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OUTLINE

1. deformations of Lie algebras, how they appear in families,
moduli problems

2. we deal with one of the most important infinite dimensional
Lie algebra, the Witt algebraW and its universal central
extension the Virasoro algebra V

3. deformations of the Lie algebra L are related to Lie algebra
cohomology, in more detail H2(L,L) governs the
infinitesimal and formal deformations.

4. if H2(L,L) = {0} then L is infinitesimally and formally rigid
5. present an elementary proof of H2(W,W) = 0
6. Warning: ForW and V exist geometric families (of algebras

of Krichever-Novikov type) which are locally non-trivial



FROM DEFORMATIONS TO COHOMOLOGY

W a Lie algebra over a field K with its bracket [., .]
we write it with an anti-symmetric bilinear map

µ0 : W ×W →W , µ0(x , y) = [x , y ],

fulfilling certain additional conditions corresponding to the
Jacobi identity.
On the same vector space W is modeled on, we consider a
family of Lie structures

µs = µ0 + s · ψ1 + s2 · ψ2 + · · · ,

with bilinear maps ψi : W ×W →W such that Ws := (W , µs) is
a Lie algebra and W0 is the Lie algebra we started with.

The family {Ws} is a deformation of W0.



Question: what is s ?

1. s a variable which allows to plug in numbers α ∈ K. Then
Wα is a Lie algebra for every α for which the expression
above is defined.
deformation over the affine line K[s] or over the convergent
power series K{{s}}.
we obtain a geometric or an analytic deformation
respectively.

2. s is as a formal variable. It is possible that µs does not
exist if we plug in for s any value different from 0.
deformations over the ring of formal power series K[[s]].
We obtain a formal deformation.

3. s is a infinitesimal variable, i.e. we have s2 = 0.
infinitesimal deformations defined over the quotient
K[X ]/(X 2) = K[[X ]]/(X 2).



Equivalence of deformation
two families µs and µ′s deforming the same µ0 are equivalent if
there exists a linear automorphism

φs = id + s · α1 + s2 · α2 + · · ·

with αi : W →W linear maps such that

µ′s(x , y) = φ−1
s (µs(φs(x), φs(y))).

There is always the trivially deformed family given by µs = µ0
for all s.
(W , µ0) is called rigid if every deformation µs is locally
equivalent to the trivial family
intuitively: W cannot be deformed
depends crucially on the nature of the deformation parameter



Recall
µs = µ0 + s · ψ1 + s2 · ψ2 + · · · ,

Jacobi identity says

µs(µs(x , y), z) + cycl. perm. = 0

Consider this to all orders of s.

s0: Jacobi identity for W

s1:

ψ1([x , y ], z) + cycl. perm. + [ψ1(x , y), z] + cycl. perm. = 0

This is a Lie algebra 2-cocycle - with values in the adjoint
module



LIE ALGEBRA COHOMOLOGY

An antisymmetric map ψ : W ×W →W is a Lie algebra
two-cocycle with values in the adjoint module if

(d2ψ)(x , y , z) = ψ([x , y ], z) + ψ([y , z], x) + ψ([z, x ], y)

−[x , ψ(y , z)] + [y , ψ(z, x)]− [z, ψ(x , y)] = 0.

It is a coboundary if there exists a linear map φ : W →W with

ψ(x , y) = (d1φ)(x , y) = φ([x , y ])−[x , φ(y)] + [y , φ(x)].

Second cohomology of W with values in the adjoint
representation is

H2(W ,W ) = ker d2/im d1

Similar H2(W ,K) (values in the trivial module) – related to
central extensions of W .



Well-known results:

1. H2(W ,W ) classifies infinitesimal deformations
(Gerstenhaber)

2. If dim H2(W ,W ) <∞, then all formal deformations up to
equivalence can be realized in this vector space (Fialowski,
Fuks and Fialowski)

3. If H2(W ,W ) = 0, then W is infinitesimally and formally
rigid

4. If dim W <∞, then H2(W ,W ) = 0 implies that W is also
rigid in the geometric and analytic sense (Gerstenhaber,
Nijenhus and Richardson)



WITT AND VIRASORO ALGEBRA

algebraic realization:
K a field of char(K) = 0
The Witt algebraW is the Lie algebra generated as vector
space over K by the elements {en | n ∈ Z} with Lie structure

[en,em] = (m − n)en+m, n,m ∈ Z.

