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Quantum Nonlinear Schrddinger equation
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c > 0 is a coupling constant

h > 0 is a chemical potential
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The eigenfunctions |¢) and their eigenvalues E
can be found by Bethe Ansatz.
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Form factors and correlation functions
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Form factors and correlation functions
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We consider ground state correlation functions in the
thermodynamic limit. This means that:

e |¢p) corresponds to the minimal energy;

e L — oo at fixed density of the gas D = N/L.
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We consider ground state correlation functions in the
thermodynamic limit. This means that:

e |¢p) corresponds to the minimal energy;

e L — oo at fixed density of the gas D = N/L.
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There exists a way to sum up form factor series directly
with respect to solutions of Bethe equations {u}. This
way leads to various multiple integral representations for
correlation functions.



We consider ground state correlation functions in the
thermodynamic limit. This means that:

e |¢p) corresponds to the minimal energy;

e L — oo at fixed density of the gas D = N/L.
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Another way is to describe the excited states in terms of
particles and holes. Then in the thermodynamic limit the
sum over the excited states can be replaced by integration
over rapidities of particles and holes up and py.
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This situation is typical for critical (gapless) models.
Such a senseless result arises, because form factors in
critical models have no uniform thermodynamic limit.
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In order to solve the problem we split the excited states
into special classes P
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The sum of form factors within one class of the excited states
can be computed explicitly. It gives dressed form factor
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The remaining sum over classes can be replaced dy the integration
over rapidities of particles and holes.
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Eigenfunctions
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The system of Bethe equations
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Ground state
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Particles and holes

on /. N+1
/\:_(‘7_ 2

round state
N ) J

27‘('Ij _
pj = excited state
L




Particles and holes

2 N+1
il (j — T ) ground state
L 2

N+ 2
(j— ;_ ) excited state

|

Ground state

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

27 N+1
AN = — |7 — round state
J L(] > ) J

2 /. N 4+ 2 .
“J:T<‘7_ 2 ) J#Eh

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Particles and holes

2 N+1
il (j — T ) ground state
L 2

EXxcited state

27 /L



Field form factor
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Field form factor
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1-particle 1-hole form factor
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Contribution of 1-particle 1-hole form factors
to the correlation function in the thermodynamic limit
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1-particle 1-hole form factor
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Particle-hole form factors have no uniform thermodynamic

limit. One should consider separately:

e particle (hole) is far from the Fermi boundaries

lim pp 7 +q lim pp, # £q

e particle (hole) is close to the Fermi boundaries

lim pp = *q lim p;, = *q



Classes of excited states
Two excited states belong to the same class P if:

e they have the same excitation momentum P and
energy £ in the thermodynamic limit;

e they have the same number of particles and holes
separated from the Fermi boundaries with the same
rapidities up, and up in the thermodynamic limit.



Classes of excited states

Two excited states belong to the same class P if:

e they have the same excitation momentum P and
energy £ in the thermodynamic limit;

e they have the same number of particles and holes
separated from the Fermi boundaries with the same
rapidities up, and up in the thermodynamic limit.

The total number of excitations is not fixed!
One can add arbitrary number of excitations

at the Fermi boundaries.
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Classes of excited states
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Summation within a class of excited states
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Original excited state is dressed by a cloud of excitations in
vicinities of +q. As the result original bare form factors
turns into dressed form factors.
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Summation within a class of excited states
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The sum R4+(v) was studied in the works of A. Borodin, S. Kerov,
A. Okounkov, G. Olshoanski (Z-measures on partitions).



Summation within a class of excited states
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Summation within a class of excited states
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Summation within a class of excited states
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Finite coupling (c < o0)

Bethe equations
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Finite coupling (c < o0)

Bethe equations

N , ; N+1 :
eiLAj:_H”\J_/\k“C el = — ] Hj = bk Tl
f— )\j—)\k—’ic k=1 uj—uk—ic

N o o ® e e e e o o o

1/Lp(Aj)



Finite coupling (c < o0)

Bethe equations
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v(A) and p(\) solve linear integral equations in the L — oo limit.



Finite coupling (c < o0)
Form factors
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Summation within a class of excited states
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Summation within a class of excited states
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The sum over different classes P means:

e The sum over the numbers of particles (Np) and holes (Ny)
separated from the Fermi boundaries;

e The sum over the particle/hole discrepancy (¥);

e Integration over particle and hole rapidities up and py.
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P

The sum over different classes P means:

e The sum over the numbers of particles (Np) and holes (Ny)
separated from the Fermi boundaries;

e The sum over the particle/hole discrepancy (¥);
e Integration over particle and hole rapidities up and py.

Generically analytical evaluation of the integrals over
1p and pyp is hardly possible because of very complicated
dependence of Fp on {up} and {uy}.



e In the asymptotic regime (x — oo, t — o0) the integrals
over particle/hole rapidities are localized in the vicinities
of the Fermi boundaries +q and in the vicinity of the
saddle point (if the last one exists). In this case we reproduce
the CFT prediction for the asymptotics and some additional
contributions coming from the saddle point. The last ones are
dominant for certain correlation functions.



e In the asymptotic regime (x — oo, t — o0) the integrals
over particle/hole rapidities are localized in the vicinities
of the Fermi boundaries +q and in the vicinity of the
saddle point (if the last one exists). In this case we reproduce
the CFT prediction for the asymptotics and some additional
contributions coming from the saddle point. The last ones are
dominant for certain correlation functions.

e [ here exists always a possibility to compute the integrals
over particle/hole rapidities numerically.



Numerical summation over classes for XXZ chain

H =

L
(S Sk41 + 5/351‘?“ + ASESE4 1)

k=1

We compute the correlation function of the third components
of spin (S7,(t)S{(0)). Its Fourier transform S(k,w) can be
measured experimentally.

S(k,w) = Y / eimk—itw (62 (1) 6Z(0)) dt
meZ R



Inelastic neutron scattering in KCukF3

Spinons in KCUF3 -
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Wavevector q along chain {units of 2x)

S(k,w) = Y / emk—itw Gz (1)62(0)) dt
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