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Coxeter groups - a bit of Algebra

We consider RN with its standard inner product:

〈x, y〉 =

N∑
j=1

xjyj

For 0 6= α ∈ RN , let σα be the orthogonal reflection in

the hyperplane Hα orthogonal to α. So, with the action

on the right, we have:

• xσα = x for all x ∈ Hα,

• ασα = −α.

σα ∈ O(RN) = Orthogonal Group.

Definition 0.1 A finite set R of non-zero vectors in

RN is called a root system if for all α ∈ R

1. Rα ∩R = {α,−α},

2. (R)σα = R.

G ≡ subgroup of O(RN) generated by σα for α ∈ R.

G is finite and so we call it a finite Coxeter group.

There exist non-trivial examples!

(Symmetric groups, dihedral groups, etc.)
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Dunkl operators - Analysis

Any G-invariant function κ : R → [0,∞) is called a

multiplicity function.

Take j ∈ {1, 2, . . . , N} and κ as above. Define

Tj,κf (x) :=
∂f

∂xj
+

1

2

∑
α∈R

κ(α)

〈α, x〉
(
f (x)− f (xσα)

)
αj

to be the Dunkl operator for the j-th coordinate.

Here α = (α1, . . . , αj, . . . , αN).

These are not local operators for non-zero κ.

One says Dunkl operators are deformations of directional

and partial derivatives, not perturbations. They break

the symmetry group from the orthogonal group O(RN)

(κ ≡ 0) down to the Coexter group G (non-zero κ).

Theorem 0.1 The family of operators

{Tj,κ | j = 1, 2, . . . , N}
is commutative.

This theorem is a bit of a surprise. It was proved by

Dunkl in his original paper on this subject (1989).

Definition 0.2 The Dunkl Laplacian is ∆κ :=
∑N

j=1 T
2
j,κ.

Again: a non-local operator.
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Dunkl miscelanea - Analysis

What we can do with this theory:

1. Generalized exponential function or Dunkl kernel.

(Simultaneous eigenfunction of all the Tj,κ.)

2. Dunkl version of the Fourier transform (also known

as the Dunkl transform).

3. Dunkl heat equation ∂u
∂t = 1

2∆κu and its associated

Dunkl heat kernel.

4. Applications to Calogero-Moser models.

5. Dunkl generalization of Brownian motion.

6. Self-adjoint realizations of Dunkl position and Dunkl

momentum operators in L2(RN ,mκ), where mκ is a

measure on RN absolutely continuous with respect

to Lebesgue measure. (Another quantization!)

7. Self-adjoint realizations of Dunkl position and Dunkl

momentum operators in a Hilbert space of holomor-

phic functions CN → C. (Another quantization?)

(A generalized Segal-Bargmann space)

8. A canonical unitary isomorphism a la Segal-Bargmann

from L2(RN ,mκ) onto the above Hilbert space of

holomorphic functions. (The same quantization!)
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Quantum Principal Bundles

(Non-commutative Geometry)

All algebras are over the field of complex numbers C, are

associative and have an identity element 1.

A quantum principal bundle (QPB) P = (B,A, F )

consists of the following objects.

• A ∗-algebra B. (‘Functions’ on the total space.)

• A quantum group A which is a ∗-algebra.

(Compact Matrix Pseudogroups, Woronowicz, 1987.)

(‘Functions’ on the model fiber space.)

• A right co-action of the quantum group A on the

total space B, i.e., F : B → B⊗A. F is also a unital

∗-homomorphism. (Unital means that F (1) = 1⊗ 1

and ∗-homomorphism means that F (b∗) = F (b)∗.)

Furthermore, we require that these objects satisfy one more property, namely that
the map β : B ⊗ B → B ⊗A defined for b1, b2 ∈ B by

β(b1 ⊗ b2) := b1F (b2)

is surjective. (The right co-action F is free.)

We define V := {b ∈ B |F (b) = b⊗ 1}.
(The right invariant ‘functions’ on the total space, i.e.,

the ‘functions’ on the base space.)
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Exterior Algebras on a

Quantum Principal Bundle

(Non-commutative Geometry)

An (N-graded) differential calculus on a quantum

principal bundle P = (B,A, F ) is given by these objects:

1. A graded differential ∗-algebra (Ω(P ), dP ) over B.

(So dP : Ω0(P ) = B → Ω1(P ) is a first order

differential calculus (fodc) and dP : Ω(P ) →
Ω(P ) has degree 1.)

2. A bicovariant and ∗-covariant fodc (Γ, d) over A.

3. An extension of the right co-action F : B → B⊗A of

the QPB to a right co-action F̂ : Ω(P )→ Ω(P ) ⊗̂ Γ̂

of Ω(P ) over Γ̂, where Γ̂ is the enveloping differential

calculus of the fodc (Γ, d) and F̂ is a differential,

unital ∗-homomorphism.

Moreover, we have these properties:

1. Ω(P ) is generated as a graded differential calculus by Ω0(P ) = B, the el-
ements of degree zero. The F̂ -invariant elements of Ω(P ) is a differential
∗-subalgebra denoted by Ω(M). This is the differential calculus for the base
space. We do not necessarily have that Ω(M) is generated by V.

2. Other technical details. (See the paper on arXiv.)

Definition 0.3 The horizontal forms are

hor(P ) := {ω ∈ Ω(P ) | F̂ (ω) ∈ Ω(P )⊗A}.
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Connections and Covariant Derivatives on a

Quantum Principal Bundle

(Non-commutative Geometry)

Consider a QPB with a given differential calculus.

