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1. INTRODUCTION

a) Non-SUSY case.

Need for quantum space-time symmetries - to describe co-
variantly theories with noncommutative (NC) space-time

A A z A
[33“,:13,/] - O = [w“, my] - Eeuy(mw)

where
A 0 1)p . 2 A A
Ouv(KE) = Hl(w) + &HLJPmp + K2 HLJPTmme +...
DFR Lie-algebraic quadratic
or canonical deformation deformation
0 1 .
By the presence of constant tensors HEW) ,Hl(w)p ... the classical

Poincaré symmetry is broken

noncommutative N breaking of classical
space-time relativistic invariance
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However one can find Hopf-algebraic quantum deformation
of Poincaré symmetries P31 = O(3,1) x Ty which keeps the non-
commutativity relation for &, the same in all deformed Poincaré
frames

. . . 1 .
g > ([CIZ“, CUV] - zgﬂy(hﬂa})) = O

where g is the generator of deformed Poincaré-Hopf algebra H
g D> ... is the action of generator g on Hopf(algebra)
module X = (M(z),-), determined by the coproduct

A(G) =9(1)®9(2)
Action > given by Hopf-algebraic formula:
go>(x-y)=(9n)>x)(g@e >y) z,yeX
Remark: If the module X is noncommutative necessarily

A(g) #AT(9) =9(2)®d(1) <

nonsymmetric
coproduct
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Important link in NC geometry:

noncommutative covariance under quantum
space-time relativistic symmetries

Remark: The quantum covariance condition selects only some
models of NC space-time

Examples:
. (0) quantum Poincaré algebra
E: L Ty] =50, <« obtained by canonical

2 Y uv :
: twist exp(30* P, A P,)
[5%03 3] = i 3 r-deformation of Poincaré algebra
I K <« algebra - can not be
[Z5, L 4 ]=0 obtained by twist

Advantage of twist deformation - explicit formula for the star
multiplication * representing products of f(&) c M(f;-)

f(&)-F(§) _weyimap  f(x) * f(y) = (F1) > f(2))(F(2) > f(y))
F = F(l) &® F(Z) - twist = F 1= F(l) &® F(Z) (inverse tWiSt)
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b) SUSY case.

Theories of fundamental . supersymmetric extension
interactions supersymmetric of quantum deformations
Lie algebra K <00 | quantum Lie algebra
} SUSY J SUSY
Lie superalgebra K < 00 ’ quantum Lie superalgebra

Noncommutative superspace (the simplest chiral case)

S o - ; 1
[z, 2] =0 &y Lo = LH,W(K@ k20) (even)
[€4,00] =0 "K<oo &1,00] = 3/2 Yya(KT, n29) (odd)
10a; 65} = 0 (Ba, 03} = & C oyl K20) (even)

Problem: to select noncommutative superspaces which are co-
variant under quantum supersymmetries.
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The structure of NC superspaces

C B A NC covariant under
( ) ( ) ( ) twisted SUS? deformation
NC covariant under general
Hopf-algebraic SUSY deformation
NC without covariance under some
quantum supersymmetries

infinitesimal deformations
> described by classical r-matrix
satisfying classical YBE

! !

infinitesimal deformations
<—> described by SUSY classical r-matrix
satistfying classical SUSY YBE

Twisted
deformations

supertwist
deformations
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For Poincaré algebra (nonSUSY case):

All twisted deformations (A) and most of nontwisted quantum
deformations were classified by providing explicite formulae for
the classical r-matrices (S. Zakrzewski, 1996)

Two problems:
i) How to extend Zakrzewski classification for Euclidean case

(0(3,1) > O(4))

ii) How to extend supersymmetrically Zakrzewski classification
and provide also Euclidean supersymmetric counterpart

Remark: Knowledge of classical Poincaré r-matrices satisfying
CYBE (infinitesimal deformation) permits to introduce the cor-
responding twist and define explicitly twisted Hopf algebra as
finite deformation (Tolstoy 2008)
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2. D=4 POINCARE AND EUCLIDEAN CLASSICAL
r-MATRICES

a) Poincaré and Fuclidean algebras.

