (s, p) \in \Gamma\}$$

holds for every polynomial f in two variables.

This implies that

$$||f(S, P)|| \le \sup\{|f(s, p)| : (s, p) \in \Gamma\}$$

holds for every function f holomorphic in two variables in a neighbourhood of Γ .

A commuting pair of bounded operators (S,P) is called a Γ -contraction if the closed symmetrized bidisc Γ is a spectral set for (S,P).

In other words,

$$||f(S, P)|| \le \sup\{|f(s, p)| : (s, p) \in \Gamma\}$$

holds for every polynomial f in two variables.

This implies that

$$||f(S, P)|| \le \sup\{|f(s, p)| : (s, p) \in \Gamma\}$$

holds for every function f holomorphic in two variables in a neighbourhood of Γ .

That is so because of Oka-Weil Theorem (Γ is polynomially convex!)

Application of the Realization Formula: Pick interpolation

Admissible kernels:

Definition

A kernel k is a scalar valued function on $\Omega \times \Omega$ which is holomorphic in the first variable, anti-holomorphic in the second variable and is positive definite, i.e., $\sum_{i,j=1}^n c_i \bar{c}_j k(z,z_j) > 0$ for any positive integer n, any n points z_1, z_2, \ldots, z_n in Ω and any n scalars c_1, c_2, \ldots, c_n .

Application of the Realization Formula: Pick interpolation

Admissible kernels:

Definition

A kernel k is a scalar valued function on $\Omega \times \Omega$ which is holomorphic in the first variable, anti-holomorphic in the second variable and is positive definite, i.e., $\sum_{i,j=1}^n c_i \bar{c}_j k(z,z_j) > 0$ for any positive integer n, any n points z_1, z_2, \ldots, z_n in Ω and any n scalars c_1, c_2, \ldots, c_n .

Given such a kernel k, there is a Hilbert space of holomorphic functions H_k such that the the family of functions $\{k(\cdot,w):w\in\Omega\}$ is contained in H_k , is dense in H_k and has the reproducing property, i.e.,

$$f(z) = \langle f, k(\cdot, z) \rangle$$

for an f in H_k and any z in Ω . Because of this reproducing property, the Hilbert space H_k is called a reproducing kernel Hilbert space.

Admissible kernels

A multiplier on the reproducing kernel Hilbert space H_k is a holomorphic function φ defined on $\mathbb G$ such that the multiplication operator

$$M_{\varphi}: f \to \varphi f$$

is a bounded operator on H_k . Of particular importance to us will be the following multipliers.

$$(M_s f)(s, p) = s f(s, p) \text{ and } (M_p f)(s, p) = p f(s, p).$$
 (7)

Admissible kernels

A multiplier on the reproducing kernel Hilbert space H_k is a holomorphic function φ defined on $\mathbb G$ such that the multiplication operator

$$M_{\varphi}: f \to \varphi f$$

is a bounded operator on H_k . Of particular importance to us will be the following multipliers.

$$(M_s f)(s, p) = s f(s, p) \text{ and } (M_p f)(s, p) = p f(s, p).$$
 (7)

Definition

A kernel k(s,p) on $\mathbb G$ is called admissible if the pair of multiplication operators (M_s,M_p) on the reproducing kernel Hilbert space H_k is a Γ -contraction on H_k .

Interpolation

The interpolation result is the following.

Interpolation

The interpolation result is the following.

Interpolation Theorem. Given $\lambda_1, \lambda_2, \ldots, \lambda_n$ in $\mathbb G$ and w_1, w_2, \ldots, w_n in $\overline{\mathbb D}$, there is a function f in $H^\infty(\mathbb G)$ with $\|f\|_\infty \leq 1$ and satisfying $f(\lambda_i) = w_i, i = 1, 2, \ldots, n$ if and only if for every admissible kernel k, the matrix

$$(((1 - w_i \overline{w}_j) k(\lambda_i, \lambda_j)))$$
 (8)

is positive definite.

Extension

Let V be a subset of $\mathbb G$

Extension

Let V be a subset of $\mathbb G$

The effort is to find a property of V that is necessary and sufficient to ensure that every bounded holomorphic function in a neighbourhood of V extends to the whole of the summetrized bidisk in such a way that the H^{∞} -norm of the original function on V is not increased.

Extension

Let V be a subset of $\mathbb G$

The effort is to find a property of V that is necessary and sufficient to ensure that every bounded holomorphic function in a neighbourhood of V extends to the whole of the summetrized bidisk in such a way that the H^{∞} -norm of the original function on V is not increased.

The symbol $\operatorname{Hol}^\infty(V)$ stands for those bounded functions f on V which have a holomorphic extension to a neighbourhood of V.

Let \mathcal{A} be a subset of $\operatorname{Hol}^{\infty}(V)$. We shall explain two properties of the set V below - the \mathcal{A} -extension property and the property of being an \mathcal{A} -von Neumann set.

Let \mathcal{A} be a subset of $\operatorname{Hol}^\infty(V)$. We shall explain two properties of the set V below - the \mathcal{A} -extension property and the property of being an \mathcal{A} -von Neumann set.

The A-extension property means that whenever $f \in A$, there is a bounded holomorphic function g on whole of \mathbb{G} such that

$$g|_V = f \text{ and } \sup_{\mathbb{G}} |g| = \sup_{V} |f|.$$
 (9)

An extension of the form (9) is what we want to achieve, motivated by a theorem of Cartan. The challenge is to decide what kind of sets V will allow us that.

