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Motivation
Geometric control theory

o The linear system of ODE (z € MY, m < N)

m

i=Y a,()X(@) (1)

i=1
is locally controllable iff Lie{Xq1, X5,...,Xm} = TM, i.e. the
“horizontal” distribution HM = {Xq, X», ..., X} is bracket-generating:
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e M is the depth of the sub-Riemannian space M

e Rashevsky-Chow theorem = on M there exists an intrinsic
metric de(u,v) = inf {L(v)}

~v—horizontal
v(0)=u,y(1)=v



e Filtration HM = H{ C Ho, C ... C Hyy = T'M such that
[H1, Hi]=H; 41

(Hormander’'s condition).

Here

Hp(v) = span{[X;., [X

11> i27°"7[X

ik—l’Xik] ] (w) Xz'j c Hl}

e A point uw € M is called regular if dim H,(v) = const in some
neighborhood v € U(u) C M.

Otherwise, u is called nonregular.



e Examples. Regular: Heisenberg groups, Carnot groups, roto-
translation group, etc.

Nonregular Groushin-type planes (related to the PDE
2k82
522 ‘|‘ & f)

M =R2. H; =span{X; =2, Xp= :Izk(%}.

The axis x = 0 consists of nonregular points; the depth is
M=k+1.

There are no regular C-C structures on R2!



¢ (J.-M. Coron, etc.) The sufficient condition of controllability
of the nonlinear system

i = f(z,0),
{w<o> = 2o, @
IS that
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¢ (J.-M. Coron, etc.) The sufficient condition of controllability
of the nonlinear system

i = f(z,0),
{w<o> = 2o, 2
IS that

ol

. 0 MY _
span{h(O) . h € Lle@f(o, ), a €N } = TroM
for some M € N. Letting

80&
Fy = {%f(oa ) el < 1/}
and

Hk(Q) — Span{[Xla [X27 SRR [Xi—laXi] .o ](Q) : X] S Fl/j7 V1+V2+- . -+Vi S k}7
one obtains a weighted filtration
Hi C Hy C...C Hy; =TM, such that [HmHj]gHz—l—j

more general than the Hormander condition
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Agrachev, Marigo 2003;
Montanari, Morbidelli 2004, 2011;
Street 2011

Karmanova, VVodopyanov 2007—2009; Karmanova 2010, 2011.



Weighted Carnot-Carathéodory spaces
o M, dimM = N is a smooth connected manifold
e X1,Xo,...,X,€ C?MF1 span TM; degX; :=d;, di <...<dq.

i XI — [Xi17 [ K [Xik_la

|I|h:: d21++dzk

X, 1...], where I = (iq,...,14);

e Hj =span{Xy | |I|, <j}.
HM = H{ C Hy C ... C Hy = TM

[H;, H;] € H;y ;.

Here [H;, H;] is the linear span of commutators of the vector field
generating H; and Hj.
Model case: dy :(=1, dg := M.



Problems
1. In a neighborhood of a nonregular point, the basis Y1, Y>,..., Yy,
associated to the filtration H1 € Ho C ... C H,,, varies discon-

tinuously from point to point.

2. In the case of a weighted filtration the intrinsic Carnot-
Carathéodory metric d. might not exist.

Example (Stein “Harmonic Analysis")
M = RY with standard basis 9z, 9z, - ., 0z y.
Let deg(0z;,) =1 for 1 < i < m; deg(9z;) > 1 for i > m.

Evidently, H; = span{0dz;,0z,,...,0} satisfy [H;, H;] C H;4;,
since [H27Hj] = {O}

But Hy = span{d,}, (for any m < N) does not span RY.



3. Different choices of weights may lead to different combina-
tions of regular and nonregular points.

Example
M = R3; vector fields {X1 = 8y, Xo = 0z + y0;, X3 = 9z}.
Nontrivial commutator: [X7, X»] = 0.