Geometric realization:
Over R it is the Lie algebra of polynomial vector fields
Vectpol(S1) on the circle S1, en = exp(i nϕ) d

dϕ with Lie product
the usual bracket of vector fields.
This can be complexified, i.e. K = C: and we obtain the algebra
of meromorphic vector fields on the Riemann sphere P1(C)
which are holomorphic outside {0} and {∞}. In this realization
en = zn+1 d

dz .



very important fact: the Witt algebra is a Z-graded Lie algebra
by setting deg(en) := n

the homogeneous spacesWn of degree n are one-dimensional
with basis en

The eigenspace decomposition of the element e0, acting via
the adjoint action onW coincides with the decomposition into
homogeneous subspaces:

[e0,en] = n en = deg(en) en.



Virasoro algebra V is the universal one-dimensional central
extension ofW.
vector space direct sum V = K⊕W
we set for x ∈ W, x̂ := (0, x), and t := (1,0)
basis elements are ên, n ∈ Z and t with the Lie product

[ên, êm] = (m − n)ên+m −
1
12

(n3 − n)δ−m
n t ,

[ên, t ] = [t , t ] = 0,

we set deg(ên) := deg(en) = n and deg(t) := 0 and V
becomes a graded algebra.



we have the following short exact sequence of Lie algebras

0 −−−−→ K −−−−→ V ν−−−−→ W −−−−→ 0 .

the sequence does not split, i.e. it is a non-trivial central
extension
the equivalence classes of central extensions are in 1:1
correspondence to the cohomology classes H2(W,K)

well-known dim H2(W,K) = 1



THE MAIN RESULT

THEOREM

Both the second cohomology of the Witt algebraW and of the
Virasoro algebra V (over a field K with char(K) = 0) with values
in the adjoint module vanishes, i.e.

H2(W;W) = {0}, H2(V;V) = {0}.

COROLLARY

BothW and V are formally and infinitesimally rigid.

Attention: Our cohomology is algebraic cohomology i.e. no
restrictions on the cochains are made.



HISTORY OF THIS THEOREM:

I in 1990 Fialowski stated this theorem, but without proof.
I in 2003 Fialowski and myself gave a sketch of a proof,

using density arguments and very deep results obtained by
Tsujishita, Reshetnikov, and Goncharova. This would be
o.k. if we consider continous cohomology. But here we
need algebraic cohomology.

I Fortunately, I found a completely elementary proof.
arXiv:1111.6625, (in press) Forum Mathematicum.

I Also Fialowski (based on some older calculations done by
her) presented an elementary proof, arXiv:1202.3132



EXAMPLE OF A NON-TRIVIAL FAMILY

Lie algebra generated by Vn,n ∈ Z over C with structure

[Vn,Vm] =



(m − n)Vn+m, n,m odd,
(m − n)

(
Vn+m + 3e1Vn+m−2

+(e1 − e2)(e1 − e3)Vn+m−4
)
, n,m even,

(m − n)Vn+m + (m − n − 1)3e1Vn+m−2

+(m − n − 2)(e1 − e2)(e1 − e3)Vn+m−4, n odd,m even.

(e3 = −(e1 + e2))
Gives a Lie algebra L(e1,e2) for every pair (e1,e2).
They are constructed as families of Krichever-Novikov type
algebras for the torus (poles at 0 and 1/2 might be allowed).
For (e1,e2) 6= (0,0) the algebras L(e1,e2) are not isomorphic to
the Witt algebraW, but L(0,0) ∼=W.
(I talked about these families in detail at Bialowieza 2005)



REDUCTION TO DEGREE ZERO

W be an arbitrary Z-graded Lie algebra, i.e.

W =
⊕
n∈Z

Wn.

