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1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:
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1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the
form Q =U x T, where U C RP and T C RY.

T is the transverse direction and U is the longitudinal or leafwise direction.
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1.1 Definition: Foliation

Partition to connected submanifolds. Local picture: !
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In other words: There is an open cover of M by foliation charts of the
form Q =U x T, where U C RP and T C RY.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u,t) = (g(u, t), h(t)).
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1.1 Laplacians

Each leaf is a complete Riemannian manifold:

Laplacian Ay acting on L?(L)

The family of leafwise Laplacians:

Laplacian Ap; acting on L2(M)
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Introduction

Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

Anm and Ap are essentially self-adjoint.
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Introduction

Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

Anm and Ap are essentially self-adjoint.

Also true (and more interesting)
o for Apy + f, Ap + f where f is a smooth function on M.

e more generally for every leafwise elliptic (pseudo-)differential operator.
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Introduction

Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

An and Ap are essentially self-adjoint.

Also true (and more interesting)
o for Apy + f, Ap + f where f is a smooth function on M.

e more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

@ Apq not elliptic (as an operator on M).
@ L not compact.
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Introduction

Spectrum of the Laplacian

Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, Ayy and Ap have the same spec-
trum.
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Introduction

Spectrum of the Laplacian

Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, Ayy and Ap have the same spec-
trum.

Theorem 3 (Connes)

In many cases, one can predict the possible gaps in the spectrum.

The same is true for all leafwise elliptic operators.
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How to prove these theorems

2.1 The C*-algebra
Main tool: The foliation C*-algebra C*(M, F).

Its construction: Completion of a convolution algebra
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[ RN VR BRI EM The C™*-algebra of a foliation

2.1 The C*-algebra
Main tool: The foliation C*-algebra C*(M, F).

Its construction: Completion of a convolution algebra

Kernels k(x,y): ki * ko = [ki(x,z)ka(z,y)dz
o Case of a single leaf:

Take any (x,y) € M x M ~ C*(M, F) = K(L?(M))
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Kernels k(x,y): k1 ko = [ki(x,z)ka(z,y)dz
o Case of a single leaf:
Take any (x,y) € M x M ~ C*(M, F) = K(L?(M))
@ a product, a fibre bundle p: M — B:
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How to prove these theorems

2.1 The C*-algebra

Main tool: The foliation C*-algebra C*(M, F).

The C*-algebra of a foliation

Its construction: Completion of a convolution algebra

Kernels k(x,y): k1 ko = [ki(x,z)ka(z,y)dz
o Case of a single leaf:

Take any (x,y) € M x M ~ C*(M, F) = K(L?(M))
@ a product, a fibre bundle p: M — B:

Take (x,y)eM x M s.t. p(x) =ply) ~ C*(M,F)=C(B) X
@ General case: (x,y) € M x M s.t. x,y in same leaf L;

e <y path on L connecting x,y; h, path holonomy depends only on
homotopy class of y

o H(F) ={(x,germ(hy),y)} Holonomy groupoid.

o topology, manifold structure = H(F) is a Lie groupoid (not always
Hausdorff).
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2.1 The C*-algebra
Main tool: The foliation C*-algebra C*(M, F).

Its construction: Completion of a convolution algebra

Kernels k(x,y): k1 ko = [ki(x,z)ka(z,y)dz
o Case of a single leaf:

Take any (x,y) € M x M ~ C*(M, F) = K(L?(M))
@ a product, a fibre bundle p: M — B:

Take (x,y)eM x M s.t. p(x) =ply) ~ C*(M,F)=C(B) X
@ General case: (x,y) € M x M s.t. x,y in same leaf L;

e <y path on L connecting x,y; h, path holonomy depends only on
homotopy class of y

o H(F) ={(x,germ(hy),y)} Holonomy groupoid.

o topology, manifold structure = H(F) is a Lie groupoid (not always
Hausdorff).

C*(M, F) = continuous functions on "space of leaves M/F".
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IR OVERT BRI EM  Pseudodifferential calculus

2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded
multipliers on C2°(G). The algebra generated is the algebra of differential
operators.
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IR OVERT BRI EM  Pseudodifferential calculus

2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded

multipliers on C2°(G). The algebra generated is the algebra of differential
operators.

