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Introduction Foliations and Laplacians

1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the
form Ω = U× T , where U ⊆ Rp and T ⊆ Rq.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t),h(t)).
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Introduction Foliations and Laplacians

1.1 Laplacians

Each leaf is a complete Riemannian manifold:

Laplacian ∆L acting on L2(L)

The family of leafwise Laplacians:

Laplacian ∆M acting on L2(M)
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Introduction Statement of 3 theorems

Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

∆M and ∆L are essentially self-adjoint.

Also true (and more interesting)

for ∆M + f,∆L + f where f is a smooth function on M.

more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

∆M not elliptic (as an operator on M).

L not compact.
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Introduction Statement of 3 theorems

Spectrum of the Laplacian

Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, ∆M and ∆L have the same spec-
trum.

Theorem 3 (Connes)

In many cases, one can predict the possible gaps in the spectrum.

The same is true for all leafwise elliptic operators.
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How to prove these theorems The C∗-algebra of a foliation

2.1 The C∗-algebra

Main tool: The foliation C∗-algebra C∗(M, F).

Its construction: Completion of a convolution algebra

Kernels k(x,y): k1 ∗ k2 =
∫
k1(x, z)k2(z,y)dz

Case of a single leaf:

Take any (x,y) ∈M×M C∗(M, F) = K(L2(M))

a product, a fibre bundle p :M→ B:

Take (x,y) ∈M×M s.t. p(x) = p(y) C∗(M, F) = C(B)⊗K

General case: (x,y) ∈M×M s.t. x,y in same leaf L;

γ path on L connecting x,y; hγ path holonomy depends only on
homotopy class of γ
H(F) = {(x, germ(hγ),y)} Holonomy groupoid.
topology, manifold structure ⇒ H(F) is a Lie groupoid (not always
Hausdorff).

C∗(M, F) = continuous functions on ”space of leaves M/F”.
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How to prove these theorems Pseudodifferential calculus

2.2 Pseudodifferential operators (Connes)
The Lie algebra of vector fields tangent to the foliation acts by unbounded
multipliers on C∞

c (G). The algebra generated is the algebra of differential
operators.

Using Fourier transform one can write a differential operator P (acting by
left multiplication on f ∈ C∞

c (G)) as:

(Pf)(x,y) =
∫
exp(i〈φ(x, z), ξ〉)α(x, ξ)χ(x, z)f(z,y)dξdz

Where

φ is the phase: through a local diffeomorphism defined on an open
subset Ω̃ ' U×U× T ⊂ G (where Ω = U× T is a foliation chart).
φ(x, z) = x− z ∈ Fx;

χ is the cut-off function: χ smooth, χ(x, x) = 1 on (a compact subset
of) Ω, χ(x, z) = 0 for (x, z) /∈ Ω̃;

α ∈ C∞(F∗) is a polynomial on ξ. It is called the symbol of P.
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How to prove these theorems Pseudodifferential calculus

More general symbols

We can make sense of an expression like that for much more general
symbols, in particular poly-homogeneous ones:

α(u, ξ) ∼
∑
k∈N

αm−k(u, ξ)

where αj homogeneous of degree j (outside a neighborhood of M ⊂ F∗).

m is called the order of α and the associated operator;

αm is the principal symbol.

Proposition (Connes)

Negative order pseudodifferential operators ∈ C∗(M, F)

Zero order pseudodifferential operators: multipliers of C∗(M, F).
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How to prove these theorems Pseudodifferential calculus

Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact
sequence of C∗-algebras:

0→ C∗(M, F)→ Ψ∗(M, F)→ C(SF∗)→ 0

Theorem (Connes, Kordyukov, Vassout)

Elliptic operators of positive order are regular unbounded multipliers (in the
sense of Baaj-Woronowicz: graph(D)⊕ graph(D)⊥ is dense).
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How to prove these theorems Proofs

2.3 Proof of theorems 1 and 2
L2(M) and L2(L): representations of the foliation C∗-algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

image of the adjoint = adjoint of the image

Whence theorem 1.

Proposition

Every injective morphism of C∗-algebras is isometric and isospectral.

Proposition (Fack-Skandalis)

If the foliation is minimal (i.e. all leaves are dense) then the foliation C∗-
algebra is simple.

Theorem 2 follows.
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How to prove these theorems Proofs

Examples for Theorem 3 (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the ”ax+ b” group act on a compact manifold M.
e.g. M = SL(2,R)/Γ where Γ discrete co-compact group.
Leaves = orbits of the ”x+ b” group (assume it is minimal).

The spectrum of the Laplacian is an interval [m,+∞)

Proof

gaps in the spectrum −→ projections in C∗(M, F).

∃ invariant measure by ax+ b =⇒ trace on C∗(M, F) faithful since
C∗(M, F) simple (Fack-Skandalis).