Poincaré Lie algebra — P(3,1) =0(3,1)xT'(3,1)
Euclidean Lie algebra — E(4) =0(4)xT'(4)

(M0, M)\p] = t(MuAMpup - NMupMyx + MupMy ) - "hL)\Mup)
[Myw, Ppl = i(Mvp Py - nppPuv) [Pps Pu]=0

where M, = -M,, and

Poincaré case: 1y = 775,/ =(1,-1,-1,-1)

Euclidean case: 7y = 775,/ =(-1,-1,-1,-1)

Both algebras are real, with the reality conditions
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Both are two real forms of complex Lie algebra

I0(4:C)=0(4;C)=xT(4;C)

In O(3) basis

M; = €551 Mg N; = My,
P(3,1) and E(4) take the form

M;, M| =ie; 5, My,
M;, N;| =1ie; i N
N;, Nj] = (g My,

:PH,PV]=O

(i=1,2,3)

M, Pj| =ie; 1 Py,

N;, Pj] =-id;; Py
N;, Pg] =¢i P
(M;, Pyl =0

where (¢ = -1 for Poincaré and ¢ =1 for Euclidean case.
One gets ( =-1 - ¢ =1 if we substitute (Euclideization):
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Both O(3,1) and O(4) can be written in the same way in
canonical basis (es, h,e,,h’) of O(4;C) =0,(3;C) ® O,(3;C)

h,e.] =ze. ey, e_] =2h
h,e]==zel h',e_] = zel [es, el ] = +2h/
h',e! ] =ve. e, e ]=-2h
where
h = x N B = iMs

es = (xIN1 £1M>) el = (M7 ¥ xN2)
and

X = -t — for Lorentz algebra
X =1 — for Euclidean algebra

The difference appears only in the reality conditions
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- _e, (e )t =-¢ h* = -h, (h/)* = -h/
= ex (el )* = -é! h* = h, (h/)* = -h/

We obtain the same form of Poincaré and Euclidean algebra
if we use P;=P;, Py=1xFPy, where we recall that x =-2 for
Poincaré and x =1 for Euclidean case. If

P, Py, P, = Py P3
one obtains 151+ = Py, 132+ = P, and
P =P, (Lorentz) P! =P; (Euclidean)
i.e. in Euclidean case P, are not Hermitean (complex)

Important: because Zakrzewski derivation used canonical ba-
sis valid for O(4;C) xT'(4;C), the difference between Poincaré
and Euclidean r-matrices is manifested only in different reality
conditions.
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c b a N
~h' A h 0 oP.ANP.+aP; APy 1
e, ne, E)’le+ + B2 P, A h' 0 2

,Ble aP. A Py 3
YB1(Pire,+ Pyae) P, A (cy Pi+ asPy) -3 P A Py 4
~Y(hAe,
-h' A €) 0 0 5
+v1€, ne,
~Yh A e, Blbpz +B.P ne, 0 6
0 Biby, +B2P, AR 0 7
Ble + B3P, A e, 0 8
Py A (Bres + B2€)) + oP,. APs 9
B1P,A(h+oe,), o =0,+1
Bi(Pire. + P, re,) o1 P APy +0oP, AP, 10
B1P ne, o1 P, APy +0P. AP 11
B1P, re, PA(aP.+a1 Pi+asP)+ aP APy, 12
B1Py AR’ o1 PoAPs;+ oy Py AP 13
B1P3 AR’ o1 PoAPs;+ oy Py AP, 14
B1P. AR’ o1 PyAPs+oPy APy 15
Gi1PiAh o1 PynPs+oaPy APy 16
G1P, Ah oaPiAPy+oq P, APy 17
P, A (B1h + B2h') o1 P APy 18
0 o1 Py A P, 19
041P1 A Pg 20
o1 Pyn P+ osPy APy 21

