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Relativistic Field Theory

Particles: h-invariant linear equations of motion

Lo“(x) = 0.
M% = 150(d)/SO(d) Minkowski
M% = S0(d—1,2)/50(d) AdS,4
M% = S0(d,2)/P compactified Minkowski

Space of states of an elementary particle: irreducible h-module

e Unitarity:

e Lowest weight: Energy boundness

Noncompact A: infinite-dimensional Ah-modules



h = so(d,2): a particle ~ h-module D(E,s):

S = S1...5[q/2]° spin(s) = weights of o(d)

E lowest energy (mass) = weight of o(2)

Depending on £ and s:
e either a conformal field in M¢

e Or a field in Adsd—l—l
Unitarity: E > Eg(s)

At E = Ey(s) null states appear that form a h-submodule D(E’, s'):

Factorization implies gauge symmetry

The gauge fields are called massless fields (E = Ep(s))



Gauge symmetries

Gauge Symmetries: parameters £52(z)

Examples:
e s=1, m=0: A(zx) = dx"An(x)

- _ _ o)
Maxwell field strength F(z) = dA(x), d=dz"4n
Field equations: d*F(x) = J(x)

Gauge transformation: §A(x) = de(x)

L 822, m = O: gnm:nnm_l_/{hnm
hnm 1S @ metric fluctuation (x — 0).

Linearized diffeomorphism §hnm(z) = (6., ()



Higher-spin fields

Any spin s, m=20

¢ni..ns(z) - rank s double traceless: ©p"m™ . () =0 C.Fronsdal (1978)

Gauge transformation:

590]51---753(33) — 8(k18k2...ks) (), gnnk::,...ks_l =0

Eky..k,_1- SYMmMetric traceless: 6pn""m'™ . 1, =0

Fronsdal action

1 1
q = » (Ewml"'msGml...Tns(S@) _ és(s . 1)g0nnm3"'mSGppm3...ms(90))

—1
Gy ks (0) = Oy k(@) — 805, 0" 0p,  kin) (@) + 8(82 )3(k13k290nk3...k8n)($)

Field equations: G(¢) =0



Nonlinear Gauge T heories

Interactions are described by nonlinear PDE

That the interacting theory should have as many (may be deformed)
gauge symmetries as its free limit imposes severe restrictions on the

sets of fields involved and on the form of nonlinearities

s — 1 Yang-Miills: connection 1-forms take values in compact Lie algebras
e s = 2 Einstein gravity: single metric tensor
e s = 3/2 Supergravity: supermultiplets of fields of spins 0 < s < 2 with

single spin 2 graviton

HS gauge theories contain spin s > 2 gauge fields



HS theory

Higher derivatives in interactions

A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

S=S2+53+..., 3= Y (DPo)(DYp) (D p)prtatrT5d-3
D,d,T
HS Gauge Theories (m = 0): Fradkin, M.V. (1987)
AdS/CFT:
(3d,m =0)®(3d,m =0) =39 ,(4d,m = 0) Flato, Fronsdal (1978);

Sundborg (2001), Sezgin, Sundell (2002,2003), Klebanov, Polyakov (2002),
Giombi, Yin (2009)...

Maldacena-Zhiboedov Thm. (2011,2012)
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Unfolded dynamics

First-order form of differential equations

§'(t) = ' (q(t)) initial values: ¢*(¢p)
Unfolded dynamics: multidimensional covariant generalization

0 :
o — d, ¢'(t) — W(z) = dz" A ... Adz™

dW(x) = G¥(W (%)), d = dx"0n MV (1988)
GQ(W) . function of “supercoordinates” W®

o0
GPW) = o, 0, WPTA . AWPn
n=1
d > 1: Nontrivial compatibility conditions

DG (W)
oW ®
Any solution: FDA Sullivan (1968); D’Auria and Fre (1982)

GP(W) A 0

T he unfolded equation is invariant under the gauge transformation
OG (W (z))

2 _ 3.8 b
W) = de%(w) + P ()" rg 5




Vacuum geometry

a Lie algebra. w = w%T,: h valued 1-form.
1 3
Glw) = —wAw= —5w N w” [T, Tg]
the unfolded equation with W = w has the zero-curvature form
do+ wAw=20.

Compatibility condition: Jacobi identity for h.

FDA: usual gauge transformation of the connection w.

Zero-curvature equations: background geometry in a coordinate inde-
pendent way.
If h is Poincare or anti-de Sitter algebra it describes Minkowski or AdS,

space-time



Free fields unfolded

Let W*? contain p-forms C! (e.g. O-forms) and G' be linear in w and C
G' = —w*(Ta)"j NC.

