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1. Introduction

Recall the duality between Lie algebras and linear Poisson spaces:

The dual g∗ of a (finite-dim) Lie algebra g has a linear Poisson structure and
if a (finite-dim) vector space V has a linear Poisson structure, then V∗ has a
Lie algebra structure; these processes are inverse.

Applying the same process to the bracket of sections of the tangent bundle TM of a
manifold, we see that it is dual in the same way to the symplectic structure on T∗M .

These two dualities are instances of the duality for Lie algebroids:

The dual A∗ of a Lie algebroid A has a linear Poisson structure and if a
vector bundle E has a linear Poisson structure, then E∗ has a Lie algebroid
structure; these processes are inverse.

The work in this talk grew out of considering multiple versions of this duality. These
arise for several reasons; I mention just one:

For any Poisson manifold P the cotangent bundle T∗P has a Lie algebroid structure.

So given a Lie algebroid A there is a Lie algebroid structure on T∗A∗ . This is a vector
bundle over A∗ but there is also a vector bundle structure over A , due to the canonical
diffeomorphism T∗A∗ → T∗A (valid for any vector bundle). With these two structures
T∗A∗ is a double vector bundle.



2. TA

Before returning to T∗A , consider TA for A a vector bundle on M .

TA is a vector bundle on A (of course), but there is a second vector bundle structure
on TA , this one with base TM .

The projection is T (q) where q : A→ M is the projection of A .

The zero section is T (0) , the addition is T (+) , . . . everything works, because T
preserves diagrams. (BTW, to emphasize this process, I write T (f ) instead of df for
any map of manifolds.)

We show these two structures in the diagram

TA
T (q) //

pA

��

TM

pM

��
A

q // M

This is a double vector bundle (definition shortly). The diagram is not meant to be read
as a morphism; it should be read as a mathematical structure in its own right.



3. Exact sequences

There are two short exact sequences associated with TA .

Tq is a map of vector bundles so has a
kernel.

A×M A // TA
Tq // TM

A vector ξ ∈ TA which is annulled by
Tq is vertical, so is tangent to a fibre, so
consists of a base-point in some fibre,
and a vector in that fibre.

The kernel is the inverse image bundle
of A over itself.

pA is also a map of vector bundles and
has a kernel.

A×M TM // TA
pA // A .

A vector ξ ∈ TA which is annulled by pA
is on the zero section. Given ξ ∈ T0m A ,
project ξ to X = T (q)(ξ) ∈ TM . Then
ξ − T (0)(X) is vertical, so identifies
with an e ∈ Am .

The kernel is the inverse image of A
over TM → M .

A connection in A can be defined as a map A×M TM → TA which is right-inverse to
each of Tq and pM (and bilinear).



4. Structures on TA

The two structures on TA are compatible in the sense that the maps defining each
structure are linear with respect to the other.

For the additions this means that given four elements, ξi ∈ TA , i = 1, . . . , 4,

ξi //

��

Xi

��
ai // m

of TA
T (q) //

pA

��

TM

pM

��
A

q // M

Then
(ξ1 + ξ2) +

TM
(ξ3 + ξ4) = (ξ1 +

TM
ξ3) + (ξ2 +

TM
ξ4).

Here + is the standard addition of tangent vectors and +
TM

is the addition in TA→ TM .

This is the interchange law. It is the main defining condition for a double vector bundle.



5. Double vector bundles

A double vector bundle is a manifold D with two vector
bundle structures, over bases A and B , each of which
is a vector bundle on a manifold M , such that the
structure maps of D → A (the bundle projection qA , the
addition +

A
, the scalar multiplication, the zero section)

are morphisms of vector bundles with respect to the
other structure.

D //

��

B

��
A // M

The condition that the addition +
A

is a morphism with respect to the other structure is
the interchange law

(d1 +
A

d2) +
B

(d3 +
A

d4) = (d1 +
B

d3) +
A

(d2 +
B

d4).



6. Comments

Double vector bundles go back to the 1950s (Dombrowski) and were used in the 1960s
and 1970s in some accounts of connection theory (Dieudonné, Besse) and theoretical
mechanics (Tulczyjew). The first systematic account was given by Pradines (1977).

They are not the same as 2-vector bundles. I’ll say something about this at the end, but
everything for double (and multiple) vector bundles is for finite-dimensional smooth
manifolds and all algebraic structures are strict.



7. ‘Decomposed’ example

There will be more examples shortly. For now, a very simple example.

Take vector bundles A and B on base M . The manifold A×M B can be given two
vector bundle structures.

First, regard A×M B as q!
AB , the pullback of B over qA . Next, regard A×M B as

q!
BA , the pullback of A over qB .

This is a double vector bundle (a very simple one).