Classical
D=4 Poincaré
r-matrices

(Zakrzewski Table)
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List of real classical r-matrices for D=4 Euclidean algebra:

Eight real classical r-matrices which do not contain complex

generators P, (except P, A P_) and ey,e.:

1. r1 =~vMgA N3+ a(PyAP-+ Py A Py) (1)

2. ro=031PygAMg+a1PyAr P3+oasP; A Ps (13)
3. rg = B9P3A Mg+ a1PyA P3+aoPy APy (14)
4. rq4 = G3(Py+ P3) A M3+ a1 Pya P3+asPy APy (15)
5. ry = B4(Py+ P3) A N3+ a1 PyA P3+asPy A Ps (17)
6. re = O5P1 A N3+a1PygA P3+oasPy APy (16)
7. e = g Py A Py (20)
8. rg = a1(Py A P-+ Py A Py) (21)

The r-matrices do not contain My, Mo and NNy, N9 - enters
only Abelian subalgebra O(2) ® O(2) of O,(3) ® O,(3).
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3. D=4 POINCARE AND EUCLIDEAN SUPERALGEBRAS
Let us write the complexified superalgebra with bosonic sector
O(4;C) x T4(C) where O(4,C) = O1(3;C) ® Or(3;C) and spino-

rial covering

0(4,0) = SlL(Q;C) @SlR(Q;C)
We introduce left and right supercharges (a=1,2)
Slp(2;C): Qa;s Qof Slr(2;C):  QF,Q;a

with bilinear fermionic relations (Qa; = Qd;‘, (Q“i“)+ = Q&)

{Qa;aQ;B} = 2(0'5)&;693“ opt = (0;,112)
{Qa;7 Q;B} = {Q;da Q,ﬁ} =0 PH — complex

Reality constraints for supercharges
a) real Poincaré algebra — N=1 superPoincaré algebra:

Qa; = Qa Q;(’x =Qn < 0(3,1)=0(3,C)20(3,C)
Pi=Pt  Po=-Pt
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One gets (P, = (P;,i1Pg) — real Minkowski fourmomentum)
(Qay @3} = 2Aop) 3 PP ot = (04, I5)

2 1
{Qaa Q,B} = {Qda QB} =0 Minkowski choice
and Lorentz covariance relations
[Mqua] = _(O',Lu/)aﬁQﬁ [Mqud] = QB(aw/)aﬁ

where
1 1

Tpv =7 9p? O] Opv = 1 OlpOv]

b) real Euclidean algebra — holomorphic and antiholomorhic
Euclidean superalgebras

Complex Qq; and Q.o remain independent.

For real Euclidean algebra O(4;C) - O(4;R) =0 (3) ® Or(3)
and for spinors Sl (2;C) @ Slg(2;C) - SUL(2) @ SUR(2)
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For real Euclidean superalgebra the theory can be made co-
variant under the replacement which does not violate SU, (2)
and SU,(2) covariance

QL =Q%=c%Qp)"  QL=@%=*Qyp)
Due to (f:»‘oéﬂ)2 = -1 it is antilinear antiisomorphism of fourth
order, so-called pseudoconjugation

(Q#)# =-1 - Qﬁ; = QQq; 1s Inconsistent

The complexified superalgebra can be written in two forms:
holomorphic and antiholomorphic, linked by pseudoconjuga-
tion: (PﬁE =P, =P, — real Euclidean four-momenta)

(Qas Q) = 2(6%)a? PE = {(Qay)#, (QP)#) = {Q%, Q1)

{Qas» Qa.} = {(Qas)#, (Qp,)#} = {Q%,Q5} = 0
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where the reality of Euclidean fourmomenta PME follows from

