METRIC GEOMETRY OF CARNOT-CARATHÉODORY SPACES WITH \mathbb{C}^1 -SMOOTH VECTOR FIELDS

Sergey Vodopyanov

Białowieża, Poland, XXXI Workshop on Geometric Methods in Physics 24 June – 30 June, 2012

REFERENCES

- 1. S. K. Vodopyanov and M. B. Karmanova, "Local approximation theorem on Carnot manifolds under minimal smoothness", *Dokl. AN*, 427, No. 6, 731–736 (2009).
- 2. M. Karmanova and S. Vodopyanov, "Geometry of Carnot–Carathéodory spaces, differentiability and coarea formula", *Analysis and Mathematical Physics*, Birkhäuser, 284–387 (2009).
- 3. M. Karmanova "A new approach to investigation of Carnot–Carathéodory geometry", GAFA **21**, no. 6 (2011), 1358–1374.
- 4. A. V. Greshnov, "A proof of Gromov Theorem on homogeneous nilpotent approximation for C^1 -smooth vector fields", *Mathematicheskie Trudy*, 15, No. 2 (2012).
- 5. S. G. Basalaev and S. K. Vodopyanov, "Approximate differentiability of mappings of Carnot-Carathéodory spaces", *Eurasian Math. J.*, 3 (2012): arXiv:1206.5197.

• Mathematical foundation of thermodynamics

ullet Carnot, Joules There exist thermodynamic states $A,\ B$ that can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual motion machines.

Mathematical foundation of thermodynamics

ullet Carnot, Joules There exist thermodynamic states $A,\ B$ that can not be connected to each other by "adiabatic process".

This impossibility is related to the impossibility of perpetual motion machines.

• 1909, Carathéodory in order to prove the existence of entropy derived the following statement:

Let \mathbb{M} be a connected manifold endowed with a corank one distribution. If there exist two points that can not be connected by a horizontal path then the distribution is integrable.

Development

 \bullet Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary two points of $\mathbb M$ can be joined by a "horizontal" curve.

Development

• Carathéodory 1909, Rashevskiy 1938, Chow 1939: arbitrary two points of \mathbb{M} can be joined by a "horizontal" curve.

It follows that (\mathbb{M}, d_c) is a metric space with the subriemannian distance

 $d_c(u,v)=\inf\{L(\gamma)\mid \gamma \text{ is horizontal, } \gamma(0)=u,\gamma(1)=v\}$ not comparable to Riemannian one.

• Hörmander, 1967: Hypoelliptic equations

f A problem: when a distribution solution f to the equation

$$(X_1^2 + \ldots + X_{n-1}^2 - X_n)f = \varphi \in C^{\infty}$$

is a smooth function?

Here $X_i \in C^{\infty}$.

• Hörmander, 1967: Hypoelliptic equations

 \triangle problem: when a distribution solution f to the equation

$$(X_1^2 + \ldots + X_{n-1}^2 - X_n)f = \varphi \in C^{\infty}$$

is a smooth function?

Here $X_i \in C^{\infty}$.

• Particular case: Kolmogorov's equations

$$\frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial y} - \frac{\partial u}{\partial t} = f$$

• physics (diffusion process), economics (arbitrage theory, some stochastic volatility models of European options), etc.

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, \ldots, X_n\}$ = span $\{X_I(v) \mid |I| \leq M\}$ = $T_v\mathbb{M}$ for all $v \in \mathbb{M}$ where

$$X_I(v) = \text{span}\{[X_{i_1}, [X_{i_2}, \dots, [X_{i_{k-1}}, X_{i_k}] \dots](v) : X_{i_j} \in H_1\}$$

for $I = (i_1, i_2, \dots, i_k)$.

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, \ldots, X_n\}$ = span $\{X_I(v) \mid |I| \leq M\}$ = $T_v\mathbb{M}$ for all $v \in \mathbb{M}$ where

$$X_I(v) = \operatorname{span}\{[X_{i_1}, [X_{i_2}, \dots, [X_{i_{k-1}}, X_{i_k}] \dots](v) : X_{i_j} \in H_1\}$$
 for $I = (i_1, i_2, \dots, i_k)$.

ullet M is the depth of the sub-Riemannian space \mathbb{M} .

