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1. INTRODUCTION

a) Non-SUSY case.
Need for quantum space-time symmetries → to describe co-

variantly theories with noncommutative (NC) space-time

[xµ,xν] = 0⇒ [x̂µ, x̂ν] =
i

κ2
θµν(κx̂)

where

θµν(κx̂) = θ
(0)
µν +κθ

(1)ρ
µν x̂ρ +κ2θ

(2)
µν
ρτ x̂ρx̂τ + . . .

DFR
or canonical

Lie-algebraic
deformation

quadratic
deformation

By the presence of constant tensors θ
(0)
µν , θ

(1)ρ
µν . . . the classical

Poincaré symmetry is broken

noncommutative
space-time

→ breaking of classical
relativistic invariance
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However one can find Hopf-algebraic quantum deformation
of Poincaré symmetries P3;1 =O(3,1) ⋉ T4 which keeps the non-
commutativity relation for x̂µ the same in all deformed Poincaré
frames

ĝ▷ ([x̂µ, x̂ν] −
1

κ2
θµν(κx̂)) = 0

where ĝ is the generator of deformed Poincaré-Hopf algebra H
ĝ▷ . . . is the action of generator ĝ on Hopf(algebra)
module X = (M(x̂), ⋅), determined by the coproduct

∆(ĝ) = ĝ(1) ⊗ ĝ(2)
Action ▷ given by Hopf-algebraic formula:

ĝ▷ (x ⋅ y) = (g(1)▷x)(g(2)▷ y) x,y ∈ X
Remark: If the module X is noncommutative necessarily

∆(ĝ) ≠∆T (ĝ) = ĝ(2) ⊗ ĝ(1) ← nonsymmetric
coproduct
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Important link in NC geometry:
noncommutative

space-time
←→ covariance under quantum

relativistic symmetries

Remark: The quantum covariance condition selects only some
models of NC space-time

Examples:

[x̂µ, x̂ν] = i
κ2 θ

(0)
µν ←→

quantum Poincaré algebra
obtained by canonical

twist exp( i
2
θµνPµ ∧Pν)

[x̂0, x̂i] = iκ x̂i
[x̂i, x̂j] = 0

←→
κ-deformation of Poincaré algebra

algebra - can not be
obtained by twist

Advantage of twist deformation - explicit formula for the star
multiplication ⋆ representing products of f(x̂) ⊂M(f ; ⋅)
f(x̂) ⋅ f(ŷ) Weyl mapÐÐÐÐÐÐÐ→ f(x) ⋆ f(y) = (F̄(1)▷ f(x))(F̄(2)▷ f(y))

F = F(1) ⊗F(2) - twist Ô⇒ F −1 = F̄(1) ⊗ F̄(2) (inverse twist)
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b) SUSY case.

Theories of fundamental
interactions supersymmetric

Ð→ supersymmetric extension
of quantum deformations

Lie algebra κ <∞ÐÐÐÐÐÐ→ quantum Lie algebra

↓ SUSY ↓ SUSY

Lie superalgebra
ÐÐÐÐÐÐ→κ <∞ quantum Lie superalgebra

Noncommutative superspace (the simplest chiral case)

[xµ,xν] = 0

[xµ, θα] = 0

{θα, θβ} = 0

ÐÐÐÐÐÐ→
κ <∞

[x̂µ, x̂ν] = i
κ2 θµν(κx̂,κ

1
2θ) (even)

[x̂µ, θ̂α] = i

κ3/2ψµα(κx̂,κ
1
2θ) (odd)

{θ̂α, θ̂β} = iκCαβ(κx̂,κ
1
2θ) (even)

Problem: to select noncommutative superspaces which are co-
variant under quantum supersymmetries.
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The structure of NC superspaces

