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Thanks!

Thanks to the organizers for this opportunity and warm hospitality.
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Prehistory

Let U =
(
a
c
b
d

)
be a contraction.

Consider the function

f(z) = a+
zbc

1− zd

on the open unit disc.

If we compute f(z)f(z), then it comes out to be not more than 1.
One uses the fact that U is a contraction.

We become more ambitious.
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The formula for the disc

Let there be a Hilbert space H and a contraction

U =

(
A

C

B

D

)
: C⊕H → C⊕H

and consider f(z) = A+ zB(I − zD)−1C.

Again the fact that U is a contraction implies that f(z)f(z) would
be not more than 1.

The surprise is that all H∞ functions on the unit disc with sup
norm not more than 1 is of this form: a function f is in in H∞(D)
and satisfies ‖f‖ ≤ 1 if and only if there is a Hilbert space H and
a contraction (iff an isometry iff a unitary operator)

U =

(
A

C

B

D

)
: C⊕H → C⊕H

such that f(z) = A+ zB(I − zD)−1C.
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A glimpse of the proof

Finding the realization formula for f as above depends on f being
a contractive multiplier on the Hardy space.

Because of that, the following is a positive semi-definite kernel.

1− f(z)f(w)

1− zw̄

One writes the GNS decomposition of this positive definite kernel
and observes that a certain equality holds. That gives an isometry.

This technique is known as that of a lurking isometry.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Bidisk

It was shown by Agler that a function f is in H∞(D2) and has
norm less than or equal to 1 if and only if there is a graded Hilbert
space L = L1 ⊕ L2 and a unitary operator V : C⊕ L → C⊕ L
which can be written in the block form as

V =

(
A

C

B

D

)
so that writing P1 for projection of L onto L1 and P2 for
projection of L onto L2,

f((z) = A+B(z1P2 + z2P2)[I − (z1P1 + z2P2)D]−1C.
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The symmetrized bidisc

The symmetrized bidisc is

Γ = {(z1 + z2, z1z2) : |z1|, |z2| ≤ 1}.

It has a few alternate descriptions. One of them is

Γ = {(s, p) ∈ C2 : |s− sp| ≤ 1− |p|2}.

Another is

Γ = {(β + βp, p) : |p| ≤ 1 and |β| ≤ 1}.

In fact, β = (s− sp)/(1− |p|2).

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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The Realization formula

We would like to motivate it first.

Note that the easier part of the proof of the formula for the unit
disk is to show that an f of the form

f(z) = A+ zB(I − zD)−1C

indeed has modulus no bigger than one (holomorphicity is clear).
This assertion of the modulus being not bigger than one depends
on T being a contraction.
That would remain the same if the operators A,B,C and D are
not constants, but operator valued functions defined on the open
unit disk which satisfy the property that the 2× 2 operator matrix
valued function

T (z) =

(
A(z)

C(z)

B(z)

D(z)

)
: C⊕H → C⊕H

is a contraction valued function.
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In that case, f(z) becomes

f(z) = A(z) + zB(z)(I − zD(z))−1C(z). (1)

As long as T (z) is a contraction, f(z) will have modulus less than
or equal to one. This is one of the ideas we exploit in case of the
symmetrized bidisk.

Consider, then, two Hilbert spaces H and K and an isometry V on
C⊕H⊕K. Obviously, V has a block operator matrix
decomposition:

V =

 P Q R
S T U
W X Y

 :

 C
H
K

→
 C
H
K

 . (2)

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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The following 2× 2 principal submatrices(
P

W

R

Y

)
,

(
Q

X

R

Y

)
,

(
S

W

U

Y

)
and

(
T

X

U

Y

)
of V are contractions.