Hypoelliptic Equations

• Hörmander (1967): sufficient conditions on fields X_1, \ldots, X_n :

There exists $M < \infty$ such that

• Lie $\{X_1, X_2, \ldots, X_n\}$ = span $\{X_I(v) \mid |I| \leq M\}$ = $T_v\mathbb{M}$ for all $v \in \mathbb{M}$ where

$$X_I(v) = \text{span}\{[X_{i_1}, [X_{i_2}, \dots, [X_{i_{k-1}}, X_{i_k}] \dots](v) : X_{i_j} \in H_1\}$$
 for $I = (i_1, i_2, \dots, i_k)$.

- ullet M is called the depth of the sub-Riemannian space M.
- Stein (1971): The program of studying of geometry of Hörmander vector fields;

description of singularities of fundamental solutions

 \diamond The linear system of ODE $(x \in \mathbb{M}^N, \ m < N)$

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^{\infty}.$$
 (1)

 \diamond The linear system of ODE $(x \in \mathbb{M}^N, n < N)$

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^{\infty}.$$
 (2)

• Problem: To find bounded measurable functions $a_i(t)$ such that system (5) has a solution with the initial data x(0) = p, x(1) = q.

 \diamond The linear system of ODE $(x \in \mathbb{M}^N, m < N)$

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^{\infty}.$$
 (3)

• Problem: To find measurable functions $a_i(t)$ such that system (5) has a solution with the initial data x(0) = p, x(1) = q.

If system (5) has a solution for every $q \in U(p)$ then it is called *locally controllable*.

 \diamond The linear system of ODE $(x \in \mathbb{M}^N, n < N)$

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^{\infty}.$$
 (4)

• Problem: To find measurable functions $a_i(t)$ such that system (5) has a solution with the initial data x(0) = p, x(1) = q.

If system (5) has a solution for every $q \in U(p)$ then it is called *locally controllable*.

• It is locally controllable iff Lie $\{X_1,X_2,\ldots,X_n\}=T\mathbb{M}$, i.e. the "horizontal" distribution $H\mathbb{M}=\{X_1,X_2,\ldots,X_n\}$ is bracket-generating.

APPLICATIONS of SUBRIEMANNIAN GEOMETRY

- Thermodynamics
- Non-holonomic mechanics
- Geometric Control Theory
- Subelliptic equation
- Geometric measure theory
- Quasiconformal analysis
- Analysis on metric spaces
- Contact geometry
- Complex variable
- Economics
- Transport problem
- Quantum control
- Neurobiology
- Tomography
- Robotecnics

• \mathbb{M} is a connected C^{∞} -smooth manifold with $\dim_{\mathsf{top}}(\mathbb{M}) = N$;

- \mathbb{M} is a connected C^{∞} -smooth manifold with $\dim_{\mathsf{top}}(\mathbb{M}) = N$;
- ullet in $T\mathbb{M}$ there exists a filtration by subbundles

$$H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$$

- M is a connected C^{∞} -smooth manifold with $\dim_{\mathsf{top}}(\mathbb{M}) = N$;
- ullet in $T\mathbb{M}$ there exists a filtration by subbundles

$$H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$$

• $\forall v \in \mathbb{M} \ \exists U(v)$ and vector fields $X_1, X_2, \ldots, X_N \in C^1$ such that $H_i\mathbb{M}(v) = \mathrm{span}\{X_1(v), \ldots, X_{\dim H_i}(v)\}$, $\dim H_i\mathbb{M}(v) = \dim H_i$;

- \mathbb{M} is a connected C^{∞} -smooth manifold with $\dim_{\mathsf{top}}(\mathbb{M}) = N$;
- ullet in $T\mathbb{M}$ there exists a filtration by subbundles

$$H\mathbb{M} = H_1\mathbb{M} \subsetneq \ldots \subsetneq H_i\mathbb{M} \subsetneq \ldots \subsetneq H_M\mathbb{M} = T\mathbb{M};$$