(C) (B) (A)
NC covariant under

twisted SUSY deformation

NC covariant under general

Hopf-algebraic SUSY deformation

NC without covariance under some

quantum supersymmetries

Twisted
deformations

←→
infinitesimal deformations

described by classical r-matrix
satisfying classical YBE

↓ ↓
supertwist

deformations
←→

infinitesimal deformations
described by SUSY classical r-matrix

satisfying classical SUSY YBE
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For Poincaré algebra (nonSUSY case):

All twisted deformations (A) and most of nontwisted quantum
deformations were classified by providing explicite formulae for
the classical r-matrices (S. Zakrzewski, 1996)

Two problems:

i) How to extend Zakrzewski classification for Euclidean case
(O(3,1)→O(4))
ii) How to extend supersymmetrically Zakrzewski classification
and provide also Euclidean supersymmetric counterpart

Remark: Knowledge of classical Poincaré r-matrices satisfying
CYBE (infinitesimal deformation) permits to introduce the cor-
responding twist and define explicitly twisted Hopf algebra as
finite deformation (Tolstoy 2008)
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2. D=4 POINCARÉ AND EUCLIDEAN CLASSICAL
r-MATRICES

a) Poincaré and Euclidean algebras.

Poincaré Lie algebra – P (3,1) = 0(3,1) ⋉ T (3,1)
Euclidean Lie algebra – E(4) = 0(4) ⋉ T (4)

[Mµν,Mλρ] = i(ηνλMµρ − ηνρMµλ + ηµρMνλ − ηµλMνρ)
[Mµν,Pρ] = i(ηνρPµ − ηµρPν) [Pµ,Pν] = 0

where Mµν = −Mνµ and

Poincaré case: ηµν ≡ ηPµν = (1,−1,−1,−1)

Euclidean case: ηµν ≡ ηEµν = (−1,−1,−1,−1)
Both algebras are real, with the reality conditions

M+
µν =Mµν P +µ = Pµ
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Both are two real forms of complex Lie algebra

IO(4 ∶C) =O(4;C) ⋉ T (4;C)
In O(3) basis

Mi = εijkMjk Ni =M0i (i = 1,2,3)
P (3,1) and E(4) take the form

[Mi,Mj] = iεijkMk [Mi,Pj] = iεijkPk
[Mi,Nj] = iεijkNk [Ni,Pj] = −iδijP0

[Ni,Nj] = ζ iεijkMk [Ni,P0] = ζ iPi
[Pµ,Pν] = 0 [Mi,P0] = 0

where ζ = −1 for Poincaré and ζ = 1 for Euclidean case.
One gets ζ = −1→ ζ = 1 if we substitute (Euclideization):

M →Mi Ni → iNi Pi → Pi P0 → iP0
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Both O(3,1) and O(4) can be written in the same way in
canonical basis (e±,h, e′±,h

′) of O(4;C) =OL(3;C)⊕OR(3;C)

[h,e±] = ±e± [e+, e−] = 2h

[h,e′±] = ±e′± [h′, e−] = ±e′± [e±, e′±] = ±2h′

[h′, e′±] = ∓e± [e′+, e′−] = −2h
where

h = χN3 h′ = iM3

e± = (χN1 ± iM2) e′± = (iM1 ∓χN2)
and

χ = −i – for Lorentz algebra

χ = 1 – for Euclidean algebra

The difference appears only in the reality conditions
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O(3,1) ∶ e+± = −e± (e′±)+ = −e′±, h+ = −h, (h′)+ = −h′

O(4) ∶ e+± = e∓ (e′±)+ = −e′∓, h+ = h, (h′)+ = −h′

We obtain the same form of Poincaré and Euclidean algebra
if we use P̃i = Pi, P̃0 = iχP0, where we recall that χ = −i for
Poincaré and χ = 1 for Euclidean case. If

P̃1, P̃2, P̃± = P̃0 ± P̃3

one obtains P̃ +
1
= P̃1, P̃ +

2
= P̃2 and

P̃ +± = P̃± (Lorentz) P̃ +± = P̃∓ (Euclidean)

i.e. in Euclidean case P̃± are not Hermitean (complex)