Using Fourier transform one can write a differential operator P (acting by
left multiplication on f € C2(G)) as:

(P (x,y) = [exp(i(d(x,z), &))ax(x, &)x(x, 2)f(z,y)dEdz
Where
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IR OVERT BRI EM  Pseudodifferential calculus

2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded

multipliers on C2°(G). The algebra generated is the algebra of differential
operators.

Using Fourier transform one can write a differential operator P (acting by
left multiplication on f € C2(G)) as:

(P (x,y) = [exp(i(d(x,z), &))ax(x, &)x(x, 2)f(z,y)dEdz
Where

@ ¢ is the phase: through a local diffeomorphism defined on an open
subset Q ~ U x Ux T C G (where Q =U x T is a foliation chart).
d(x,z) =x—2z € Fy;

@ X is the cut-off function: x smooth, x(x,x) =1 on (a compact subset
of) Q, x(x,z) =0 for (x,z) ¢ Q;

@ x € C*®(F*) is a polynomial on &. It is called the symbol of P.
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IR OVERT BRI EM  Pseudodifferential calculus

More general symbols

We can make sense of an expression like that for much more general
symbols, in particular poly-homogeneous ones:

ofu, &) ~ Z otm—k(w, &)
keN
where o homogeneous of degree j (outside a neighborhood of M C F*).
@ m is called the order of o and the associated operator;
@ oy, is the principal symbol.
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IR OVERT BRI EM  Pseudodifferential calculus

More general symbols

We can make sense of an expression like that for much more general
symbols, in particular poly-homogeneous ones:

a(w, &) ~ ) o k(&)

keN

where «; homogeneous of degree j (outside a neighborhood of M C F*).

@ m is called the order of « and the associated operator;

@ oy, is the principal symbol.

@ Negative order pseudodifferential operators € C*(M, F)

@ Zero order pseudodifferential operators: multipliers of C*(M, F).
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IR OVERT BRI EM  Pseudodifferential calculus

Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact
sequence of C*-algebras:

0—C*M,F) = ¥*(M,F) = C(SF*) = 0
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How to prove these theorems

Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact
sequence of C*-algebras:

0—C*M,F) = ¥*(M,F) = C(SF*) = 0

Theorem (Connes, Kordyukov, Vassout)

Elliptic operators of positive order are regular unbounded multipliers (in the
sense of Baaj-Woronowicz: graph(D) @ graph(D)+ is dense).
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2.3 Proof of theorems 1 and 2

[2(M) and L?(L): representations of the foliation C*-algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

| image of the adjoint = adjoint of the image

Whence theorem 1.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the



2.3 Proof of theorems 1 and 2

[2(M) and L?(L): representations of the foliation C*-algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

| image of the adjoint = adjoint of the image

Whence theorem 1.

Proposition

Every injective morphism of C*-algebras is isometric and isospectral.
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How to prove these theorems

2.3 Proof of theorems 1 and 2
[2(M) and L?(L): representations of the foliation C*-algebras.

Proposition (Baaj, Woronowicz)
Every representation extends to regular multipliers.

| image of the adjoint = adjoint of the image

Whence theorem 1.

Proposition
Every injective morphism of C*-algebras is isometric and isospectral.

Proposition (Fack-Skandalis)
If the foliation is minimal (i.e. all leaves are dense) then the foliation C*-

algebra is simple.

Theorem 2 follows.
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How to prove these theorems

Examples for Theorem 3 (Connes)

Let the "ax + b"” group act on a compact manifold M.
e.g. M =SL(2,R)/T" where T discrete co-compact group.
Leaves = orbits of the "x +b" group (assume it is minimal).

| The spectrum of the Laplacian is an interval [m, +00) |
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How to prove these theorems Proofs

Examples for Theorem 3 (Connes)

Let the "ax + b" group act on a compact manifold M.
e.g. M =SL(2,R)/T" where T discrete co-compact group.
Leaves = orbits of the "x + b" group (assume it is minimal).

| The spectrum of the Laplacian is an interval [m, +o0) |

@ gaps in the spectrum — projections in C*(M, F).
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Let the "ax + b" group act on a compact manifold M.
e.g. M =SL(2,R)/T" where T discrete co-compact group.
Leaves = orbits of the "x + b" group (assume it is minimal).

‘ The spectrum of the Laplacian is an interval [m, +o0) ‘

@ gaps in the spectrum — projections in C*(M, F).