Definition 0.4 A connection is a linear map

ω : Γinv → Ω1(P ) such that for all θ ∈ Γinv we have:

• ω(θ∗) = ω(θ)∗ (reality condition)

• (F̂ω)(θ) = (ω ⊗ id)ad(θ) + 1⊗ θ
where ad : Γinv → Γinv ⊗A is the adjoint co-action of

the quantum group on Γinv.

The covariant derivative Dω of a connection ω

is the linear map Dω : hor(P ) → hor(P ) defined for

all ϕ ∈ hor(P ) by

Dω(ϕ) := dP (ϕ)− (−1)|ϕ|ϕ(0)ωπ(ϕ(1)).

where F̂ (ϕ) = ϕ(0) ⊗ ϕ(1) is Sweedler’s notation for a

co-action. (ϕ a homogeneous element of degree |ϕ|.)

The curvature rω : A → hor(P ) of the connection of

ω is defined by

rω(a) := dP ω π(a) + ωπa(1) ωπa(2)

where φ(a) = a(1) ⊗ a(2) is Sweedler’s notation for the

co-multiplication in the quantum group A. Here we have

also used the following definition:
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Definition 0.5 The quantum germ mapping

π : A → Γinv is defined for all a ∈ A by

π(a) := κ(a(1))d(a(2)).

Here κ : A → A is the antipode of the quantum group.

(Not to be confused with the multiplicity function.)
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A specific QPB

A specific example of a QPB with a specific connection

will now give us the Dunkl operators. First: the QPB.

The spaces are classical, but the differential calculi

(DC) are not classical for two of the spaces:

• Total space: P = RN \ (∪α∈RHα). Quantum DC.

The standard differential calculus on P is denoted hor(P ) and will indeed
turn out to be the horizontal forms on the total space P .

As a graded ∗-algebra Ω(P ) = hor(P )⊗ Γ∧
inv. The product, the ∗-operation

and the differential on Ω(P ) are defined in the paper; Γ∧
inv is defined as

the quotient of the tensor algebra over Γinv by dividing out the quadratic
relations

∑
g1g2=h[g1]⊗ [g2] where g1, g2 ∈ S and e 6= h /∈ S. Also, [g] = π(g)

with g ∈ S is the canonical basis of Γinv.

• Group: Coxeter groupG associated with root system

R (which acts freely on P ). Quantum DC Γ∧.

• Base space: M = P/G ∼= any connected component

of P with DC taken to be the classical DC on M .

The DC on the quantum groupA is completely quantum.

The classical calculus of the zero dimensional compact

Hausdorff differential manifold G is worthless! Following

Gelfand theory, we take the quantum group to be

A := {f : G→ C},

the finite dimensional vector space of all complex valued

(continuous) functions on G.
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The Quantum DC for A

A is commutative. All one-sided ideals are two-sided

and given uniquely by I = {f : G → C | f |S = 0} for

some unique S ⊂ G.

By the theory of fodc, we must consider all the ideals

I ⊂ ker ε where ε : A → C is the co-unit given by

ε(f ) := f (e)

where e ∈ G is the identity element. So, I ⊂ ker ε if and

only if e ∈ S.

To get a ∗-invariant fodc is equivalent to κ(I)∗ = I
which in turn is equivalent to S−1 = S.

To get a bicovariant fodc is equivalent ad(I) ⊂ I ⊗A
which in turn is equivalent to g−1Sg = S for all g ∈ G.

For our case of a Coxeter group G we choose

S = {e} ∪
⋃
α∈R

{σα}.

Since σ−1α = σα, we have S−1 = S. Also g−1σαg = σαg
for all g ∈ G, which implies g−1Sg = S.

Then Γinv ∼= ker(ε)/I has canonical vector space basis

given by {π(g) = [g] | g ∈ S}, which is also anA-module

basis for Γ.

10



The quantum connection

We continue considering the QPB introduced above.

Let ωf be the canonical flat connection defined for all

θ ∈ Γinv by

ωf(θ) := 1⊗ θ.

Theorem 0.2 .

Let α ∈ R be a root. Define λ : Γinv → hor(P ) for

x ∈ P by

λ[σα](x) = ihα(x)α (α considered as a 1 form on P )

Here hα :P → R satisfies hαg(x)=hα(xg−1) for g ∈ G.

Then the covariant derivative Dω associated with the

connection ω := ωf +λ (called a Dunkl connection)

for all φ ∈ hor(P ) is

Dωφ(x) = Dφ(x) +
i

2

∑
α∈R

hα(x) (φ(x)− φ(xσα))α

where D : hor(P )→ hor(P ) is the standard de Rham

derivative of classical differential geometry.

Corollary 0.1 Now take hα(x) = κα/〈α, x〉. Then

the curvature rω ≡ 0 and the covariant derivative is

Dωφ(x) = Dφ(x) +
i

2

∑
α∈R

κα
〈α, x〉

(φ(x)− φ(xσα))α
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Concluding Remarks - and Another Theorem

MORAL: Without changing any part of the theories of

Dunkl operators nor of QPB’s we have found that Dunkl

operators are a special example in the theory of QPB’s.

It is important to note that Dunkl operators can not

be viewed as covariant derivatives in classical differential

geometry, since the latter operators are local. Seen this

way, Dunkl operators are a quantum phenomenon.

We have found a formula for Dωφ(x) for all elements

φ ∈ hor(P ) of any degree. In analysis Dunkl operators

are usually (maybe always?) considered as acting only

on elements φ ∈ hor(0)(P ), that is on smooth functions

φ : P → R.

Theorem 0.3 The condition rω ≡ 0 implies that the

family of operators {Tj,κ|j=1, . . . , N} is commutative

when applied to smooth functions φ : P → R.

This last result has been known since Dunkl’s very first

paper on these operators. However, we now have given

a geometrical explanation (zero curvature) for why this

turns out to be true.
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