The compatibility condition implies that (Ta)ij form some representation

T of h, acting in a carrier space V of C'. The unfolded equation is

D,C=0

D, =d+ w: covariant derivative in the A~-module V.
Covariant constancy equation : linear equations in a chosen backgroundc

h: global symmetry



Properties

General applicability

Manifest (HS) gauge invariance

e Invariance under diffeomorphisms

EXxterior algebra formalism

e Interactions: nonlinear deformation of G*2(W)

Local degrees of freedom are in O-forms C*(zg) at any z = zg (as q(tp))
infinite-dimensional module dual to the space of single-particle states
Lie algebra cohomology interpretation

Covariant twistor transform

Emergent ambient space-time

Geometry is encoded by GS}(W)

Hierarchies: commuting flows

Holography



Fedosov quantization

oo
W(ylz) = da"Wn(ylz) = ) Way.an(@)y™ ... y*"

n=0

o0
D(ylz) = > Pay..an(@)y™ .. y*"

n=0

Sections of Weyl bundle
Star product

(f )W) = [ dsdtf(y + )g(y + 1) exp —isat"
[yaa ya]* = 2iCyy ,
Non-Abelian HS curvature
R(y|z) = dW (y|z) + W (y|z) * AW (y|x)
Adjoint covariant derivative

Do (y|lz) = dP(y|z) + W (y|z) * P(y|z) — P(y|z) *» W (y|z)



Fedosov theory

R(ylz) := dW (y|z) + W (y|z) * W(y|z) = O
D®(y|z) = dP(y|z) + W(yl|z) * P(y|z) — P(y|z) * W(y|z) = 0.

W (y|z) = Wo(ylz) + W1 (y|z), Wo(ylz) = wep(x)y*y’ + eay®

Wo(y|z): connection of sp(d) G&h(d).

eq satisfies
dea(z) + wp(z) A ec(z)CP =0, cbe = b
where C% is a constant symplectic form.
w(x) = eq(x) A eb(w)Cab, dw(x) = 0.

w IS a nondegenerate closed symplectic two-form



Fedosov Quantization
1) x ©2(r) 1= (®1(5f) =+ 20010 _ |

P(z) ‘= P(y[z)

y=0
Fedosov system is off-shell: no differential conditions on ().

c_-cohomology language

Ho(a, A)=K:d(0,x) the only dynamically independent object
HY o, A) =0 : no restriction on (0, z)

h = Lie(Ay) /K Lie(A) :  [a,blx = axb—bxa

Associativity

(®1(2)+3(2))sP3(z) = ®1()+(®2(@)sP3(2)) = (P1(3le)sb2(y])b3(}e))|



Unfolding as twistor transform

Twistor transform
C(yl|x)

VR
M(z) T(y).
WQ(y|:13) are functions on the “correspondence space” C.
Space-time M : coordinates z. Twistor space T . coordinates y.

Unfolded equations describe the Penrose transform by mapping functions

on T to solutions of field equations in M.

Being simple in terms of unfolded dynamics and the corresponding
twistor space T, holographic duality in terms of usual space-time may
be complicated requiring solution of at least one of the two unfolded

systems: a nontrivial nonlinear integral map.



Unfolding and holographic duality

Unfolded formulation unifies various dual versions of the same system.
Duality in the same space-time:

ambiguity in what is chosen to be dynamical or auxiliary fields.

Holographic duality between theories in different dimensions:

universal unfolded system admits different space-time interpretations.

Extension of space-time without changing dynamics by letting the dif-
ferential d and differential forms W to live in a larger space

— n — n n n n Y VR
d=dX 5xn n—>d—dX X7 n—l—anAﬁ, dX"Wp = dX"Wp +dX" W5,

X" are additional coordinates

dW(X,X) = GHW(X, X))



Particular space-time interpretation of a universal unfolded system, e.g,
whether a system is on-shell or off-shell, depends not only on GS(W)
but, in the first place, on space-time M? and chosen vacuum solution
Wo(X).

Two unfolded systems in different space-times are equivalent (dual) it
they have the same unfolded form.
Direct way to establish holographic duality between two theories: unfolc

both to see whether their unfolded formulations coincide.

Given unfolded system generates a class of holographically dual theories

In different dimensions.



Invariant functionals via ()—cohomology

Equivalent form of compatibility condition

0

2 —
Q*=0, Q=G'W) g

-manifolds

Hamiltonian-like form of the unfolded equations

dF(W(z)) = Q(F(W(z)), VE(W).