Important: because Zakrzewski derivation used canonical ba-
sis valid for O(4;C) ⋉ T (4;C), the difference between Poincaré
and Euclidean r-matrices is manifested only in different reality
conditions.
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c b a N
γh′ ∧h 0 αP+ ∧P− + α̃P1 ∧P2 1

γe′+ ∧ e+ β1bP+
+β2P+ ∧h′ 0 2

β1bP+
αP+ ∧P1 3

γβ1(P1 ∧ e+ +P2 ∧ e′+) P+ ∧ (α1P1+α2P2) − γβ2
1
P1 ∧P2 4

γ(h ∧ e+
−h′ ∧ e′+) 0 0 5

+γ1e′+ ∧ e+
γh ∧ e+ β1bP2

+β2P2 ∧ e+ 0 6

0 β1bP+
+β2P+ ∧h′ 0 7

β1bP+
+β2P+ ∧ e+ 0 8

P1 ∧ (β1e+ +β2e′+)+ αP+ ∧P2 9

β1P+ ∧ (h +σe+), σ = 0,±1
β1(P1 ∧ e′+ +P+ ∧ e+) α1P− ∧P1 +α2P+ ∧P2 10

β1P2 ∧ e+ α1P+ ∧P1 +α2P− ∧P2 11

β1P+ ∧ e+ P−∧ (αP++α1P1+α2P2)+ α̃P+∧P2 12

β1P0 ∧h′ α1P0 ∧P3 +α2P1 ∧P2 13

β1P3 ∧h′ α1P0 ∧P3 +α2P1 ∧P2 14

β1P+ ∧h′ α1P0 ∧P3 +α2P1 ∧P2 15

β1P1 ∧h α1P0 ∧P3 +α2P1 ∧P2 16

β1P+ ∧h αP1 ∧P2 +α1P+ ∧P1 17

P+ ∧ (β1h +β2h′) α1P1 ∧P2 18

0 α1P1 ∧P+ 19

α1P1 ∧P2 20

α1P0 ∧P3 +α2P1 ∧P2 21

Classical
D=4 Poincaré

r-matrices

(Zakrzewski Table)
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List of real classical r-matrices for D=4 Euclidean algebra:

Eight real classical r-matrices which do not contain complex
generators P+ (except P+ ∧P−) and e±, e′±:

1. r1 = γM3 ∧N3 +α(P+ ∧P− +P1 ∧P2) (1)
2. r2 = β1P0 ∧M3 +α1P0 ∧P3 +α2P1 ∧P2 (13)
3. r3 = β2P3 ∧M3 +α1P0 ∧P3 +α2P1 ∧P2 (14)
4. r4 = β3(P0 +P3) ∧M3 +α1P0 ∧P3 +α2P1 ∧P2 (15)
5. r5 = β4(P0 +P3) ∧N3 +α1P0 ∧P3 +α2P1 ∧P2 (17)
6. r6 = β5P1 ∧N3 +α1P0 ∧P3 +α2P1 ∧P2 (16)
7. r7 = α2P1 ∧P2 (20)
8. r8 = α1(P+ ∧P− +P1 ∧P2) (21)

The r-matrices do not contain M1,M2 and N1,N2 - enters
only Abelian subalgebra O(2)⊕O(2) of OL(3)⊕OR(3).

13/21



3. D=4 POINCARÉ AND EUCLIDEAN SUPERALGEBRAS
Let us write the complexified superalgebra with bosonic sector
O(4;C) ⋉ T 4(C) where O(4,C) =OL(3;C)⊕OR(3;C) and spino-
rial covering

O(4,C) = SlL(2;C)⊕SlR(2;C)
We introduce left and right supercharges (α = 1,2)

SlL(2;C) ∶ Qα;, Q̄
α̇
; SlR(2;C) ∶ Qα̇; ,Q;α

with bilinear fermionic relations (Q+α; = Q̄α̇;, (Q;α̇)+ = Q̄;
α)