- $\forall v \in \mathbb{M} \ \exists U(v)$ with vector fields $X_1, X_2, \dots, X_N \in C^1$ such that $H_i\mathbb{M}(v) = \operatorname{span}\{X_1(v), \dots, X_{\dim H_i}(v)\}$, $\dim H_i\mathbb{M}(v) = \dim H_i$;
- $[H_i, H_j] \subset H_{i+j}$, $i, j = 1, \dots, M-1$. It is equivalent to

$$[X_i, X_j](v) = \sum_{k: \deg X_k \leq \deg X_i + \deg X_j} c_{ijk}(v) X_k(v)$$

where $\deg X_k = \min\{m : X_k \in H_m\}$;

- \mathbb{M} is a connected C^{∞} -smooth manifold with $\dim_{\mathsf{top}}(\mathbb{M}) = N$
- ullet in $T\mathbb{M}$ there exists a filtration by subbundles

$$HM = H_1M \subsetneq \ldots \subsetneq H_iM \subsetneq \ldots \subsetneq H_MM = TM$$

- $\forall v \in \mathbb{M} \ \exists \ U(v)$ with vector fields $X_1, X_2, \ldots, X_N \in C^1$ such that $H_i\mathbb{M}(v) = \mathrm{span}\{X_1(v), \ldots, X_{\dim H_i}(v)\}$, $\dim H_i\mathbb{M}(v) = \dim H_i$;
- $[H_i, H_j] \subset H_{i+j}, i, j = 1, ..., M-1;$

Classical example.

 \mathbb{M} is connected smooth manifold, $\dim \mathbb{M} = N$

TM is a tangent bundle;

"horizontal" subbundle is

$$H\mathbb{M} = \operatorname{span}\{X_1, \dots, X_n\} \subseteq T\mathbb{M} \ (n < N, X_i \in C^{\infty})$$

Classical example.

 \mathbb{M} is connected smooth manifold, dim $\mathbb{M} = N$

TM is a tangent bundle;

"horizontal" subbundle is

$$H\mathbb{M} = \operatorname{span}\{X_1, \dots, X_n\} \subseteq T\mathbb{M} \ (n < N, X_i \in C^{\infty})$$

There is a filtration $H\mathbb{M}=H_1\subseteq H_2\subseteq\ldots\subseteq H_M=T\mathbb{M}$ such that $[H_1,H_i]=H_{i+1},\quad \dim H_i=\mathrm{const}$

 $\Longrightarrow (\mathbb{M}, H\mathbb{M}, \langle \cdot, \cdot \rangle_{H\mathbb{M}})$ defines a subriemannian geometry

M is a depth of the subriemannian space \mathbb{M}

Classical example.

 \mathbb{M} is connected smooth manifold, dim $\mathbb{M} = N$

TM is a tangent bundle;

"horizontal" subbundle is

$$H\mathbb{M} = \operatorname{span}\{X_1, \dots, X_n\} \subseteq T\mathbb{M} \ (n < N, X_i \in C^{\infty})$$

There is a filtration $H\mathbb{M}=H_1\subseteq H_2\subseteq\ldots\subseteq H_M=T\mathbb{M}$ such that $[H_1,H_i]=H_{i+1},\quad \dim H_i=\mathrm{const}$

 $\Longrightarrow (\mathbb{M}, H\mathbb{M}, \langle \cdot, \cdot \rangle_{H\mathbb{M}})$ defines a subriemannian geometry

M is a depth of the subriemannian space \mathbb{M}

• Sub-Riemannian geometry describes changing of physical location when the movement is possible in some prescribed directions.

Examples

1. Heisenberg group \mathbb{H}^n

$$\mathbb{M} = \mathbb{R}^{2n+1} : X_i = \frac{\partial}{\partial x_i} - \frac{x_{n+i}}{2} \frac{\partial}{\partial t}, \ X_{n+i} = \frac{\partial}{\partial x_i} - \frac{x_i}{2} \frac{\partial}{\partial t}, \ X_{2n+1} = \frac{\partial}{\partial t}$$

$$H_1 = \text{span}\{X_1, X_2, \dots, X_{2n}\}, \ H_2 = [H_1, H_1] = \text{span}\{X_{2n+1}\}$$