Invariant functionals

S = /L(W(a:)) . QL=0  (2005)

L=QM : total derivatives
Actions and conserved charges: (¢ cohomology

for off-shell and on-shell unfolded systems, respectively



Free massless fields in AdSa,

Infinite set of spins s =0,1/2,1,3/2,2...

w(y,y | ), C(y,y | ), two-component spinors: o,8=1,2, &,5 =1,2.
©(y, v z) =wl@,ylz), Cly,ylz) =C(y,ylz).
>~ L B1..8
- — = = x1...0n P1...Pm
A(y,y | r) =1 Z n!m!yal - Yanlyp, - -yﬁmA , ()

n,m=0

T he unfolded system for free massless fields is

2
C (0,7 | :E)—I—nHO‘B 0

C(y,0 | x
ooy OyoyP (v.0 )

*  DoC(y,g|x) =0

Ri(y, 7| z) = D&w(y,ij|z)  HP =eynePd, HY =e,®ne?

9 0 ~ - 62
Dglw = DL — e (yo—0s + —— Do = DY + e [ yai -]
6w = € (ya pry T3 5) 0 T Ae (yayﬁ + 8yaag5>

o, a0
Dt =ad, — (waﬂyaj + waﬁyd—) .



Examples

Different spins: subsystems with

(Ny + Np)w(y, ylz) = 2(s — Dw(y, y|z), (Ny — Ny)C(y,ylz) = £2sC(y, y|z) .
Ny:yaﬂa Ng:gag
oy® oy™
s=20:
.92
- ax b —_—
dC(y,ylz) + dx 6yaagd0(y,ylx) =0.

dCozl...ozn ,o’zl...o'zn(x) =+ daﬂ#cfyal...an ,"yo'zl...c'vn(x) =0

Consequences:
0 o0
Cal...an ,dl...dn(x) — Opa1ar 8mandnc(x)’
52 52
( : — — : : >(j(x):::O
011 Qrd202  Qrd1¥20gr¥291

Equivalent to
82

Ox X101 Hrpo202

£01a2 Q12

C(z)=0: 0OC(z)=0.



dw(z) = ea® A PO, .+ e, N eﬁdCaﬁ

_ . 0° _
dC(y, ylz) + daﬁo‘o‘ayaay_dC(y,ylw) =0.

(Ny — Ng)C(y, ylz) = £2C(y, ylx) .



Non-Abelian HS algebra

Star product
(f*9)(Y) = [ dSATF(Y + $)g(Y + T) exp —iS T
[Ya, Y]« = 2iCyp, Cozﬁ — €afB> CdB — ¢ap
Non-Abelian HS curvature

R1(y,ylz) = R(y,ylzr) = dw(y, ylr) + w(y, y|z) * w(y, y|x)

DoC(y, ylz) — DC(y, y|z) = dC(y, y|z) +w(y, y|z)*C(y, g|zr) — C(y, y|z) *w(y, —y|z)

That

2 2

a3 0 af 0
C (0 x)+nH

o7 8y5 ( y| ) n dy (9

makes the system more complicated than in the pure Fedosov case

*Ri(y, 9| x) =nH

5 C(,0]x)

Weyl fiber with spinor generating elements
Non-zero curvature

Full nonlinear HS equations 1990,1992



Riemann 6 functions solve conformal equations
and Riemann 6 functions

Conformal invariant massless equations

0 52
d)(AB(a + )C(Y|£U) =0, A, B=1,...,2M shaynkman, MV (2001

XABT gy Ay B

Riemann /—functions solve unfolded massless equations in M,
Gelfond, MV, arXiv:0801.2191

C(Y|12)=0(Y,2)= Y expin(ZBn npg+ 2n,Y4)
nAezM

o i o2

5748 T axavagyB ¢ 41X) =0




Higher-rank equations and conserved currents

Rank r unfolded equations: tensoring of Fock modules Geifond, Mv (2003)

0 2
AB _ L

For diagonal nij higher-rank equations are satisfied by

C(Yilz) = C1(V1]z)Co(Y2|z) ... Cr(Yr|z) .

Rank-two equations: conserved currents

0 9 oy =o0
5zAB ~ 5y (AgyB) =

T(U, Y|x): generalized stress tensor. Rank-two equation is obeyed by

N
T(U, Y|z) =Y Cp (Y —Ulz) C_;(U + Yz)
i=1
Rank-two fields: bilocal fields in the twistor space.



