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Motivation

Geometric control theory

� The linear system of ODE (x ∈ MN , m < N)

ẋ =
m∑
i=1

ai(t)Xi(x) (1)

is locally controllable iff Lie{X1, X2, . . . , Xm} = TM, i.e. the
“horizontal” distribution HM = {X1, X2, . . . , Xm} is bracket-generating:

• span{XI(v) : |I| ≤M} = TvM for all v ∈ M, where
XI = [Xi1, [Xi2, . . . , [Xik−1

, Xik], |I| = k (Hörmander’s condition)

• M is the depth of the sub-Riemannian space M

• Rashevsky-Chow theorem ⇒ on M there exists an intrinsic
metric dc(u, v) = inf

γ−horizontal
γ(0)=u,γ(1)=v

{L(γ)}
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• Filtration HM = H1 ⊆ H2 ⊆ . . . ⊆ HM = TM such that

[H1, Hi]=Hi+1

(Hörmander’s condition).

Here

Hk(v) = span{[Xi1, [Xi2, . . . , [Xik−1
, Xik] . . .](v) : Xij ∈ H1}

• A point u ∈ M is called regular if dimHk(v) = const in some

neighborhood v ∈ U(u) ⊆ M.

Otherwise, u is called nonregular.



• Examples. Regular: Heisenberg groups, Carnot groups, roto-

translation group, etc.

Nonregular: Groushin-type planes (related to the PDE
∂2u
∂x2 + x2k∂2u

∂x2 = f)

M = R2. H1 = span{X1 = ∂
∂x, X2 = xk ∂∂y}.

The axis x = 0 consists of nonregular points; the depth is

M = k + 1.

There are no regular C-C structures on R2!
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� (J.-M. Coron, etc.) The sufficient condition of controllability
of the nonlinear system ẋ = f(x, a),

x(0) = x0,
(4)

is that

span
{
h(0) : h ∈ Lie

∂|α|

∂aα
f(0, ·), α ∈ NM

}
= Tx0M

for some M ∈ N. Letting

Fν =
{ ∂α
∂aα

f(0, ·) : |α| ≤ ν
}

and

Hk(q) = span{[X1, [X2, . . . , [Xi−1, Xi] . . .](q) : Xj ∈ Fνj , ν1+ν2+. . .+νi ≤ k},

one obtains a weighted filtration

H1 ⊆ H2 ⊆ . . . ⊆ HM = TM, such that [Hi, Hj] ⊆ Hi+j

more general than the Hörmander condition
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Some references concerning the underlying geometry

• Nagel, Stein, Wainger 1985;

• Gromov 1996;

• Coron 1996;

• Christ, Nagel, Stein, Wainger 1999;

• Rampazzo, Sussmann 2001, 2007

• Tao, Wright 2003

• Agrachev, Marigo 2003;

• Montanari, Morbidelli 2004, 2011;

• Street 2011

• Karmanova, Vodopyanov 2007–2009; Karmanova 2010, 2011.



.

Weighted Carnot-Carathéodory spaces

• M, dimM = N is a smooth connected manifold

• X1, X2, . . . , Xq ∈ C2M+1 span TM; degXi := di, d1 ≤ . . . ≤ dq.

• XI = [Xi1, [. . . , [Xik−1
, Xik] . . .], where I = (i1, . . . , ik);

|I|h := di1 + . . .+ dik.

• Hj = span{XI | |I|h ≤ j}.

HM = H1 ⊆ H2 ⊆ . . . ⊆ HM = TM

[Hi, Hj] ⊆ Hi+j.

Here [Hi, Hj] is the linear span of commutators of the vector field

generating Hi and Hj.

Model case: d1 := 1, dq := M .
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Problems

1. In a neighborhood of a nonregular point, the basis Y1, Y2, . . . , YN ,
associated to the filtration H1 ⊆ H2 ⊆ . . . ⊆ HM , varies discon-
tinuously from point to point.

2. In the case of a weighted filtration the intrinsic Carnot-
Carathéodory metric dc might not exist.

Example (Stein “Harmonic Analysis”)

M = RN with standard basis ∂x1, ∂x2, . . . , ∂xN .

Let deg(∂xi) = 1 for 1 ≤ i ≤ m; deg(∂xi) > 1 for i > m.