Examples

1. Heisenberg group \mathbb{H}^n

$$\mathbb{M} = \mathbb{R}^{2n+1} : X_i = \frac{\partial}{\partial x_i} - \frac{x_{n+i}}{2} \frac{\partial}{\partial t}, \ X_{n+i} = \frac{\partial}{\partial x_i} - \frac{x_i}{2} \frac{\partial}{\partial t}, \ X_{2n+1} = \frac{\partial}{\partial t}$$

$$H_1 = \text{span}\{X_1, X_2, \dots, X_{2n}\}, \ H_2 = [H_1, H_1] = \text{span}\{X_{2n+1}\}$$

2. Carnot group is a connected simply connected group Lie G with stratified Lie algebra V:

$$V = V_1 \bigoplus V_2 \bigoplus \ldots \bigoplus V_M; \quad [V_1, V_i] = V_{i+1}$$

! A Carnot group is a tangent cone to a subriemannian space in a regular point (Mitchell 1985; Gromov, Bellaiche 1996)

• 1938–1939 Rashevskiy–Chow theorem;

- 1938–1939 Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;
- 1996 Gromov theorem on convergence of rescaled vector fields to *nilpotentized* vector fields constituting a basis of graded nilpotent group;

- 1909–1938–1939 Carathéodory–Rashevskiy–Chow theorem;
- 1982–1986 Mitchell-Gershkovich-Nagel-Stein-Wainger: Ball-Box theorem (a ball in the Carnot-Carathéodory metric looks like a box);
- 1986–1996 Gromov–Mitchell theorem on convergence of rescaled *CC*-spaces with respect to a fixed point to a nilpotent tangent cone;
- 1996 Gromov theorem on convergence of rescaled vector fields to *nilpotentized* vector fields constituting a basis of graded nilpotent group;
- 1996 M. Gromov, A. Bellaïche approximation theorem on local behavior of metrics in the given space and in a local tangent cone;

Basic Concepts

Exponential mapping: $u \in \mathbb{M}$, $(v_1, \dots, v_N) \in \mathbb{R}^N$,

$$\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^{N} v_i X_i(\gamma(t)), & t \in [0, 1], \\ \gamma(0) = u. \end{cases}$$

Then $\exp\left(\sum_{i=1}^{N} v_i X_i\right)(u) = \gamma(1)$. For each point u, define

$$\theta_u: U(0) \to \mathbb{M} \text{ as } \theta_u(v_1, \dots, v_N) = \exp\left(\sum_{i=1}^N v_i X_i\right)(u).$$

Basic Concepts

Exponential mapping: $u \in \mathbb{M}$, $(v_1, \dots, v_N) \in \mathbb{R}^N$,

$$\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^{N} v_i X_i(\gamma(t)), & t \in [0, 1], \\ \gamma(0) = u. \end{cases}$$

Then $\exp\left(\sum_{i=1}^{N} v_i X_i\right)(u) = \gamma(1)$. For each point u, define

$$\theta_u: U(0) \to \mathbb{M} \text{ as } \theta_u(v_1, \dots, v_N) = \exp\left(\sum_{i=1}^N v_i X_i\right)(u).$$

Dilatations Δ_{τ}^{u} : if $u \in \mathbb{M}$ u $v = \exp\left(\sum_{i=1}^{N} v_{i}X_{i}\right)(u)$ then

$$\Delta_{\tau}^{u}(v) = \exp\left(\sum_{i=1}^{N} v_{i} \tau^{\deg X_{i}} X_{i}\right)(u)$$

The New Approach to regular CC-spaces: a Local Lie Group at $u \in \mathbb{M}$ for C^1 -Smooth Case

$$[X_i, X_j](v) = \sum_{k: \deg X_k \le \deg X_i + \deg X_j} c_{ijk}(v) X_k(v).$$

Theorem 1 (2009). Coefficients $\{c_{ijk}(u)\}_{\deg X_k = \deg X_i + \deg X_j} = \{\bar{c}_{ijk}\}$ satisfy Jacobi identity:

$$\sum_{k} \bar{c}_{ijk}(u)\bar{c}_{kml}(u) + \sum_{k} \bar{c}_{mik}(u)\bar{c}_{kjl}(u) + \sum_{k} \bar{c}_{jmk}(u)\bar{c}_{kil}(u) = 0$$

for all $i, j, m, l = 1, \dots, N$, and

$$\overline{c}_{ijk} = -\overline{c}_{jik}$$
 for all $i, j, k = 1, \dots, N$.