{Qα;, Q̄
β̇
; } = 2(σEµ )α;

β̇Pµ σE
µ = (σi, iI2)

{Qα;,Q;β} = {Qα̇; ,Q;
β̇} = 0 Pµ − complex

Reality constraints for supercharges
a) real Poincaré algebra → N=1 superPoincaré algebra:

Qα; ≡Qα Q;α̇ =Q+α ↔ O(3,1) =O(3,C)⊕O(3,C)
Pi = P+

i
P0 = −P+0
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One gets (Pµ = (Pi, iP0) – real Minkowski fourmomentum)

{Qα,Q+
β̇
} = 2(σµ)αβ̇P

µ

{Qα,Qβ} = {Q̄α̇, Q̄β̇} = 0

σµ = (σi, I2)
⇑

Minkowski choice

and Lorentz covariance relations

[Mµν,Qα] = −(σµν)αβQβ [Mµν, Q̄α̇] = Q̄β̇(σ̄µν)α
β̇

where

σµν =
1

4
σ[µ σ̄ν] σ̄µν =

1

4
σ̄[µσν]

b) real Euclidean algebra → holomorphic and antiholomorhic
Euclidean superalgebras
Complex Qα; and Q;α remain independent.
For real Euclidean algebra O(4;C)→O(4;R) =OL(3)⊕OR(3)
and for spinors SlL(2;C)⊕SlR(2;C)→ SUL(2)⊕SUR(2)
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For real Euclidean superalgebra the theory can be made co-
variant under the replacement which does not violate SUL(2)
and SUR(2) covariance

Q
#
α; = Q̄

α̇; ≡ εα̇β̇(Qβ;)+ Q
#
;α = Q̄

;α̇ ≡ εα̇β̇(Q;β)+

Due to (εαβ)2 = −1 it is antilinear antiisomorphism of fourth
order, so-called pseudoconjugation

(Q̂#)# = −1 → Q
#
α; =Qα; is inconsistent

The complexified superalgebra can be written in two forms:
holomorphic and antiholomorphic, linked by pseudoconjuga-
tion: (PEµ = Pµ = P+µ – real Euclidean four-momenta)

{Qα;, Q̄
β̇
; } = 2(σµ

E
)α;

β̇PEµ = {(Qα;)#, (Q̄;
β̇)#} ≡ {Q̄α̇;,Q

;
β
}

↗
hol.

↑
reality condition

↖
antihol.

{Qα;,Qβ;} = {(Qα;)#, (Qβ;)#} ≡ {Q̄α̇;, Q̄β̇;} = 0
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where the reality of Euclidean fourmomenta PµE follows from

(σµ
E
)α;

β̇ = (σi, iE) ⇒ σ
µ α̇;
E β

= −εα̇γ̇ [(σµ
E
)γ̇;
δ]
⋆
εδβ

⇑
Euclidean

We have two types of complex N=1 Euclidean superalgebras:

1) holomorphic: (Qα;, Q̄
;β̇

)

2) antiholomorphic: (Qα;, Q̄
β̇;

)

↖
↙

linked by

pseudoconjugation #

N=1 holomorphic ⊕N=1 antiholomorphic ⇒ selfconjugate N=2 real

Euclidean superalgebra:

Qiα;,Q
i
;α, (Qiα;)+ = Q̄

α̇;
i
, (Qi;α)+ = Q̄

;α̇
i

i = 1,2

Eight complex supercharges which due to SU(2)-Majorana
condition are constrained to eight independent real supercharges

(Qiα;)# = εijQ
j
α; ⇔ Qiα; = εijεαβ(Q

j
α;)
+
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4. D=4 POINCARÉ AND EUCLIDEAN CLASSICAL
SUPERSYMMETRIC r-MATRICES