1. Let deg(X;) :=1,1=1,2,3. Then deg([X1,X»]) =2 and
Hy = span{Xy, Xo, X3}, Hp = Hy Uspan{[X1, X5]}.

In this case {y = 0} is a plane consisting of nonregular points.
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Example
M = R3; vector fields {X1 = 8y, Xo = 0z + y0;, X3 = 9z}.
Nontrivial commutator: [X7, X»] = 0.

1. Let deg(X;) :=1,1=1,2,3. Then deg([X1,X»]) =2 and
Hy = span{Xy, Xo, X3}, Hp = Hy Uspan{[X1, X5]}.
In this case {y = 0} is a plane consisting of nonregular points.
2. Let deg(Xq) ;= a, deg(X5) := b, deg(X3) ;== a+10b, a <b.
Then deg([X1,X2]) =a+b =
o = Span{Xy}, H, = HqUspan{Xs}, H,1, = HUHyUspan{ Xz, [X1, Xo]}

In this case all points of R3 are regular.



Questions

Are there some analogs of classical results of sub-Riemannian
geometry for weighted C-C spaces?

¢ Results on existence and the algebraic structure of the Gro-
mov'’'s tangent cone to M = (M, d.) at a fixed point uw € M: it is

a homogeneous space of a Carnot group (G/H,d¥).

o Local approximation theorem: if de(u,v) = O(e) and de¢(u,v) =
1
O(e), then |de(u,v) — d¥(v,w)| = O(elTr).

o Methods of optimal motion planning for the system (1).



Metric structure

We work with the following quasimetric Nagel, Stein, Wainger
1985:

p(v,w) =inf{é > 0| thereis a curve v:[0,1] - U ,

¥(0) =v,v(1) =w,4(t) = Y wiX;(y(1), lwy| < 811},
1|, <M

Here X; = [Xil’ [,[X

I =diy + ...+ d;,.

ik—l’X"ik] .. .], where [ = (i]_,. .. ,ik);

1
For the regular case p(v,w) = doo(v,w) = TaxN{|vi|dngi}
1=1,...,



Quasimetric space (X,dy)
X is a topoogical space; dy : X x X — R1 is such that
(1) dx(u,v) > 0; dy(u,v) =0 u =v;

(2) dx(u,v) <ecxdx(v,u), where 1 < cyxy < oo uniformly on u,v €
X (generalized symmetry property);

(3) dx(u,v) < Qx(dx(u,w) + dx(w,v)), where 1 < Qx < o
uniformly on all u,v,w € X (generalized triangle inequality);

(4) dx(u,v) upper semicontinuous on the first argument

Qx =cx = 1= (X,dx) metric space



Show picture



Basic considerations
e Choice of basis {Y7,Y>,..., Yy} among {XI}|I|h§M3

* Y1,Y>,...,Yy are linearly independent at « (hence in some
neighborhood U(u));

N
x », degy; is minimal;
i=1

N
* > |I;] is minimal, where Y; = X
=1

e Coordinates of the second kind % : RY s U

DU (zq,...,zn) = exp(x1Y7) oexp(xoYs) o...oexp(znyYn)(u)



Basic considerations

o {5(\%}|1|th — nilpotent approximations of {X;}, <y at u e U.

Hj(u) = Hj(u), where Hj = span{X7}}, <;, Hj = span{X}} 1, <;-

e QQuasimetic

p"(v,w) =inf{é6 > 0| thereis a curve v:[0,1] — U,

v(0) = v,7(1) = w,7(#) = Y wX¥(v(1)), [wy| < sk},
11|, <M

Conical property:
p"(Agv, Afw) = ep" (v, w)

where AY are dilations induced by the homogeneous weight
structure.



Divergence of integral lines

Let w,v € U, r > 0. Divergence of integral lines with the center
of nilpotentization u on B(v,r) is

R(u,v,7) =max{ sup {p“(y,9)}, sup {p(y,9)}}  (6)
yeBr* (v,r) yeBP(v,r)

Here the points y and y are defined as follows. Let ~(t) be an
arbitrary curve such that

YO = X b XH(y(1)),
I, <M
v(0) =v,v(1) =7,
and

Y(v,9) < max {|b /Iy < o,
p*( y)—|f|th{| 1l } <

y=-exp( Y b;X¥)(v). So sup in (6) is taken over infinite set
[, <M

of points § € B? (v,r) and reals {br} 11, <M



Main result
Theorem 1 (Estimate of divergence of integral lines).