Evidently, Hi = span{∂x1, ∂x2, . . . , ∂xi} satisfy [Hi, Hj] ⊆ Hi+j,
since [Hi, Hj] = {0}.

But H1 = span{∂xi}mi=1 (for any m < N) does not span RN .
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3. Different choices of weights may lead to different combina-
tions of regular and nonregular points.

Example

M = R3; vector fields {X1 = ∂y, X2 = ∂x + y∂t, X3 = ∂x}.

Nontrivial commutator: [X1, X2] = ∂t.

1. Let deg(Xi) := 1, i = 1,2,3. Then deg([X1, X2]) = 2 and

H1 = span{X1, X2, X3}, H2 = H1 ∪ span{[X1, X2]}.

In this case {y = 0} is a plane consisting of nonregular points.

2. Let deg(X1) := a, deg(X2) := b, deg(X3) := a + b, a ≤ b.
Then deg([X1, X2]) = a+ b ⇒

Ha = span{X1}, Hb = Ha∪span{X2}, Ha+b = Ha∪Hb∪span{X3, [X1, X2]}.

In this case all points of R3 are regular.
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Questions

Are there some analogs of classical results of sub-Riemannian

geometry for weighted C-C spaces?

� Results on existence and the algebraic structure of the Gro-

mov’s tangent cone to M = (M, dc) at a fixed point u ∈ M: it is

a homogeneous space of a Carnot group (G/H, duc ).

� Local approximation theorem: if dc(u, v) = O(ε) and dc(u, v) =

O(ε), then |dc(u, v)− duc (v, w)| = O(ε1+ 1
M ).

� Methods of optimal motion planning for the system (1).



Metric structure

We work with the following quasimetric Nagel, Stein, Wainger

1985:

ρ(v, w) = inf{δ > 0 | there is a curve γ : [0,1]→ U ,

γ(0) = v, γ(1) = w, γ̇(t) =
∑
|I|h≤M

wIXI(γ(t)), |wI | < δ|I|h}.

Here XI = [Xi1, [. . . , [Xik−1
, Xik] . . .], where I = (i1, . . . , ik);

|I|h = di1 + . . .+ dik.

For the regular case ρ(v, w) = d∞(v, w) = max
i=1,...,N

{|vi|
1

degYi}



Quasimetric space (X, dX)

X is a topoogical space; dX : X ×X → R+ is such that

(1) dX(u, v) ≥ 0; dX(u, v) = 0⇔ u = v;

(2) dX(u, v) ≤ cXdX(v, u), where 1 ≤ cX <∞ uniformly on u, v ∈
X (generalized symmetry property);

(3) dX(u, v) ≤ QX(dX(u,w) + dX(w, v)), where 1 ≤ QX < ∞
uniformly on all u, v, w ∈ X (generalized triangle inequality);

(4) dX(u, v) upper semicontinuous on the first argument

QX = cX = 1⇒ (X, dX) metric space



Show picture
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Basic considerations

• Choice of basis {Y1, Y2, . . . , YN} among {XI}|I|h≤M :

∗ Y1, Y2, . . . , YN are linearly independent at u (hence in some

neighborhood U(u));

∗
N∑
i=1

degYi is minimal;

∗
N∑
j=1
|Ij| is minimal, where Yj = XIj.

• Coordinates of the second kind Φu : RN → U

Φu(x1, . . . , xN) = exp(x1Y1) ◦ exp(x2Y2) ◦ . . . ◦ exp(xNYN)(u)



Basic considerations

• {X̂u
I }|I|h≤M – nilpotent approximations of {XI}|I|h≤M at u ∈ U .

Hj(u) = Ĥj(u), where Hj = span{X̂u
I }|I|h≤j, Ĥj = span{X̂u

I }|I|h≤j.

• Quasimetic

ρu(v, w) = inf{δ > 0 | there is a curve γ : [0,1]→ U,

γ(0) = v, γ(1) = w, γ̇(t) =
∑
|I|h≤M

wIX̂
u
I (γ(t)), |wI | < δ|I|h}.