A k -cochain ψ is homogeneous of degree d if there exists a
d ∈ Z such that for all i1, i2, . . . , ik ∈ Z and homogeneous
elements xil ∈W , of deg(xil ) = il , for l = 1, . . . , k we have that

ψ(xi1 , xi2 , . . . , xik ) ∈ Wn, with n =
k∑

l=1

il + d

we denote the corresponding subspace of degree d
homogeneous k-cochains by Ck

(d)(W ; W )



• Every k -cochain can be written as a formal infinite sum

ψ =
∑
d∈Z

ψ(d),

• for a fixed k -tuple of elements only a finite number of the
summands will produce values different from zero.

• it is easy to show that the coboundary operators δk are
operators of degree zero, i.e. applied to a k -cochain of degree
d they will produce a (k + 1)-cochain also of degree d .

• Here only k=2 and k=1 is needed

• ψ is a 2-cocycle if and only if all degree d components ψ(d)

will be individually 2-cocycles.

• If ψ(d) is 2-coboundary, i.e. ψ(d) = δ1φ with a 1-cochain φ,
then we can find another 1-cochain φ′ of degree d such that
ψ(d) = δ1φ

′.



This shows every cohomology class α ∈ H2(W ; W ) can be
decomposed as formal sum

α =
∑
d∈Z

α(d), α(d) ∈ H2
(d)(W ; W ),

the latter space consists of classes of cocycles of degree d
modulo coboundaries of degree d .



For the rest let W be eitherW or V and assume first d 6= 0.

THEOREM

The following hold:
(a) H2

(d)(W;W) = H2
(d)(V;V) = {0}, for d 6= 0.

(b) H2(W;W) = H2
(0)(W;W), H2(V;V) = H2

(0)(V;V).

To see this we start with a cocycle of degree d 6= 0 and make a
cohomological change ψ′ = ψ − δ1φ with

φ : W →W , x 7→ φ(x) =
ψ(x ,e0)

d
.

Recall e0 is the element of eitherW or V which gives the
degree decomposition. This implies (note that φ(e0) = 0)

ψ′(x ,e0) = ψ(x ,e0)− φ([x ,e0]) + [φ(x),e0]

= d φ(x) + deg(x)φ(x)− (deg(x) + d)φ(x)= 0.



Now we evaluate the 2-cocycle condition for the cocycle ψ′ on
the triple (x , y ,e0) (leave out the cocycle values which vanish
due to ψ′(x ,e0) = 0)

0 =ψ′([y ,e0], x) + ψ′([e0, x ], y)− [e0, ψ
′(x , y)]

= (deg(y) + deg(x)− (deg(x) + deg(y) + d))ψ′(x , y)

= −dψ′(x , y).

As d 6= 0 we obtain ψ′(x , y) = 0 for all x , y ∈W .
Hence ψ is a coboundary.

And the theorem is shown.



THE DEGREE ZERO PART

Witt algebra
• a degree zero cocycle can be written as ψ(ei ,ej) = ψi,jei+j
• if it is a coboundary then it is a coboundary of a linear form of
degree zero: φ(ei) = φiei
• the systems of ψi,j and φi for i , j ∈ Z fix ψ and φ completely.
• evaluating the cocycle condition for the triple (ei ,ej ,ek ) yields
for the coefficients

0 =(j − i)ψi+j,k − (k − i)ψi+k ,j + (k − j)ψj+k ,i

− (j + k − i)ψj,k + (i + k − j)ψi,k − (i + j − k)ψi,j .
(1)

for the coboundary

(δφ)i,j = (j − i)(φi+j − φj − φi). (2)

• hence, ψ is a coboundary if and only if there exists a system
of φk ∈ K, k ∈ Z such that

ψi,j = (j − i)(φi+j − φj − φi), ∀i , j ∈ Z. (3)



• A degree zero 1-cochain φ will be a 1-cocycle (i.e. δ1φ = 0) if
and only if

φi+j − φj − φi = 0.

• this has the solution φi = i φ1,∀i ∈ Z

• Hence, given a φ we can always find a φ′ with (φ′)1 = 0 and
δ1φ = δ1φ

′.

• In the following we will always choose such a φ′ for our
2-coboundaries.



Step 1: cohomological change

start with a 2-cocycle ψ given by the system of ψi,j

modify it by adding a coboundary δ1φ to obtain ψ′ = ψ − δ1φ

Goal is ψi,1 = 0 for all i ∈ Z

Hence, φ should fulfill

ψi,1 = (1− i)(φi+1 − φ1 − φi) = (1− i)(φi+1 − φi).