The ”ax” subgroup −→ action of R∗+ which scales the trace.

Image of K0 countable subgroup of R, invariant under R∗+ action.
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How to prove these theorems Proofs

Examples for Theorem 3

Application:

M = SL(2,R)/Γ as before; injection ι : R→M

ι(R): generic leaf for action of matrices

(
1 0
t 1

)
, t ∈ R

foliation is minimal, C∗-algebra has no non-trivial projections

whence: connected spectrum of operators on L2(R) of the form

−
d2

dx2
+ V

where V = f ◦ i, for f: continuous (positive) function.

Similarly, Kronecker flow: Image of the trace Z+ θZ

Can be a Cantor type set
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The singular case

Frobenius...

Remark

∆ only depends on the bundle F ⊂ TM of vector fields tangent to the leaf.

Of course! Frobenius theorem...

Vectors tangent to the leaves: Subbundle F of the tangent bundle.

It is an integrable subbundle: If X and Y are vector fields tangent to F then
Lie bracket [X, Y] is tangent to F.

Conversely

Frobenius Theorem

Every integrable subbundle of the tangent bundle corresponds to a foliation.
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The singular case Almost regular foliations

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective C∞(M)-modules.

E←→ C∞(M;E)

Debord’s setting

A: finitely generated projective sub-module of C∞(M; TM), stable under
brackets.
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The singular case Almost regular foliations

Almost injective algebroids II

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

C∗-algebra (Renault)

pseudodifferential calculus (Connes, Monthubert-Pierrot,
Nistor-Weinstein-Xu)

Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian

Theorems 1 and 2: Exactly same proof

Theorem 3: No gaps for a manifold with conic singularities obtained
using a finite covolume subgroup of SL(2,R)

Baum-Connes predicts the K-theory and is known to hold in many cases...
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The singular case Stefan-Sussmann foliations

3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module F of C∞(M; TM),
stable under brackets.

No longer projective. The fiber F/IxF: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves

Examples

1 R foliated by 3 leaves: (−∞, 0), {0}, (0,+∞).
F generated by xn ∂∂x . Different foliation for every n.

2 R2 foliated by 2 leaves: {0} and R2 \ {0}.
No obvious best choice. F given by the action of a Lie group

GL(2,R),SL(2,R),C∗
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Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:

a holonomy groupoid. Extremely singular...

The foliation C∗-algebra (and its representation theory)

The cotangent ”bundle”: Not a bundle since dimension of fibres not
constant. But F∗: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)
1 Exact sequence of zero-order operators
2 Elliptic operators of positive order are regular unbounded multipliers

And also

Analytic index (element of KK(C0(F
∗);C∗(M,F)))

tangent groupoid + defines same KK element.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the singular caseBialoweiza, June 2012 18 / 25



Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:

a holonomy groupoid. Extremely singular...

The foliation C∗-algebra (and its representation theory)

The cotangent ”bundle”: Not a bundle since dimension of fibres not
constant. But F∗: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)
1 Exact sequence of zero-order operators
2 Elliptic operators of positive order are regular unbounded multipliers

And also

Analytic index (element of KK(C0(F
∗);C∗(M,F)))

tangent groupoid + defines same KK element.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the singular caseBialoweiza, June 2012 18 / 25



Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:

a holonomy groupoid. Extremely singular...

The foliation C∗-algebra (and its representation theory)

The cotangent ”bundle”: Not a bundle since dimension of fibres not
constant. But F∗: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)
1 Exact sequence of zero-order operators
2 Elliptic operators of positive order are regular unbounded multipliers

And also

Analytic index (element of KK(C0(F
∗);C∗(M,F)))

tangent groupoid + defines same KK element.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the singular caseBialoweiza, June 2012 18 / 25



Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:

a holonomy groupoid. Extremely singular...

The foliation C∗-algebra (and its representation theory)

The cotangent ”bundle”: Not a bundle since dimension of fibres not
constant. But F∗: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)
1 Exact sequence of zero-order operators
2 Elliptic operators of positive order are regular unbounded multipliers

And also

Analytic index (element of KK(C0(F
∗);C∗(M,F)))

tangent groupoid + defines same KK element.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the singular caseBialoweiza, June 2012 18 / 25



Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:

a holonomy groupoid. Extremely singular...

The foliation C∗-algebra (and its representation theory)

The cotangent ”bundle”: Not a bundle since dimension of fibres not
constant. But F∗: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)
1 Exact sequence of zero-order operators
2 Elliptic operators of positive order are regular unbounded multipliers

And also

Analytic index (element of KK(C0(F
∗);C∗(M,F)))

tangent groupoid + defines same KK element.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the singular caseBialoweiza, June 2012 18 / 25



Generalizations: Singular foliations

Holonomy transformations I: Regular case

F sections of F involutive subbundle of TM.