Then the collection $\{\bar{c}_{ijk}\}$ defines nilpotent graded Lie algebra.

The New Approach to regular CC-spaces: a Local Lie Group at $u \in M$ for C^1 -Smooth Case

According to the second Lie theorem we take basis vector fields $\{(\widehat{X}_i^u)'\}_{i=1}^N$ in \mathbb{R}^N constituting a Lie algebra in such a way that

$$[(\widehat{X}_i^u)', (\widehat{X}_j^u)'](v) = \sum_{k: \deg X_k = \deg X_i + \deg X_j} \overline{c}_{ijk} (\widehat{X}_k^u)'(v),$$

$$(\widehat{X}_i^u)' = e_i, i = 1, \dots, N,$$

and exp = Id.

The corresponding Lie group is nilpotent graded Lie group $\mathbb{G}_u\mathbb{M}$

A Local Lie Group $\mathcal{G}^u\mathbb{M}$

In a neighborhod $\mathcal{G}_u \subset \mathbb{M}$ of u push-forwarded vector fields

 $\widehat{X}_i^u = D\theta_u(\widehat{X}_i^u)'$ define a structure of local Lie group in such a way that

$$\theta_u: \mathbb{G}_u\mathbb{M} \to \mathcal{G}_u\mathbb{M}$$

is a local isomorphism of Lie groups.

A Local Lie Group $\mathcal{G}^u\mathbb{M}$

In a neighborhod $\mathcal{G} \subset \mathbb{M}$ of u push-forwarded vector fields

 $\widehat{X}_i^u = D\theta_u(\widehat{X}_i^u)'$ they a structure of local Lie group in such a way that

$$\theta_u: \mathbb{G}_u\mathbb{M} \to \mathcal{G}^u\mathbb{M}$$

is a local isomorphism of Lie groups.

 \bullet vector fields \widehat{X}_i^u are left-invariant

Then
$$(\mathcal{G},\widehat{X}_1^u,\dots,\widehat{X}_N^u,\cdot)=\mathcal{G}^u\mathbb{M}$$
 is a local Lie group

In the case of Carnot manifolds it is called the local Carnot group

Quasimetric

Let
$$v = \exp\left(\sum_{i=1}^{N} v_i \widehat{X}_i^u\right)(w)$$
. Then

$$d_{\infty}^{u}(v, w) = \max_{i=1,...,N} \{|v_{i}|^{\frac{1}{\deg X_{i}}}\}$$

- $d^u_{\infty}(v,w) \ge 0$; $d^u_{\infty}(v,w) = 0 \Leftrightarrow v = w$
- $\bullet d^u_{\infty}(v,w) = d^u_{\infty}(w,v)$
- ullet generalized triangle inequality: for a neighborhood $U \in \mathbb{M}$, there exists a constant c=c(U) such that for any $v,s,w\in U$ we have

$$d_{\infty}^{u}(v,w) \le c(d_{\infty}^{u}(v,s) + d_{\infty}^{u}(s,w))$$

Quasimetric

• d_{∞} is defined similarly (with X_i instead of \widehat{X}_i^u , $i=1,\ldots,N$): if $v=\exp\Bigl(\sum\limits_{i=1}^N v_i X_i\Bigr)(w)$ then

$$d_{\infty}(v, w) = \max_{i=1,...,N} \{|v_i|^{\frac{1}{\deg X_i}}\}.$$

- $d_{\infty}(v,w) \geq 0$; $d_{\infty}(v,w) = 0 \Leftrightarrow v = w$.
- $d_{\infty}(v,w) = d_{\infty}(w,v)$.
- generalized triangle inequality: Do we have locally

$$d_{\infty}(v,w) \leq c(d_{\infty}(v,s) + d_{\infty}(s,w))$$
 for some constant c?

Gromov type nilpotentization theorem

Theorem 2 (2012). For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x) \widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0,\deg X_j - \deg X_i\}})$ for $x \in \mathsf{Box}(g,\varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of \mathbb{M} as $\varepsilon \to 0$.