@ I invariant measure by ax +b = trace on C*(M, F) faithful since
C*(M, F) simple (Fack-Skandalis).
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@ gaps in the spectrum — projections in C*(M, F).

@ I invariant measure by ax +b = trace on C*(M, F) faithful since
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How to prove these theorems Proofs

Examples for Theorem 3 (Connes)

Let the "ax + b" group act on a compact manifold M.
e.g. M =SL(2,R)/T" where T discrete co-compact group.
Leaves = orbits of the "x + b" group (assume it is minimal).

‘ The spectrum of the Laplacian is an interval [m, +o0) ‘

@ gaps in the spectrum — projections in C*(M, F).

@ I invariant measure by ax +b = trace on C*(M, F) faithful since
C*(M, F) simple (Fack-Skandalis).

@ The "ax" subgroup — action of R* which scales the trace.

@ Image of Ko countable subgroup of R, invariant under R* action.

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the Bialoweiza, June 2012 12 /25



Examples for Theorem 3

Application:
e M =SL(2,R)/T as before; injection t: R - M
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How to prove these theorems Proofs

Examples for Theorem 3

Application:
e M =SL(2,R)/T as before; injection t: R - M

@ (R): generic leaf for action of matrices ( 1 (1) ) teR

o foliation is minimal, C*-algebra has no non-trivial projections
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How to prove these theorems Proofs

Examples for Theorem 3

Application:
e M =SL(2,R)/T as before; injection t: R - M

@ (R): generic leaf for action of matrices ( 1 (1) ) teR

o foliation is minimal, C*-algebra has no non-trivial projections
@ whence: connected spectrum of operators on L2(R) of the form

d2
——+V
dx? +

where V =f o1, for f: continuous (positive) function.
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How to prove these theorems Proofs

Examples for Theorem 3

Application:
e M =SL(2,R)/T as before; injection t: R - M

@ (R): generic leaf for action of matrices ( 1 (1) ) teR

o foliation is minimal, C*-algebra has no non-trivial projections

@ whence: connected spectrum of operators on L2(R) of the form

d2
——+V
dx? +

where V =f o1, for f: continuous (positive) function.

Similarly, Kronecker flow: Image of the trace Z + 0Z

Can be a Cantor type set ‘
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The singular case

Frobenius...

A only depends on the bundle F € TM of vector fields tangent to the leaf.

Of course! Frobenius theorem...
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The singular case

Frobenius...

A only depends on the bundle F € TM of vector fields tangent to the leaf. I

Of course! Frobenius theorem...

Vectors tangent to the leaves: Subbundle F of the tangent bundle.

It is an integrable subbundle: If X and Y are vector fields tangent to F then
Lie bracket [X, Y] is tangent to F.
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The singular case

Frobenius...

A only depends on the bundle F € TM of vector fields tangent to the leaf.

Of course! Frobenius theorem...
Vectors tangent to the leaves: Subbundle F of the tangent bundle.

It is an integrable subbundle: If X and Y are vector fields tangent to F then
Lie bracket [X, Y] is tangent to F.

Conversely

Frobenius Theorem

Every integrable subbundle of the tangent bundle corresponds to a foliation.
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The singular case

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective C*(M)-modules.

E «— C®(M; E)|
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The singular case

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective C*(M)-modules.

E «— C®(M; E)|

Debord's setting

A: finitely generated projective sub-module of C*®(M; TM), stable under
brackets.
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The singular case

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective C*(M)-modules.

E «— C®(M; E)|

Debord's setting

A: finitely generated projective sub-module of C*®(M; TM), stable under
brackets.

Equivalently:

Lie algebroid with anchor A, — TyM, injective in a dense set.
Image Fx. Dimension lower semi-continuous.
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The singular case

Almost injective algebroids Il

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.
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The singular case

Almost injective algebroids Il

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence
e C*-algebra (Renault)

e pseudodifferential calculus (Connes, Monthubert-Pierrot,
Nistor-Weinstein-Xu)

o Elliptic operators: regular multipliers (Vassout)
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WL EETETETREESN  Almost regular foliations