Now consider three vector bundles A , B , C on the same base M , and the manifold
A×M B ×M C .

First, form the Whitney sum bundle B ⊕ C → M and take the pullback over qA . This
gives a vector bundle q!

A(B ⊕ C) over base A .

Next, form the Whitney sum bundle A⊕ C → M and take the pullback over qB . This
gives a vector bundle q!

B(A⊕ C) over base B .

With these two structures, D := A×M B ×M C is a double vector bundle, called
decomposed.

Every double vector bundle is isomorphic to a decomposed double vector bundle (not
usually in a natural way).

Note: The Whitney sum A⊕ B ⊕ C is a vector bundle over M . This is a special
feature of decomposed bundles.



8. Duality

D → A is a vector bundle so can be dualized as usual. There is no a priori reason to
expect that the result will form a double vector bundle.

D //

��

B

��
A // M

D×| A //

��

?

��
A // M

However . . .

Write C for the set of all elements of D which project to
zero in both structures.

These are closed under addition, and the two additions
coincide, due to the interchange law.
So C is a vector bundle over M .
C is the core of D .

c //

��

0B
m

��
0A

m
// m



9. Short exact sequences

The bundle projection D → B is a morphism of vector bundles over A→ M . Write
Khor for its kernel. Every element of Khor is the sum (uniquely) of a core element and a
zero element in D → A .

k //

��

0B
m

��
a // m

equals c //

��

0B
m

��
0A

m
// m

plus (over B ) 0̃a
//

��

0B
m

��
a // m

where c = k −B 0̃a .

The addition in Khor turns out to correspond to adding the core elements. So Khor is
the inverse image bundle q!

AC and we have a short exact sequence

0 // q!
AC // D // q!

AB // 0

(Shriek denotes inverse image.)



10. Short exact sequences, p2

The dual of the short exact sequence

0 // q!
AC // D // q!

AB // 0

is
0 // q!

AB∗ // D×| A // q!
AC∗ // 0

This suggests that there may be a double vector bundle

D×| A //

��

C∗

��
A // M

D×| B //

��

B

��
C∗ // M

and this is so. Likewise there is a double vector bundle D×| B .

Note: The windmill symbol×| denotes the ordinary vector bundle dual. I use this
distinctive symbol because after several iterations the usual symbol ∗ becomes
confusing.



11. Example: duals of TA

For D = TA the core is A . Consider: the kernel of TA→ A is the vectors along the
zero section. And the kernel of TA→ TM is the vertical vectors. Vertical vectors are
tangent to the fibres and at zero can be identified with points of the fibres.

TA //

��

TM

��
A // M

T∗A //

��

A∗

��
A // M

What is the dual of TA over TM ? Apply the tangent functor to A×M A∗ → R and we
get TA×TM T (A∗)→ R , also a non-degenerate pairing. So

TA //

��

TM

��
A // M

T (A∗) //

��

TM

��
A∗ // M



12. The duals are dual

Theorem: D×| A→ C∗ and D×| B → C∗ are themselves dual.

‘PROOF’: Take Φ ∈ D×| A and Ψ ∈ D×| B projecting to same κ ∈ C∗ . Say Φ 7→ a ∈ A
and Ψ 7→ b ∈ B .

Φ //

��

κ

��
a // M

Ψ //

��

b

��
κ // M

d //

��

b

��
a // M

Take any d ∈ D which projects to a and b . The pairing is

〈Φ,Ψ〉C∗ = 〈Φ, d〉A − 〈Ψ, d〉B .

The subtraction ensures that the RHS is well-defined.

These are duals as double vector bundles.

Note: We could define

〈Φ,Ψ〉C∗ = −〈Φ, d〉A + 〈Ψ, d〉B .

Apart from the choice of signs, the pairing is unique.



13. The duality group

Now write X for dualization in the vertical structure and Y for dualization in the
horizontal.

D //

��

B

��
A // M

DX //

��

C∗

��
A // M

DXY //

��

C∗

��
B // M

DXYX //

��

A

��
B // M

The final double vector bundle is the ‘flip’ of the first. There is no canonical sense in
which the two can be identified.

Now interchange X and Y :

D //

��

B

��
A // M

DY //

��

B

��
C∗ // M

DYX //

��

A

��
C∗ // M

DYXY //

��

A

��
B // M

The results are canonically isomorphic. Briefly, XYX = YXY .

Together with X 2 = Y 2 = I this shows that X ,Y generate the symmetric group of
order 6. Write DF2 for this group.

In effect DF2 is the symmetric group on {A,B,C∗} .



14. Triple case

Before going on to the triple case, it’s reasonable to ask: Why go further ?