Gromov type nilpotentizaton theorem

Theorem 2 (2012). For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x) \widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0,\deg X_j - \deg X_i\}})$ for $x \in \text{Box}(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of \mathbb{M} as $\varepsilon \to 0$.

Corollary 1 (Gromov Type Theorem): We have $X_i^{\varepsilon} \to \widehat{X}_i^g$ as $\varepsilon \to 0$, i = 1, ..., N, at the points of $\text{Box}(g, r_g)$ and this convergence is uniform in g belonging to some compact neighborhood.

Gromov type nilpotentizaton theorem

Theorem 2 (2012). For $x \in Box(g, r_g)$ consider

$$X_i^{\varepsilon}(x) = (\Delta_{\varepsilon^{-1}}^g)_* \varepsilon^{\deg X_i} X_i(\Delta_{\varepsilon}^g x), \quad i = 1, \dots, N.$$

Then the following expansion holds:

$$X_i^{\varepsilon}(x) = \widehat{X}_i^g(x) + \sum_{j=1}^N a_{ij}(x) \widehat{X}_j^g(x)$$

where $a_{ij}(x) = o(\varepsilon^{\max\{0,\deg X_j - \deg X_i\}})$ for $x \in \text{Box}(g, \varepsilon r_g)$ and $o(\cdot)$ is uniform in g belonging to some compact set of \mathbb{M} as $\varepsilon \to 0$.

Corollary 1 (Gromov Type Theorem): We have $X_i^{\varepsilon} \to \widehat{X}_i^g$ as $\varepsilon \to 0$, i = 1, ..., N, at the points of $\text{Box}(g, r_g)$ and this convergence is uniform in g belonging to some compact neighborhood.

Corollary 2. Generalized triangle inequality holds locally for some constant c: $d_{\infty}(v, w) \leq c(d_{\infty}(v, s) + d_{\infty}(s, w))$.

MAIN RESULT: Comparison of Local Geometries

Let $\mathcal{U} \subset \mathbb{M}$ where $\mathbb{M} \in C^1$:

- $\theta_v(B(0,r_v)) \supset \mathcal{U}$ for all $v \in \mathcal{U}$,
- $\mathcal{G}^u \mathbb{M} \supset \mathcal{U}$ for all $u \in \mathcal{U}$,
- $\theta_v^u(B(0, r_{u,v})) \supset \mathcal{U}$ for all $u, v \in \mathcal{U}$.

Theorem 3 (2009). Let $u, u', v \in \mathcal{U} \subseteq \mathbb{M}$. Assume that $d_{\infty}(u, u') = O(\varepsilon)$ and $d_{\infty}(u, v) = O(\varepsilon)$, and consider points

$$w_{\varepsilon} = \exp\Bigl(\sum_{i=1}^{N} w_{i} \varepsilon^{\deg X_{i}} \widehat{X}_{i}^{u}\Bigr)(v) \text{ and } w_{\varepsilon}' = \exp\Bigl(\sum_{i=1}^{N} w_{i} \varepsilon^{\deg X_{i}} \widehat{X}_{i}^{u'}\Bigr)(v).$$

Then

$$\max\{d_{\infty}^{u}(w_{\varepsilon},w_{\varepsilon}'),d_{\infty}^{u'}(w_{\varepsilon},w_{\varepsilon}')\}=o(\varepsilon)$$

where $o(\varepsilon)$ is uniform in $u, u', v \in \mathcal{U}$.

4) Local Approximation Theorem for d_{∞} -quasimetric (2009):

Let $v, w \in \mathsf{Box}(g, \varepsilon) \subset \mathbb{M}$. Then

$$|d_{\infty}^{u}(v,w) - d_{\infty}(v,w)| = o(\varepsilon).$$

Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky-Chow type Theorem (2012): Any two points $x, y \in \mathbb{M}$ can be connected by a horizontal curve γ (i. e., $\dot{\gamma}(t) \in H_{\gamma(t)}\mathbb{M}$ for almost all $t \in [0,1]$).

The intrinsic metric on Carnot-Carathéodory space

$$d_c(u, v) = \inf_{\substack{\gamma \text{ is horizontal} \\ \gamma(0) = u, \gamma(1) = v}} \{L(\gamma)\}$$

Assumption: Suppose that M is a Carnot manifold.