Conical property:

ρu(∆u
εv,∆

u
εw) = ερu(v, w)

where ∆u
ε are dilations induced by the homogeneous weight

structure.
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Divergence of integral lines

Let u, v ∈ U , r > 0. Divergence of integral lines with the center
of nilpotentization u on B(v, r) is

R(u, v, r) = max{ sup
ŷ∈Bρu(v,r)

{ρu(y, ŷ)}, sup
y∈Bρ(v,r)

{ρ(y, ŷ)}} (6)

Here the points y and ŷ are defined as follows. Let γ(t) be an
arbitrary curve such that

γ̇(t) =
∑

|I|h≤M
bIX̂

u
I (γ(t)),

γ(0) = v, γ(1) = ŷ,

and

ρu(v, ŷ) ≤ max
|I|h≤M

{|bI |1/|I|h} ≤ r.

y = exp(
∑

|I|h≤M
bIX̂

u
I )(v). So sup in (6) is taken over infinite set

of points ŷ ∈ Bρu(v, r) and reals {bI}|I|h≤M ,
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Main result

Theorem 1 (Estimate of divergence of integral lines).

Let u, v ∈ U , ρ(u, v) = O(ε), r = O(ε) and Bρ(v, r)∪Bρu(v, r) ⊆ U .

Then the following estimate on the divergence of integral lines

holds: R(u, v, r) = O(ε1+ 1
M ).

Can be used for constructing motion planning algorithms for the

nonlinear control system (2): ẋ = f(x, a).



.

Corollaries

• Theorem 2 (Local approximation theorem).

If u, v, w ∈ U , ρ(u, v) = O(ε) and ρ(u,w) = O(ε), then

|ρ(v, w)− ρu(v, w)| = O(ε1+ 1
M ).

• Theorem 3 (Tangent cone theorem).

The quasimetric space (U, ρu) is the tangent cone to the quasi-

metric space (U, ρ) at u ∈ U ; the tangent cone is isomorphic to

G/H, where G is a nilpotent graded group.



• New proofs of the classical results for Hörmander vector fields:

∗ Rashevsky-Chow theorem (existence of dc);

∗ Local approximation theorem

|dc(v, w)− duc (v, w)| = O(ε1+ 1
M );

(Gromov 1996, Bellaiche 1996);

∗ Tangent cone theorem (Mitchell 1985, Gromov 1996, Bellaiche

1996);

∗ Motion planning algorithms for the linear control system (1)

(Jean 2001, etc.).



Methods of proofs

• Theorem on divergence of integral lines for regular C-C spaces

(Vodopyanov, Karmanova 2007–2009; Karmanova 2010–2011;

• Study of geometric properties of the quasimetrics ρ and ρu

(generalized triangle inequalities, “Rolling-of-the-box” lemmas,

etc.);

• Generalization and synthesis of the classical methods of em-

bedding a sub-Riemannian manifold into a regular one (Hermes

1991, Bellaiche 1996, Christ, Nagel, Stein, Wainger 1999; Jean

2001).
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Metrical aspect

• We introduce a theory o convergence of quasimetric spaces

such that

1) For metric spaces, it is equivalent to Gromov’s theory;

2) For boundedly compact quasimetric spaces the limit is unique

up to isometry;

3) It gives an adequate notion of the tangent cone.



Quasimetric space (X, dX)
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We introduce the distance

dqm(X,Y ) = inf{ρ > 0 | ∃f : X → Y, g : Y → X, such that

max

{
dis(f), dis(g), sup

x∈X
dX(x, g(f(x))), sup

y∈Y
dY (y, f(g(y)))

}
≤ ρ}

where dis(f) = sup
u,v∈X

|dY (f(u), f(v))− dX(u, v)|.

Property. For metric spaces dqm is equivalent to dGH:

dGH(X,Y ) ≤ dqm(X,Y ) ≤ 2dGH(X,Y ).
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• For noncompact quasimetric spaces we say that (Xn, pn) →
qm

(X, p), if there is such δn → 0, that for all r > 0 there exist
mappings fn,r : BdXn(pn, r + δn)→ X, gn,r : BdX(p, r + 2δn)→ Xn
such that

(1) fn,r(pn) = p, gn,r(p) = pn;

(2) dis(fn,r) < δn, dis(gn,r) < δn;

(3) sup
x∈BdXn(pn,r+δn)

dXn(x, gn,r(fn,r(x))) < δn.

• TxX = lim
λ→∞

(X,x, λ · d) is the tangent cone to X at x ∈ X

For quasimetric spaces with dilations, in particular Carnot-

Carathéodory spaces, we can take
fn = ∆x

λn
, gn = ∆x

λ−1
n

where λ → ∞, and prove a tangent cone

result.
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