Lie algebroid on A =⇒ Poisson structure on A∗ =⇒ Lie algebroid on T∗(A∗)

(Double vector bundle)

In a similar way the cotangent of a double vector bundle is a triple vector bundle. Any
study of bracket structures on a double vector bundle will lead to working with triples.

D //

��

B

��
A // M

TD

��

//

""EE
E TB

��

##FF
F

TA //

��

TM

��
D //

""EEE
E B

##FFF
F

A // M

T∗D

��

//

##FFF
F D×| B

��

!!DD
D

D×| A //

��

C∗

��
D //

%%KKK
KK B

$$III
I

A // M

And there is always curiosity. As it turns out the answer in the triple case is surprising.



15. Triple vector bundles

From here on I am describing joint work with Alfonso Gracia-Saz (LMP, 2009).

E1,2,3
X //

��

$$HHH
E2,3

��

!!CC
C

E1,3 //

��

E3

��

E1,2 //

$$III
I E2

""DDD
D

E1 // M

E1,2,3
×| E2,3

//

��

��?
??

E2,3

��

��?
??

?

E3,12
×| E3

//

��

E3

��

E2,31
×| E2

//

��?
???

E2

��?
??

??

E∗
123

// M

On the RHS is EX . Imagine calculating EXYXZ this way . . . it gets unwieldy very
quickly.

Each face of E is a double vector bundle and has a core (denoted E1,23, E2,31, E3,12 ).

Further, there is the set of all elements e ∈ E1,2,3 which project to zeros in all three of
E1,2 , E2,3 and E3,1 . It is a vector bundle on base M , denoted E123 and called the
ultracore.

For brevity write E0 = E∗
123 .



16. Duals of triple vector bundles

E1,2,3
X //

��

$$HHH
E2,3

��

!!CC
C

E1,3 //

��

E3

��

E1,2 //

$$III
I E2

""DDD
D

E1 // M

E1,2,3
×| E2,3

//

��

��?
??

E2,3

��

��?
??

?

E3,12
×| E3

//

��

E3

��

E2,31
×| E2

//

��?
??

?
E2

��?
??

??

E0 // M

X leaves E2 and E3 fixed and interchanges E1 with E0 .

E1 E2 E3 E0

X E0 E2 E3 E1
Y E1 E0 E3 E2
Z E1 E2 E0 E3

So the group of dualization functors acts as S4 on E1 , E2 , E3 and E0 .



17. Duality for triple vector bundles

We have a surjection DF3 → S4 and want the kernel.

S4 is generated by σ1 = (01) , σ2 = (02) , σ3 = (03) . These are subject to

σ2
i = 1, (σiσj )

3 = 1, (σiσjσiσk )2 = 1,

for i, j, k distinct.

We know that X 2 = Y 2 = Z 2 = 1, and that (XY )3 = · · · = 1.

Is it also true that (XYXZ )2 = 1 ?

To settle this, look at the ‘automorphisms’ of E .



18. Statomorphisms

First the double vector bundle case.

A statomorphism ϕ : D → D is an automorphism which induces the identity on A , B
and the core C .

We may as well consider just the decomposed case, D = A×M B ×M C .

Then ϕ is
ϕ(a, b, c) = (a, b, c + ξ(a, b))

where ξ : A×M B → C is a bilinear map. We usually write ξ : A⊗ B → C .

In the triple case we have the cores E12 , E13 , E23 of the lower faces and the ultracore
E123 . So an element of a decomposed triple vector bundle is
(e1, e2, e3, e12, e13, e23, e123) ,

and a statomorphism is determined by six bilinear maps

(1, 2, 03) : E1 ⊗ E2 → E12, (1, 3, 02) : E1 ⊗ E3 → E13, (2, 3, 01) : E2 ⊗ E3 → E23,

(1, 23, 0) : E1 ⊗ E23 → E123, (2, 13, 0) : E2 ⊗ E13 → E123, (3, 12, 0) : E3 ⊗ E12 → E123,

and one trilinear map: (1, 2, 3, 0) : E1 ⊗ E2 ⊗ E3 → E123 .



19. Statomorphisms, p2

Now a dualization operator will act on statomorphisms. In the double case applying X
to ξ : A⊗ B → C sends it to −ξ : A⊗ C∗ → B∗ . (We use the same letter for
A⊗ B → C and the rearrangements A⊗ C∗ → B∗ , A⊗ B ⊗ C∗ , . . . ) The minus sign
comes from the minus sign in the pairing of duals.