5) Rashevsky–Chow type Theorem (2012): Any two points $x, y \in \mathbb{M}$ can be connected by a horizontal curve γ (i. e., $\dot{\gamma}(t) \in H_{\gamma(t)}\mathbb{M}$ for almost all $t \in [0,1]$).

The intrinsic metric on Carnot-Carathéodory space

$$\frac{d_{cc}(u,v)}{\underset{\gamma \text{ is horizontal}}{\inf}} \{L(\gamma)\}$$

$$\underset{\gamma(0)=u,\gamma(1)=v}{\{L(\gamma)\}}$$

6) Local Approximation Theorem for d_{cc} -metric (2009):

For $v, w \in B_{cc}(u, \varepsilon)$, we have

$$|d_{cc}(v,w) - d_{cc}^{u}(v,w)| = o(\varepsilon).$$

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type Ball-Box Theorem (2012). For $\mathcal{U} \in \mathbb{M}$, there exist constants $c(\mathcal{U}) \leq C(\mathcal{U})$ such that

$$c(\mathcal{U})d_{\infty}(x,y) \leq d_{cc}(x,y) \leq C(\mathcal{U})d_{\infty}(x,y),$$

where $x, y \in \mathcal{U}$, and $d_{cc}(x, y)$ is a Carnot–Carathéodory metric.

7) Mitchell-Gershkovich-Nagel-Stein-Wainger theorem type Ball-Box Theorem (2011). For $\mathcal{U} \in \mathbb{M}$, there exist constants $c(\mathcal{U}) \leq C(\mathcal{U})$ such that

$$c(\mathcal{U})d_{\infty}(x,y) \leq d_{cc}(x,y) \leq C(\mathcal{U})d_{\infty}(x,y),$$

where $x, y \in \mathcal{U}$, and $d_{cc}(x, y)$ is a Carnot-Carathéodory metric.

Proof:
$$d_{cc}^u(u, w)(1 - o(1)) \le d_{cc}(u, w) \le d_{cc}^u(u, w)(1 + o(1));$$

$$d_{\infty}^{u}(u,w)(1-o(1)) \leq d_{\infty}(u,w) \leq d_{\infty}^{u}(u,w)(1+o(1));$$

$$d_{cc}^u(u,w) \sim d_{\infty}^u(u,w)$$
.

Application to Geometric control theory

 \diamond The linear system of ODE $(x \in \mathbb{M}^N, n < N)$

$$\dot{x} = \sum_{i=1}^{n} a_i(t) X_i(x), \quad X_i \in C^1.$$
 (5)

• Problem: To find measurable functions $a_i(t)$ such that system (5) has a solution with the initial data x(0) = p, x(1) = q.

If system (5) has a solution for every $q \in U(p)$ then it is called *locally controllable*.

• (5) locally controllable if "horizontal" v.f. $\{X_1, \ldots, X_n\}$ can be extended to the system of v.f. constituting a structure of a Carnot manifold.

Main Applications

- *sub-Riemannian differentiability theory*: Rademacher-type and Stepanov-type Theorems on sub-Riemannian differentiability of mappings of Carnot manifolds (S. Vodopyanov)
- geometric measure theory on sub-Riemannian structures: area formula for intrinsically Lipschitz mappings of Carnot manifolds, coarea formula for C^{M+1} -smooth mappings of Carnot manifolds (M. Karmanova; S. Vodopyanov)
- geometry of non-equiregular Carnot—Carathéodory spaces
 (S. Selivanova)

Sub-Riemannian Differentiability [V2007]

Definition. A mapping $\varphi: (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is hc-differentiable at $u \in \mathbb{M}$ if there exists a horizontal homomorphism

$$L_u: (\mathcal{G}^u, d_{cc}^u) \to (\mathcal{G}^{\varphi(u)}, d_{cc}^{\varphi(u)})$$

of local Carnot groups such that

$$\widetilde{d}_{cc}(\varphi(w), L_u(w)) = o(d_{cc}(u, w)), \ E \cap \mathcal{G}^u \ni w \to u.$$

- ullet For mappings of Carnot groups, this notion coincides with the definition of \mathcal{P} -differentiability [Pansu]
- ullet Denote the hc-differential of arphi at u by the symbol $\widehat{D}arphi(u)$

Sub-Riemannian Differentiability [V2007]

Rademacher-Type Theorem. Suppose that a mapping φ : $(\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is Lipschitz with respect to d_{∞} u \widetilde{d}_{∞} . Then φ is hc-differentiable almost everywhere.