(a%)a;ﬁ. =(o;tE) = 0'% d;ﬁ = —gY [(0'%)'?;5]* €613
Eucl?dean
We have two types of complex N=1 Euclidean superalgebras:
1) holomorphic: (Qa;,Q;_ﬁ) X linked by

2) antiholomorphic: (Q a;,Qﬁé) ¥ pseudoconjugation #

N=1 holomorphic ® N=1 antiholomorphic = seliconjugate N=2 real

Euclidean superalgebra:

Lo Qs (QL) =QY, (Ql)'=Q% =12

2,

Eight complex supercharges which due to SU (2)-Majorana
condition are constrained to eight independent real supercharges

(Qi)* =;;Q). = Q. =ce,3(Ql.)*

17/21



4. D=4 POINCARE AND EUCLIDEAN CLASSICAL
SUPERSYMMETRIC »-MATRICES

Non SUSY classical r-matrices (L = M, P = P,)

NONSUSY

Ty =Tt Tep " Tpp

i € LAL rip€LAP Tpp € PAP
General N=1 SUSY Poincaré r-matrices (Q = Qqa,Q = Q4):

+7 +7

SUSY S S S
P = TNnonsusy *Tgq * T06 + T 60

It appears that the reality condition is satisfied only by the
cases described by TZQ (Qa A QB =Qa® QB + Qﬂ ® Q)

S =~ *
T0o = rPQa A QB = 7P = (pPe)

Seven out of 21 Poincaré r-matrices can be supersymmetri-
S

QQ

r

cally extended (only one case contains r_ . and 'rf_?@)
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List of seven supersymmetric classical Poincaré r-matrices:
satisfying Poincaré reality condition

N=2:
N=3:
N=6:
N=T:
N=8:
N=9:

N=17:

ro = ’ye:_/\e++,31bp++,62P+/\h,+/31Qi AQ1
r3 = B1bp, + P AP+ 31Q; A Q1
r =vhnre,+Bibp,+BaPanre,+iB1(Q1+Q; A (Q2-Qy)
r7 = Bibp, +B2P: AR/ +81Q; A Q1
rg = B1bp, + BoPines +B51Q1 A Q1
rg = Pya(Bies+B2e))+B1Pin(hzes)+
aP, A Py+31Q; AQq
r17 = B1PrAh+aaPi A Py+ oy Pon P+ 31Q4 A Qq
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N=1 Euclidean SUSY 7r-matrices (QZ = Qa;, QR = Q;d)

SUSY NONSUSY S S S llirolomsogj%lr;i(c
(s =7 +7 +r __+Tr_ =1
E E QLlol QLR  QRQR or N=(1,0)

All three possible SUSY terms are complex.
We have only 8 cases describing Euclidean classical r-matrices

- for all these cases (N=1, 13-16, 19-21 in Zakrzewski table) do

exist the superextension satistfying classical SUSY YB equation.
S

Qlq
N=(1,0) SUSY deformations or chiral SUSY deformations (QR
does not contribute). We have the following formulae:

S
N=1,13-16 7 ; ; =NQ2: A Q1 =1NQ1; A Q.2

All these deformations are described by r ;o L.e. describe

S Superextension
TQLQL = na’BQa; A QB, < of canonical DFR

deformation
Remark: For complex Euclidean SUSY r-matrices only in one

out of 21 cases (N=5) we do not have supersymmetric extensions

N =19-21
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5. FINAL REMARKS

a) For N=1 Euclidean SUSY N:% complex deformations of su-
persymmetry corresponds to Seiberg’s modification of SUSY

obtained by chiral deformation of Grassmann algebra into
Clifford algebra.

b) For N=2 selfdual Euclidean SUSY one can add to chiral N:%
deformation its complex conjugation — real deformation

CPQa; A Qp. ~ CF(Qa;rQp, + Q% A Q%)
Because {Qq;, @7} =0= classical SUSY YBE is valid.

c) The classification is not complete because does not contain all
solutions of modified SUSY YBE, which can not be described
as supersymmetric twist deformations.
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