Non SUSY classical r-matrices (L ≡Mµν,P ≡ Pµ)

r
NONSUSY

P
= rLL + rLP + rPP

rLL ∈ L ∧L rLP ∈ L ∧P rPP ∈ P ∧P
General N=1 SUSY Poincaré r-matrices (Q ≡Qα, Q̄ ≡ Q̄α̇):

r
SUSY

P
= rNONSUSY + r

S

QQ
+ rS

QQ̄
+ rS

Q̄Q̄

It appears that the reality condition is satisfied only by the

cases described by r
S

QQ̄
(Qα ∧ Q̄β̇ ≡Qα ⊗ Q̄β̇ + Q̄β̇ ⊗Qα)

r
S

QQ̄
= rαβQα ∧ Q̄β̇ ⇒ rαβ = (rβα)⋆

Seven out of 21 Poincaré r-matrices can be supersymmetri-

cally extended (only one case contains r
S

QQ
and r

S

Q̄Q̄
)
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List of seven supersymmetric classical Poincaré r-matrices:
satisfying Poincaré reality condition

N=2 ∶ r2 = γe′+ ∧ e+ +β1bP+ +β2P+ ∧h′ +β1Q̄1̇ ∧Q1

N=3 ∶ r3 = β1bP+ +αP+ ∧P1 +β1Q̄1̇ ∧Q1

N=6 ∶ r6 = γh ∧ e+ +β1bP2
+β2P2 ∧ e+ + iβ1(Q1 + Q̄1̇ ∧ (Q2 − Q̄2̇)

N=7 ∶ r7 = β1bP+ +β2P+ ∧h′ +β1Q̄1̇ ∧Q1

N=8 ∶ r8 = β1bP+ +β2P+ ∧ e+ +β1Q̄1̇ ∧Q1

N=9 ∶ r9 = P1 ∧ (β1e+ +β2e
′
+) +β1P+ ∧ (h ± e+)+

αP+ ∧P2 +β1Q̄1̇ ∧Q1

N=17 ∶ r17 = β1P+ ∧h +α2P1 ∧P2 +α1P+ ∧P1 +β1Q̄1̇ ∧Q1
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N=1 Euclidean SUSY r-matrices (Q
L

α =Qα;, Q̄
R = Q̄;α̇)

r
SUSY

E
= rNONSUSY

E
+ rS

QLQL
+ rS

QLQ̄R
+ rS

Q̄RQ̄R

⎛
⎝

holomorphic
N=1 SUSY
or N=(1,0)

⎞
⎠

All three possible SUSY terms are complex.
We have only 8 cases describing Euclidean classical r-matrices
- for all these cases (N=1, 13–16, 19–21 in Zakrzewski table) do
exist the superextension satisfying classical SUSY YB equation.

All these deformations are described by r
S

QLQL
, i.e. describe

N=(1,0) SUSY deformations or chiral SUSY deformations (Q̄
R

does not contribute). We have the following formulae:

N = 1, 13 − 16

N = 19 − 21

r
S

QLQL
= ηQ2; ∧Q1; = ηQ1; ∧Q;2

r
S

QLQL
= ηαβQα; ∧Qβ;

Superextension
← of canonical DFR

deformation

Remark: For complex Euclidean SUSY r-matrices only in one
out of 21 cases (N=5) we do not have supersymmetric extensions
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5. FINAL REMARKS

a) For N=1 Euclidean SUSY N=1
2 complex deformations of su-

persymmetry corresponds to Seiberg’s modification of SUSY
obtained by chiral deformation of Grassmann algebra into
Clifford algebra.

b) For N=2 selfdual Euclidean SUSY one can add to chiral N=1
2

deformation its complex conjugation → real deformation

CαβQα; ∧Qβ; → Cαβ(Qα; ∧Qβ; + Q̄α̇; ∧ Q̄β̇;)

Because {Qα;,Qβ;} = 0⇒ classical SUSY YBE is valid.

c) The classification is not complete because does not contain all
solutions of modified SUSY YBE, which can not be described
as supersymmetric twist deformations.
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