Stepanov-Type Theorem. Suppose that a mapping $\varphi : (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is such that

$$\lim_{y \to x} \frac{\tilde{d}_{cc}(\varphi(y), \varphi(x))}{d_{cc}(y, x)}$$

almost everywhere. Then φ is hc-differentiable almost everywhere.

Theorem. Suppose that $\varphi: (\mathbb{M}, d_{cc}) \to (\widetilde{\mathbb{M}}, \widetilde{d}_{cc})$ is C^1_H -smooth and contact (i. e., $D_H \varphi[H\mathbb{M}] \subset H\widetilde{\mathbb{M}}$). Then φ is continuously hc-differentiable everywhere.

Sub-Riemannian Area Formula [K2008]

the sub-Riemannian Jacobian

$$\mathcal{J}^{SR}(\varphi,y) = \sqrt{\det(\widehat{D}\varphi(y)^*\widehat{D}\varphi(y))}.$$

Theorem. Let $\varphi : \mathbb{M} \to \widetilde{\mathbb{M}}$ be a Lipschitz with respect to d_{cc} and \widetilde{d}_{cc} mapping of Carnot manifolds. Then, the area formula holds:

$$\int_{\mathbb{M}} f(y) \mathcal{J}^{SR}(\varphi, y) d\mathcal{H}^{\nu}(y) = \int_{\widetilde{\mathbb{M}}} \sum_{y: y \in \varphi^{-1}(x)} f(y) d\mathcal{H}^{\nu}(x),$$

where $f: \mathbb{M} \to \mathbb{E}$ (\mathbb{E} is an arbitrary Banach space) is such that the function $f(y)\sqrt{\det(\widehat{D}\varphi(y)^*\widehat{D}\varphi(y))}$ is integrable. Here Hausdorff measures are constructed with respect to quasimetrics d_2 (in the preimage) and \widetilde{d}_2 (in the image) with the normalizing factor ω_{ν} .

Sub-Riemannian Coarea Formula [KV2009]

• the sub-Riemannian coarea factor

$$\mathcal{J}_{\widetilde{N}}^{SR}(\varphi,x) = \sqrt{\det(\widehat{D}\varphi(x)\widehat{D}\varphi(x)^*)} \cdot \frac{\omega_N}{\omega_\nu} \frac{\omega_{\widetilde{\nu}}}{\omega_{\widetilde{N}}} \frac{\omega_{\nu-\widetilde{\nu}}}{\prod\limits_{k=1}^{M} \omega_{n_k-\widetilde{n}_k}}.$$

Theorem. Suppose that $\varphi \in C^{M+1}(\mathbb{M},\widetilde{\mathbb{M}})$ is a contact mapping of two Carnot manifolds, $\dim H_1\mathbb{M} \geq \dim \widetilde{H}_1\widetilde{\mathbb{M}}$, $\dim H_i\mathbb{M} - \dim H_{i-1}\mathbb{M} \geq \dim \widetilde{H}_i\widetilde{\mathbb{M}} - \dim \widetilde{H}_{i-1}\widetilde{\mathbb{M}}$, $i = 2, \ldots, M$. Then the following coarea formula

$$\int_{\mathbb{M}} \mathcal{J}_{\widetilde{N}}^{SR}(\varphi, x) f(x) d\mathcal{H}^{\nu}(x) = \int_{\widetilde{\mathbb{M}}} d\mathcal{H}^{\widetilde{\nu}}(z) \int_{\varphi^{-1}(z)} f(u) d\mathcal{H}^{\nu - \widetilde{\nu}}(u)$$

holds, where $f: \mathbb{M} \to \mathbb{E}$ (\mathbb{E} is an arbitrary Banach space) is such that the product $\mathcal{J}_{\widetilde{N}}^{SR}(\varphi,x)f(x): \mathbb{M} \to \mathbb{E}$ is integrable.