(a) Starting from φ0 := −ψ0,1 we set in descending order for
i ≤ −1

φi := φi+1 −
1

1− i
ψi,1.

(b) φ2 cannot be fixed in this way, instead we use

ψ−1,2 = 3(−φ2 − φ−1), yielding φ2 := −φ−1 −
1
3
ψ−1,2.

Then we have ψ′−1,2 = 0.
(c) We use again the relation above to calculate recursively in
ascending order φi , i ≥ 3

φi+1 := φi +
1

1− i
ψi,1.

For the cohomologous cocycle ψ′ we obtain by construction

ψ′i,1 = 0, ∀i ∈ Z, and ψ′−1,2 = ψ′2,−1 = 0.



LEMMA

Let ψ be a 2-cocycle of degree zero such that ψi,1 = 0, ∀i ∈ Z
and ψ−1,2 = 0, then ψ will be identical zero.

This says our original cocyle we started with is cohomologically
trivial. This shows the main theorem.

It remains to show the lemma.



• The coefficient ψi,m are called of level m (and of level i by
antisymmetry)

• by assumption the cocycle values of level 1 are all zero.

• we will consider ψi,m for the values of |m| ≤ 2 and finally
make ascending and descending induction on m

• specializing the cocycle conditions for the index triple
(i ,−1, k) gives

0 =− (i + 1)ψi−1,k − (k − i)ψi+k ,−1 + (k + 1)ψk−1,i

− (−1 + k − i)ψ−1,k + (i + k + 1)ψi,k − (i − 1− k)ψi,−1
(4)

and for the triple (i ,1, k)

0 = (1− i)ψi+1,k + (k − 1)ψk+1,i + (i + k − 1)ψi,k (5)



Using these two relations we can first show that all values of
level m = 0 and then of level m = −1 are zero.

Example: m = −1
Setting in (5) k = −1 we obtain

−(i − 1)ψi+1,−1 + (i − 2)ψi,−1 = 0.

Hence,

ψi,−1 =
i − 1
i − 2

ψi+1,−1, for i 6= 2,

ψi+1,−1 =
i − 2
i − 1

ψi,−1, for i 6= 1.

Starting from ψ1,−1 = −ψ−1,1 = 0 we get (from 1. formula)
ψi,−1 = 0, for all i ≤ 1. From the 2. formula we get ψi,−1 = 0 for
i ≥ 3 and by assumption ψ2,−1 = ψ−1,2 = 0.



• For m = −2 with similar arguments we get ψi,−2 = 0 for
i 6= 2,3 and the value of ψ2,−2 = −ψ3,−2 remains undetermined
for the moment.

• For m = 2 we get ψi,2 = 0 for i 6= −2,−3 and the value
ψ−3,2 = −ψ−2,2 remains undetermined for the moment.
• Now: consider the index triple (2,−2,4) in the cocycle
condition and we get

0 = −2ψ6,−2 − 8ψ4,2 + 4ψ2,−2.

But ψ4,2 = 0 and ψ6,−2 = 0 (from m = 2 and m = −2
discussion). This shows ψ2,−2 = 0 and all level m = −2 and
level m = 2 values are zero.

• Now the vanishing of all other level m values follow from
induction,using (4) and (5).

This proves the lemma and consequently the main theorem for
the Witt algebra.



THE VIRASORO PART

We give only a rough sketch

I we start from the short exact sequence of Lie algebras

0 −−−−→ K −−−−→ V −−−−→ W −−−−→ 0 .

I this is also a short exact sequence of Lie modules over V
I we get the part of the long exact cohomology sequence

−−−−→ H2(V; K) −−−−→ H2(V;V) −−−−→ H2(V;W) −−−−→

I we show that naturally H2(V;W) ∼= H2(W;W) (i.e. every
2-cocycle of V with values inW can be changed by a
coboundary such that the restriction toW ×W defines a
2-cocycle ofW)

I we show H2(V; K) = {0}
I now use H2(W;W) = 0 to obtain H2(V;V) = 0