Almost injective algebroids Il

Every almost injective algebroid is integrable. J

In other words, it is the Lie algebroid of a Lie groupoid, whence
e C*-algebra (Renault)

e pseudodifferential calculus (Connes, Monthubert-Pierrot,
Nistor-Weinstein-Xu)

e Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian
@ Theorems 1 and 2: Exactly same proof

@ Theorem 3: No gaps for a manifold with conic singularities obtained
using a finite covolume subgroup of SL(2, R)
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LIEENETETREE M Almost regular foliations

Almost injective algebroids Il

Every almost injective algebroid is integrable. J

In other words, it is the Lie algebroid of a Lie groupoid, whence
e C*-algebra (Renault)

e pseudodifferential calculus (Connes, Monthubert-Pierrot,
Nistor-Weinstein-Xu)

e Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian
@ Theorems 1 and 2: Exactly same proof

@ Theorem 3: No gaps for a manifold with conic singularities obtained
using a finite covolume subgroup of SL(2, R)

Baum-Connes predicts the K-theory and is known to hold in many cases...

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the Bialoweiza, June 2012 16 / 25



The singular case

3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module F of C*®(M; TM),
stable under brackets.

No longer projective. The fiber F/I1,F: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).
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QLT ETETREESN  Stefan-Sussmann foliations

3.2 Stefan-Sussmann foliations

A (singular) foliation is a finitely generated sub-module & of C>(M;TM),
stable under brackets.

No longer projective. The fiber F/I1,F: upper semi-continuous dimension.
One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves

O R foliated by 3 leaves: (—o0, 0),{0}, (0, +00).
F generated by X“%. Different foliation for every n.
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QLT ETETREESN  Stefan-Sussmann foliations

3.2 Stefan-Sussmann foliations

A (singular) foliation is a finitely generated sub-module & of C>(M;TM),
stable under brackets.

No longer projective. The fiber F/I1,F: upper semi-continuous dimension.
One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves

O R foliated by 3 leaves: (—o0, 0),{0}, (0, +00).
F generated by X“%. Different foliation for every n.
@ R? foliated by 2 leaves: {0} and R?\ {0}.
No obvious best choice. J given by the action of a Lie group

GL(2,R), SL(2,R),C*
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Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:

@ a holonomy groupoid. Extremely singular...
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Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:
@ a holonomy groupoid. Extremely singular...

@ The foliation C*-algebra (and its representation theory)
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Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:
@ a holonomy groupoid. Extremely singular...
@ The foliation C*-algebra (and its representation theory)

@ The cotangent "bundle”: Not a bundle since dimension of fibres not
constant. But F*: nice locally compact space.
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Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:
@ a holonomy groupoid. Extremely singular...
@ The foliation C*-algebra (and its representation theory)

@ The cotangent "bundle”: Not a bundle since dimension of fibres not
constant. But F*: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)

@ Exact sequence of zero-order operators
@ Elliptic operators of positive order are regular unbounded multipliers
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Generalizations: Singular foliations

Constructions of A-Skandalis

In this general setting, one may still construct:
@ a holonomy groupoid. Extremely singular...
@ The foliation C*-algebra (and its representation theory)

@ The cotangent "bundle”: Not a bundle since dimension of fibres not
constant. But F*: nice locally compact space.

The pseudodifferential calculus:(acrobatic...)

@ Exact sequence of zero-order operators
@ Elliptic operators of positive order are regular unbounded multipliers

And also
@ Analytic index (element of KK(Co(F*); C*(M, F)))

@ tangent groupoid + defines same KK element.
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Generalizations: Singular foliations

Holonomy transformations |: Regular case

T sections of F involutive subbundle of TM.

v :10,1] — M path on a leaf, Sy, Sy transversals at x =vy(0),y = vy(1)
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Generalizations: Singular foliations

Holonomy transformations |: Regular case

F sections of F involutive subbundle of TM.
v :10,1] — M path on a leaf, Sy, Sy transversals at x =vy(0),y = vy(1)
For any t, extend % |s—t Y(s) to a time-dependent v.f Zy € F

Define ' : S x [0, 1] —+ M following the flow of Z; on points of Sy.
(Assume T'(q,1) C Sy).

I. Androulidakis (Athens) The leafwise Laplacian and its spectrum: the Bialoweiza, June 2012 19 /25
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F sections of F involutive subbundle of TM.
v :10,1] — M path on a leaf, Sy, Sy transversals at x =vy(0),y = vy(1)
For any t, extend % |s—t Y(s) to a time-dependent v.f Zy € F

Define ' : S x [0, 1] —+ M following the flow of Z; on points of Sy.
(Assume T'(q,1) C Sy).