Dynamical currents (primaries)

J(u|lr) =T (u,0|x), J(y|z) = T(0, y|x) Gelfond, MV (2003)
82
T (uyyl) = oy T(u, ylo) )

J(u|x) generates 3d currents of all integer and half-integer spins
oo _ oo _

J(ulr) = Z u*t o u*25 o an (), J(ulx) = Z u*t L u*25 o s () .

25=0 25=0

JEI (u, ylz) = uay™ I (@)

DJay.cny (@) = DJayas (@) =s+1 ATV (z) =2

Differential equations: conventional conservation condition
o 52 . 52

J =0, J =0
9298 Bugdug” 1) 528 Byadys” Y1)




3d conformal setup in AdS; HS theory

For manifest conformal invariance introduce

1 - - _1_ _
vl = (Wa— i), va=_@a—iwa),  la.v =06

3d conformal realization of the algebra sp(4;R) ~ 0(3,2)

1 1
o _ ,+toa —  “co, +y, — — . ta —
L7 =y""Ys = 508Y" Uy » D=y
P,z = iy;yﬁ_, KB — —iy_l_o‘y—l_ﬁ
Conformal weight of HS gauge fields
1 0, 0

D,wyExX)] == [y — oy — | w@X).

DA = 5 (15 P~ v e ) w10

Pullback &(y*|z) of w(yt|z) to =: 3d conformal HS gauge fields



Holography at Iinfinity

AdS, foliation: 2" = (x%,2) : x% are coordinates of leafs (¢« = 0,1,2,) z is @

foliation parameter

Poincaré coordinates

2z
eOéd — idwad, wOéﬂ — _idXOéB’ Q—}aﬁ — deozﬁ
2z 4z 4z
; 2
taapf, 9 - 0O 0 ] SN
[dx + de (yaayﬁ 5’y5 + Ya¥g — 5 aa‘ﬁ> C(y,y|x,z) =

Rescaling y® and y“ via

C(y,y|x, z) = zexp(yay™) T (w,w|x, z) ,

wa:Z1/2ya, U—JOé:z]./QgOé

T(w,w|x, z) satisfies the 3d conformal invariant current equation
32

_ i OB
dx — tdx OwrOwP

T(w,w|x,z) =0




Connections

Setting

W(yi|x, z) = Q(v_,w+|x, 2)

vi — Z—l/Zyi, wi — Z1/2yi
manifest z—dependence disappears
0
DxQ2 (v, w+|x, 2) = (dx + Qidxo‘ﬁfu; ) Q(v, w+|x, )
w8
Using
Wo = w;[_ + i2v,, , Wo = z’wjé_ + z2v,,

in the limit z — 0 free HS equations take the form

82
)
Xy g Fogw TP

* DXQX(v_,w+|X, 0) = dxa T(w™,0 | x,0),

82

_ i dw B
* dx 1dx aw‘l'aaw_,@

T(w"‘,w_\X,O) = 0.




Towards nonlinear 3d conformal HS theory

Conformal HS theory is nonlinear since conformal HS curvatures inher-

ited from the AdS, HS theory are non-Abelian  Fradkin, Linetsky (1990)
Ruax(v ™, wt | x) = dxQx (v, wT | x) + Qx (v, wT | x) * Qx (v, wT | x)

It is important

g, wP]y = 62

The equation on O-forms deforms to nonlinear twisted adjoint represen-

tation

0

O ) o T (wla) — 1wl 0 —im - -
w

w6’
Matter fields can be added via the Fock module

dT(wlL|:1;) —I—Q( —, —inw™~ |r) = o(T?)

(d+ Qo(w™,wTx)) * C(wT|x) x F =0



Reduction to free CF'I3

The unfolded equation

82
OwTeHwT0

DxQx(v™,wT|x,0) = HY T(w™,0]x,0)

remains free if

T=0  —J%Wm=0 o JVY"=0

depending on whether A-model or B-model is considered. For these
cases the model remains free in accordance with the Kilebanov-Polyakov
Sezgin-Sundell conjecture.

Free models are equivalent to the reductions of the HS theory with

respect to P-involution y < y which is possible for the A and B models.

For HS theory with general phase n parameter such reduction is not

possible: no realization as a free conformal theory.

Non-Abelian contribution of conformal HS connections has to be taken

into account.



Conclusions

Holographic duality relates theories that have equivalent unfolded

formulation: equivalent twistor space description.

AdS4 HS theory is dual to nonlinear 3d conformal HS gauge theory
Beyond 1/N

Both of holographically dual theories are HS theories of gravity

To do

Nonlinear 3d conformal HS theory
Correlators
AdS3/CFT> and Gaberdiel-Gopakumar conjecture

To unfold String Theory