Let u,v € U, p(u,v) = O(e), r = O(e) and BP(v,r)UBP"(v,r) C U.
Then the following estimlate on the divergence of integral lines
holds: R(u,v,r) = O(etTir).

Can be used for constructing motion planning algorithms for the
nonlinear control system (2): z = f(x,a).



Corollaries
e Theorem 2 (Local approximation theorem).
If u,v,we U, p(u,v) = O(e) and p(u,w) = O(e), then
(v, w) — p"(v,w)| = O+ ).
e Theorem 3 (Tangent cone theorem).

The quasimetric space (U, p%) is the tangent cone to the quasi-
metric space (U, p) at w € U; the tangent cone is isomorphic to
G/H, where G is a nilpotent graded group.



e New proofs of the classical results for Hormander vector fields:
* Rashevsky-Chow theorem (existence of d.);

x Local approximation theorem
1
|de(v, w) — dé(v, w)| = O(e*F1);
(Gromov 1996, Bellaiche 1996);

* Tangent cone theorem (Mitchell 1985, Gromov 1996, Bellaiche
1996);

* Motion planning algorithms for the linear control system (1)
(Jean 2001, etc.).



Methods of proofs

e T heorem on divergence of integral lines for regular C-C spaces
(Vodopyanov, Karmanova 2007—2009; Karmanova 2010—2011;

e Study of geometric properties of the quasimetrics p and p%
(generalized triangle inequalities, “Rolling-of-the-box”” lemmas,
etc.);

e Generalization and synthesis of the classical methods of em-
bedding a sub-Riemannian manifold into a regular one (Hermes
1991, Bellaiche 1996, Christ, Nagel, Stein, Wainger 1999: Jean
2001).



Metrical aspect

e We introduce a theory o convergence of quasimetric spaces
such that

1) For metric spaces, it is equivalent to Gromov's theory;

2) For boundedly compact quasimetric spaces the limit is unique
up to isometry;

3) It gives an adequate notion of the tangent cone.



Quasimetric space (X,dy)
X is a topoogical space; dy : X x X — Rt is such that
(1) dx(u,v) > 0; dy(u,v) =0 u =v;

(2) dx(u,v) <cxdx(v,u), where 1 < cy < oo uniformly on u,v €
X (generalized symmetry property);

(3) dx(u,v) < Qx(dx(u,w) + dx(w,v)), where 1 < Qx < o0
uniformly on all u,v,w € X (generalized triangle inequality);

(4) dx(u,v) upper semicontinuous on the first argument

Gromov's theory for metric spaces does not work!



We introduce the distance

dgm(X,Y) =inf{p>0]|3f: X = Y,9:Y — X,such that

max{dis(f), dis(g), sup dx(z,g(f(z))), sup dy(y,f(g(y)))} < p}
xeX yey

where dis(f) = sup [dy(f(u), f(v)) — dx(u,v)|.

u,veX

Property. For metric spaces dgm is equivalent to dgpy:



e For noncompact quasimetric spaces we say that (Xn,pn) c]7>n

(X,p), if there is such §, — 0O, that for all r > 0 there exist
mappings fnr : BY%n(pp,m + 6n) = X, gnr @ BIX(p,r + 26,) — X,
such that

(1) fn,r(pn) =D, gn,r(p) = Pn,
(2) dis(fnr) < dn, dis(gnr) < dn;

(3) sup dx, (x, gnr(fnr(z))) < on.
reB%Xn (pn,r+6n)

o T X = )\Iim (X,z,\-d) is the tangent cone to X atx € X
— 00

For quasimetric spaces with dilations, in particular Carnot-
Carathéodory spaces, we can take
n = Af\n, gn = Af;_l where A\ — oo, and prove a tangent cone

result.
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