γ : [0, 1]→M path on a leaf, Sx,Sy transversals at x = γ(0),y = γ(1)

For any t, extend d
ds |s=t γ(s) to a time-dependent v.f Zt ∈ F

Define Γ : Sx × [0, 1]→M following the flow of Zt on points of Sx.
(Assume Γ(q, 1) ⊆ Sy).

Define holonomy of γ the germ at x of

holγ : Sx → Sy q 7→ Γ(q, 1)

Does not depend on choice of Zt. Get maps

{homotopy classes of paths γ} 7→ GermAutF(Sx;Sy) (holonomy)

{homotopy classes of paths γ} 7→ Iso(TxSx; TySy) (linear holonomy)
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Generalizations: Singular foliations

Holonomy transformations II: Singular case

Take M = R, F = 〈x ∂∂x〉 and x = y = 0.

Transversal = neighborhood of 0 in R.

Constant path γ(t) = 0 admits many extensions, e.g.

1 flow of zero vector field: Γ : S0 × [0, 1]→ S0, (x, t) 7→ x;

2 flow of x ∂∂x : Γ(x, t) = etx

Observation 1 (A-Zambon)

Different choices of Γ differ by the flow of X ∈ F(x) = {X ∈ F : X(x) = 0}.

Hence Γ(·, 1) gives a class in GermAutF(Sx,Sx)
exp(F(x))

Observation 2 (A-Zambon)

Not linearizable! To make it linearizable, must consider GermAutF(Sx,Sx)
exp(IxF) .
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Generalizations: Singular foliations

Bi-submersions
Take x ∈M, put Fx = F/IxF. Then dim(Fx) = n <∞

Take X1, . . . ,Xn ∈ F generating F.
Find U ⊂ Rn ×M neighborhood of (x, 0) where t : U→M is defined:

t(λ1, . . . , λn,y) = expy(
n∑
i=1

λiXi)

Put s = pr2. Then s, t : U→M submersions and U foliated by

s−1(F) = t−1(F) = C∞(U; kerds) + C∞(U; kerdt)

Leaves: s−1(L) ∩ t−1(L) where L leaf of F.

A bisection b of s, t carries a holonomy h ∈ AutF(M).

Whence ] : U→ H(F) is a smooth cover of an open subset of H(F).

A-Skandalis

Using bi-submersions can construct C∗(F) and longitudinal pseudodifferen-
tial calculus!
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Generalizations: Singular foliations

Generalization of Theorem 1

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let X1, . . . ,XN ∈ C∞(M; TM) be
smooth vector fields such that [Xi,Xj] =

∑N
k=1 f

k
ijXk.

Then ∆ =
∑
X∗iXi is essentially self-adjoint (both in L2(M) and L2(L)).

Proof

This operator is indeed a regular unbounded multiplier of our C∗-algebra.
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Generalizations: Singular foliations

Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set Ω ⊂ M where leaves have maximal
dimension is Lebesgue measure 1. Assume that the restriction of F to Ω
is minimal and that the holonomy groupoid of this restriction is Hausdorff
and amenable.

Then ∆M and ∆L have the same spectrum (leaf L ⊂ Ω).

Proof

The C∗-algebra C∗(Ω,F) is simple (Fack-Skandalis) and sits as a two-sided
ideal in C∗(M,F). The natural representations of C∗(M,F) to L2(L) and
L2(M) are extensions to multipliers of faithful representations of C∗(Ω,F).
They are weakly equivalent.

The singular extension of the foliation to the closure M of Ω is used to
prove ∆M is regular. Furthermore, ∆M depends on the way F is extended.
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Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set Ω ⊂ M where leaves have maximal
dimension is Lebesgue measure 1. Assume that the restriction of F to Ω
is minimal and that the holonomy groupoid of this restriction is Hausdorff
and amenable.

Then ∆M and ∆L have the same spectrum (leaf L ⊂ Ω).

Proof

The C∗-algebra C∗(Ω,F) is simple (Fack-Skandalis) and sits as a two-sided
ideal in C∗(M,F). The natural representations of C∗(M,F) to L2(L) and
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Generalizations: Singular foliations

What about theorem 3?
Need to know the ”shape” of K0(C

∗(M,F)).

Note that for singular foliations:

1 in many cases the holonomy groupoid is longitudinally smooth and
restricts to a nice groupoid.

2 leaves of a given dimension:
locally closed subsets −→ decomposition series for the C∗-algebra.

Questions

Is this always the case?

Give then a formula for the K-theory: Baum Connes conjecture...

Answers...

1 A - M. Zambon: Longitudinal smoothness controlled by ”essential
isotropy groups” attached to each leaf. When discrete, groupoid
longitudinally smooth.

2 Conjecture: Baum-Connes true for F iff true for each leaf.
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