Associate with each of them a function on G that depends on the
submatrix and a chosen complex number α in the closed unit disk.
The functions are

A(s, p) = P + (2αp− s)R
(
(2− αs)− (2αp− s)Y

)−1
W(3)

B(s, p) = Q+ (2αp− s)R
(
(2− αs)− (2αp− s)Y

)−1
X

C(s, p) = S + (2αp− s)U
(
(2− αs)− (2αp− s)Y

)−1
W

D(s, p) = T + (2αp− s)U
(
(2− αs)− (2αp− s)Y

)−1
X

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Note that the functions have been so prepared that

A(s, p) ∈ B(C,C) and B(s, p) ∈ B(H,C)

C(s, p) ∈ B(C,H) and D(s, p) ∈ B(H,H).

Thus if we now define the colligation associated with V and α as
the 2× 2 operator matrix function defined on G by

(s, p)→ TV,α(s, p) =

(
A(s, p)

C(s, p)

B(s, p)

D(s, p)

)
(4)

then it is a B(C⊕H) valued function on G.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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We are now ready to state the Realization Theorem. It will involve
the following 2× 2 diagonal operator matrix which we shall call the
evaluation operator. For (s, p) ∈ G and two Hilbert spaces H1

and H2 as above, the evaluation operator is the following strict
contraction on H1 ⊕H2:

E(s, p) =

(
s
2IH1 0

0 pIH2

)
.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Realization theorem. The following are equivalent.

H f is a function in H∞(G) with ‖f‖∞ ≤ 1.

R There is a complex number α in the closed unit disk, two
Hilbert spaces H and K such that H = H1 ⊕H2 and an isometry

V =

 P Q R
S T U
W X Y

 : C⊕H⊕K → C⊕H⊕K (5)

such that the associated colligation TV,α, as defined in (4), is
contraction valued and

f(s, p) = A(s, p) +B(s, p)E(s, p)(I −D(s, p)E(s, p))−1C(s, p).
(6)

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Γ as a spectral set

A commuting pair of bounded operators (S, P ) is called a
Γ-contraction if the closed symmetrized bidisc Γ is a spectral set
for (S, P ).

In other words,

‖f(S, P )‖ ≤ sup{|f(s, p)| : (s, p) ∈ Γ}

holds for every polynomial f in two variables.

This implies that

‖f(S, P )‖ ≤ sup{|f(s, p)| : (s, p) ∈ Γ}

holds for every function f holomorphic in two variables in a
neighbourhood of Γ.

That is so because of Oka-Weil Theorem (Γ is polynomially
convex!)
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Application of the Realization Formula: Pick interpolation

Admissible kernels:

Definition

A kernel k is a scalar valued function on Ω× Ω which is
holomorphic in the first variable, anti-holomorphic in the second
variable and is positive definite, i.e.,

∑n
i,j=1 cic̄jk(z,zj) > 0 for any

positive integer n, any n points z1, z2, . . . , zn in Ω and any n
scalars c1, c2, . . . , cn.

Given such a kernel k, there is a Hilbert space of holomorphic
functions Hk such that the the family of functions
{k(·, w) : w ∈ Ω} is contained in Hk, is dense in Hk and has the
reproducing property, i.e.,

f(z) = 〈f, k(·, z)〉
for an f in Hk and any z in Ω. Because of this reproducing
property, the Hilbert space Hk is called a reproducing kernel
Hilbert space.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Admissible kernels

A multiplier on the reproducing kernel Hilbert space Hk is a
holomorphic function ϕ defined on G such that the multiplication
operator

Mϕ : f → ϕf

is a bounded operator on Hk. Of particular importance to us will
be the following multipliers.

(Msf)(s, p) = sf(s, p) and (Mpf)(s, p) = pf(s, p). (7)

Definition

A kernel k(s, p) on G is called admissible if the pair of
multiplication operators (Ms,Mp) on the reproducing kernel
Hilbert space Hk is a Γ-contraction on Hk.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Interpolation

The interpolation result is the following.