The motivation for defining an \mathcal{A} -von Neumann set comes from the 1951 paper of von Neumann where he showed that for a contraction T on a Hilbert space and a polynomial p, the following inequality is satisfied.

$$||p(T)|| \le \sup_{z \in \mathbb{D}} |p(z)|.$$

The motivation for defining an \mathcal{A} -von Neumann set comes from the 1951 paper of von Neumann where he showed that for a contraction T on a Hilbert space and a polynomial p, the following inequality is satisfied.

$$||p(T)|| \le \sup_{z \in \mathbb{D}} |p(z)|.$$

A dozen years later, Ando came up with an elegant generalization of this inequality. If (T_1,T_2) is a commuting pair of contractions, and p is a polynomial in two variables, then

$$||p(T_1, T_2)|| \le \sup_{z_1, z_2 \in \mathbb{D}} |p(z_1, z_2)|.$$

The motivation for defining an \mathcal{A} -von Neumann set comes from the 1951 paper of von Neumann where he showed that for a contraction T on a Hilbert space and a polynomial p, the following inequality is satisfied.

$$||p(T)|| \le \sup_{z \in \mathbb{D}} |p(z)|.$$

A dozen years later, Ando came up with an elegant generalization of this inequality. If (T_1,T_2) is a commuting pair of contractions, and p is a polynomial in two variables, then

$$||p(T_1, T_2)|| \le \sup_{z_1, z_2 \in \mathbb{D}} |p(z_1, z_2)|.$$

A polynomially convex compact set $X\subseteq \mathbb{C}^2$ is called a spectral set for a pair of commuting bounded operators if $\sigma(T_1,T_2)\subseteq X$ and

$$||p(T_1, T_2)|| \le \sup_X |p|$$

If $V\subseteq \mathbb{C}^2$, say that a pair of commuting operators (T_1,T_2) on a Hilbert space is subordinate to V if the Taylor joint spectrum $\sigma(T_1,T_2)\subseteq V$ and $g(T_1,T_2)=0$ whenever g is holomorphic in a neighbourhood of V and $g|_V=0$.

If $V\subseteq\mathbb{C}^2$, say that a pair of commuting operators (T_1,T_2) on a Hilbert space is subordinate to V if the Taylor joint spectrum $\sigma(T_1,T_2)\subseteq V$ and $g(T_1,T_2)=0$ whenever g is holomorphic in a neighbourhood of V and $g|_V=0$.

If f is a function on V that has a holomorphic extension to a neighboruhood of V and (T_1,T_2) is subordinate to V, define $f(T_1,T_2)$ by setting

$$f(T_1, T_2) = g(T_1, T_2)$$

for any holomorphic extension g of f in a neighbourhood of V.

If $V\subseteq\mathbb{C}^2$, say that a pair of commuting operators (T_1,T_2) on a Hilbert space is subordinate to V if the Taylor joint spectrum $\sigma(T_1,T_2)\subseteq V$ and $g(T_1,T_2)=0$ whenever g is holomorphic in a neighbourhood of V and $g|_V=0$.

If f is a function on V that has a holomorphic extension to a neighboruhood of V and (T_1,T_2) is subordinate to V, define $f(T_1,T_2)$ by setting

$$f(T_1, T_2) = g(T_1, T_2)$$

for any holomorphic extension g of f in a neighbourhood of V.

Given $\mathcal A$ as above, V is called an $\mathcal A$ -von Neumann set if for any Γ -contraction subordinate to V and any $f\in\mathcal A$,

$$||f(S,P)|| \le \sup_{V} |f|.$$

Let $\lambda_1=(s_1,p_1), \lambda_2=(s_2,p_2),\ldots,\lambda_n=(s_n,p_n)$ be n distinct points in the symmetrized bidisk \mathbb{G} . Let w_1,w_2,\ldots,w_n be n points in $\bar{\mathbb{D}}$. A normal family argument shows that the following infimum is attained.

Let $\lambda_1=(s_1,p_1), \lambda_2=(s_2,p_2),\ldots,\lambda_n=(s_n,p_n)$ be n distinct points in the symmetrized bidisk $\mathbb G$. Let w_1,w_2,\ldots,w_n be n points in $\bar{\mathbb D}$. A normal family argument shows that the following infimum is attained.

$$\rho = \inf\{\|f\|_{\infty} : f \text{ is a holomorphic function from } \mathbb{G} \text{ into } \overline{\mathbb{D}}$$

$$\text{satisfying } f(s_i, p_i) = w_i \text{ for } i = 1, 2, \dots, n\}. \tag{10}$$

A function f is called extremal if the infimum above is attained for f. A compactness argument that uses the Interpolation Theorem proves the following lemma.

Let $\lambda_1=(s_1,p_1), \lambda_2=(s_2,p_2),\dots,\lambda_n=(s_n,p_n)$ be n distinct points in the symmetrized bidisk $\mathbb G$. Let w_1,w_2,\dots,w_n be n points in $\bar{\mathbb D}$. A normal family argument shows that the following infimum is attained.

$$\rho = \inf\{\|f\|_{\infty} : f \text{ is a holomorphic function from } \mathbb{G} \text{ into } \overline{\mathbb{D}}$$
 satisfying $f(s_i, p_i) = w_i \text{ for } i = 1, 2, \dots, n\}.$ (10)

A function f is called extremal if the infimum above is attained for f. A compactness argument that uses the Interpolation Theorem proves the following lemma.

Lemma

If f is an extremal for ρ , then there is a Γ -contraction (S,P) subordinate to $\{\lambda_1,\lambda_2,\ldots,\lambda_n\}$ such that $\|f(S,P)\|=\rho$.

Extension Theorem. Let $V \subseteq \mathbb{G}$. Let $\mathcal{A} \subseteq Hol^{\infty}(V)$. Then V has the \mathcal{A} -extension property if and only if V is an \mathcal{A} -von Neumann set.

Thank you for your attention.