The triple case :

(1, 2, 03) (1, 3, 02) (2, 3, 01) (1, 23, 0) (2, 13, 0) (3, 12, 0)
X −(2, 13, 0) −(3, 12, 0) (2, 3, 01) −(1, 23, 0) −(1, 2, 03) −(1, 3, 02)
Y −(1, 23, 0) (1, 3, 02) −(3, 12, 0) −(1, 2, 03) −(2, 13, 0) −(2, 3, 01)
Z (1, 2, 03) −(1, 23, 0) −(2, 13, 0) −(1, 3, 02) −(2, 3, 01) −(3, 12, 0)

We can now calculate the effect of a word such as (XYXZ )2 on the statomorphisms
and we get

(1, 2, 03) (1, 3, 02) (2, 3, 01) (1, 23, 0) (2, 13, 0) (3, 12, 0)
X −(2, 13, 0) −(3, 12, 0) (2, 3, 01) −(1, 23, 0) −(1, 2, 03) −(1, 3, 02)

YX (2, 13, 0) (2, 3, 01) −(3, 12, 0) (1, 2, 03) (1, 23, 0) −(1, 3, 02)
XYX −(1, 2, 03) (2, 3, 01) (1, 3, 02) −(2, 13, 0) −(1, 23, 0) (3, 12, 0)

XYXZ −(1, 2, 03) (2, 13, 0) (1, 23, 0) −(2, 3, 01) −(1, 3, 02) −(3, 12, 0)

(XYXZ )2 (1, 2, 03) −(1, 3, 02) −(2, 3, 01) −(1, 23, 0) −(2, 13, 0) (3, 12, 0)



20. Statomorphisms, p3

So (XYXZ )2 does not act as the identity on the statomorphisms. This certainly
suggests that (XYXZ )2 is a nonidentity element of the kernel. However, we have not
yet made clear what the group DF3 is and when an element is the identity.

Duality of ordinary vector bundles is a contravariant functor. For triple vector bundles,
X , Y , Z are contravariant functors (on suitable categories) and XY , for example, is a
covariant functor.

Defn: Two words W1 and W2 in X ,Y ,Z define the same element of DF3 if they
induce the same permutation on E1,E2,E3,E0 and if W1W−1

2 is naturally isomorphic
to the identity through statomorphisms.

Consider a word W in X ,Y ,Z . If W is in the kernel, then it is a covariant
(auto)functor on the category of triple vector bundles,

Theorem: The action of W on the set of statomorphisms is the identity if and only if
W is naturally isomorphic to the identity functor through statomorphisms.

So (XYXZ )2 6= 1. Equivalently, (XYX)Z 6= Z (XYX) . So ‘flipping’ in the XY -plane
does not commute with dualizing in the Z direction.



21. Structure of the group DF3

Write K4 for the kernel of DF3 → S4 .

We have that (XYXZ )2 6= 1 is in K4 . Likewise (YZYX)2 and (ZXZY )2 are in K4 , and
(with 1) form the Klein 4-group K4 .

So DF3 is an extension of S4 by the Klein four–group.

1→ K4 → DF3 → S4 → 1.

In particular DF3 has order 96.

Action of S4 on K4 : for (01) use X :

X(XYXZ )2X = X(XYXZ )(XYXZ )X = YXZXYXZX = (YXZX)2 = (YZXZ )2 = (ZXZY )2,

and so on. The extension is not semi-direct.

I Question: What do the (non-identity) elements in the kernel represent? They have
order 2 so are like classical duality operations (but are covariant).
However they affect only the “internal structure”. They are “covert.”

I The main consequence of the determination of DF3 may be expressed as:

In addition to the identity (XY )3 = 1 (and its conjugates), which arise
from the duality of the duals of a double vector bundle, in the triple case
there is only one further identity, namely (XYXZ )4 = 1.



22. Four-fold case

DF4 is an extension of S5 by K5 = C2 × C2 × C2 × C2 × C2 .

1→ K5 → DF4 → S5 → 1.

DF4 has order 3, 840.

DF4 has nontrivial centre C2 .

Defining relations:

For ordinary duality we have X 2 = I .

For the duality of doubles we have, as well, (XY )3 = I .

For the duality of triples we have, as well, (XYXZ )4 = I .

For n = 4 we have, as well, two unexpected words of length 24 and 32.



23. Remarks

I These groups seem unreasonably large. However neither Sn+1 nor Kn+1 is
interesting in itself; it is the extension that is significant, especially the set of
relations needed to define the group (using as generators the basic dualizations).

I This work arose from studying bracket structures on double vector bundles.

If a double vector bundle D has Lie algebroid structures on each side, then they
are compatible if and only if structures obtained from dualization, namely
D×| A→ C∗ and D×| B → C∗ , form a Lie bialgebroid over C∗ .

Th. Voronov has formulated this as a commutativity condition for homological
vector fields (that is, for two Q -manifold structures on D ).

I The groups DFn are not invariants of any one n -fold vector bundle, but rather of
the whole class of n -fold vector bundles. As far as we know, these groups have
not been studied before.
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