Interpolation Theorem. Given λ1, λ2, . . . , λn in G and
w1, w2, . . . , wn in D, there is a function f in H∞(G) with
‖f‖∞ ≤ 1 and satisfying f(λi) = wi, i = 1, 2, . . . , n if and only if
for every admissible kernel k, the matrix

(( (1− wiwj)k(λi, λj) )) (8)

is positive definite.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Extension

Let V be a subset of G

The effort is to find a property of V that is necessary and sufficient
to ensure that every bounded holomorphic function in a
neighbourhood of V extends to the whole of the summetrized
bidisk in such a way that the H∞-norm of the original function on
V is not increased.

The symbol Hol∞(V ) stands for those bounded functions f on V
which have a holomorphic extension to a neighbourhood of V .

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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Extension...

Let A be a subset of Hol∞(V ). We shall explain two properties of
the set V below - the A-extension property and the property of
being an A-von Neumann set.

The A-extension property means that whenever f ∈ A, there is a
bounded holomorphic function g on whole of G such that

g|V = f and sup
G
|g| = sup

V
|f |. (9)

An extension of the form (9) is what we want to achieve,
motivated by a theorem of Cartan. The challenge is to decide what
kind of sets V will allow us that.

Tirthankar Bhattacharyya Indian Institute of Science, Bangalore Realization, Interpolation and Extension
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bounded holomorphic function g on whole of G such that

g|V = f and sup
G
|g| = sup

V
|f |. (9)

An extension of the form (9) is what we want to achieve,
motivated by a theorem of Cartan. The challenge is to decide what
kind of sets V will allow us that.
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Extension......

The motivation for defining an A-von Neumann set comes from
the 1951 paper of von Neumann where he showed that for a
contraction T on a Hilbert space and a polynomial p, the following
inequality is satisfied.

‖p(T )‖ ≤ sup
z∈D
|p(z)|.

A dozen years later, Ando came up with an elegant generalization
of this inequality. If (T1, T2) is a commuting pair of contractions,
and p is a polynomial in two variables, then

‖p(T1, T2)‖ ≤ sup
z1,z2∈D

|p(z1, z2)|.

A polynomially convex compact set X ⊆ C2 is called a spectral set
for a pair of commuting bounded operators if σ(T1, T2) ⊆ X and

‖p(T1, T2)‖ ≤ sup
X
|p|

for any polynomial p in two variables. Put in this way, a pair of
commuting contractions is, by Ando’s inequality, the same as a
commuting pair of bounded operators which has the closed bidisc
as a spectral set.
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Extension.........

If V ⊆ C2, say that a pair of commuting operators (T1, T2) on a
Hilbert space is subordinate to V if the Taylor joint spectrum
σ(T1, T2) ⊆ V and g(T1, T2) = 0 whenever g is holomorphic in a
neighbourhood of V and g|V = 0.

If f is a function on V that has a holomorphic extension to a
neighboruhood of V and (T1, T2) is subordinate to V , define
f(T1, T2) by setting

f(T1, T2) = g(T1, T2)

for any holomorphic extension g of f in a neighbourhood of V .

Given A as above, V is called an A-von Neumann set if for any
Γ-contraction subordinate to V and any f ∈ A,

‖f(S, P )‖ ≤ sup
V
|f |.
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Extension............

Let λ1 = (s1, p1), λ2 = (s2, p2), . . . , λn = (sn, pn) be n distinct
points in the symmetrized bidisk G. Let w1, w2, . . . , wn be n
points in D̄. A normal family argument shows that the following
infimum is attained.

ρ = inf{‖f‖∞ : f is a holomorphic function from G into D̄
satisfying f(si, pi) = wi for i = 1, 2, . . . , n}. (10)

A function f is called extremal if the infimum above is attained for
f . A compactness argument that uses the Interpolation Theorem
proves the following lemma.

Lemma

If f is an extremal for ρ, then there is a Γ-contraction (S, P )
subordinate to {λ1, λ2, . . . , λn} such that ‖f(S, P )‖ = ρ.
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Extension...............

Extension Theorem. Let V ⊆ G. Let A ⊆ Hol∞(V ). Then V
has the A-extension property if and only if V is an A-von
Neumann set.
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Thank you for your attention.
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