Define holonomy of v the germ at x of

holy :Sx =Sy q~T(q,1)
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Generalizations: Singular foliations

Holonomy transformations |: Regular case

F sections of F involutive subbundle of TM.
v :10,1] — M path on a leaf, Sy, Sy transversals at x =vy(0),y = vy(1)
For any t, extend % ls—t Y(s) to a time-dependent v.f Z € F

Define ' : S x [0, 1] —+ M following the flow of Z; on points of Sy.
(Assume T'(q,1) C Sy).

Define holonomy of vy the germ at x of

holy :Sx =Sy q+—T(q,1)

Does not depend on choice of Z;. Get maps
e {homotopy classes of paths vy} — GermAutg(Sy;Sy) (holonomy)
e {homotopy classes of paths vy}~ Iso(T,Sx; TySy) (linear holonomy)
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Generalizations: Singular foliations

Holonomy transformations Il: Singular case
Take M =R, F = (x2) and x =y =0.

Transversal = neighborhood of 0 in R.
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Generalizations: Singular foliations

Holonomy transformations Il: Singular case
Take M =R, F = (x2) and x =y =0.

Transversal = neighborhood of 0 in R.

Constant path y(t) = 0 admits many extensions, e.g.
@ flow of zero vector field: T': Sg x [0,1] — So,
Q flow of xa—ax: I(x, 1) =etx

(x,t) — x;
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Generalizations: Singular foliations

Holonomy transformations Il: Singular case
Take M =R, F = (xa%) and x =y =0.

Transversal = neighborhood of 0 in R.

Constant path y(t) = 0 admits many extensions, e.g.
@ flow of zero vector field: T': S x [0,1] — Sp, (x,t) = x;
Q flow of xa%: MNx,t) =etx

Observation 1 (A-Zambon)

Different choices of T differ by the flow of X € F(x) ={X € F: X(x) = 0}.

. . GermAuts(Sy,Sx)
Hence T'(-, 1) gives a class in Sl
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Generalizations: Singular foliations

Holonomy transformations Il: Singular case
Take M =R, F = (xa%) and x =y =0.

Transversal = neighborhood of 0 in R.

Constant path y(t) = 0 admits many extensions, e.g.
@ flow of zero vector field: T': S x [0,1] — Sp, (x,t) = x;
@ flow of x2: I'(x,t) = e'x

Observation 1 (A-Zambon)

Different choices of T differ by the flow of X € F(x) ={X € F: X(x) = 0}.

. . GermAuts(Sy,Sx)
Hence T'(-, 1) gives a class in Sl

Observation 2 (A-Zambon)

Not linearizable! To make it linearizable, must consider Ger"e‘fpu(?;s)’“s").
X
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Generalizations: Singular foliations

Bi-submersions
Take x € M, put Fyx = F/I,F. Then dim(Fy) =n <
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Generalizations: Singular foliations

Bi-submersions
Take x € M, put Fx = F/I,F. Then dim(Fy) =n < oo

o Take Xi,...,Xn € F generating F.
@ Find U C R™ x M neighborhood of (x,0) where t : U — M is defined:

n
tA1, . A y) = expy (D AiXi)
i=1
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Generalizations: Singular foliations

Bi-submersions
Take x € M, put Fx = F/I,F. Then dim(Fy) =n < oo

o Take Xi,...,Xn € F generating &F.
@ Find U C R™ x M neighborhood of (x,0) where t : U — M is defined:

n
tA1, . A y) = expy (D AiXi)
i=1

@ Put s =pra. Then s,t: U — M submersions and U foliated by
s7HF) =t 1(F) = C™(U; ker ds) + C*(U; ker dt)
Leaves: s~ 1(L) Nt (L) where L leaf of 7.
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Generalizations: Singular foliations

Bi-submersions
Take x € M, put Fx = F/I,F. Then dim(Fy) =n < oo

o Take Xi,...,Xn € F generating &F.
@ Find U C R™ x M neighborhood of (x,0) where t : U — M is defined:

n
tA1, . A y) = expy (D AiXi)
i=1

@ Put s =pra. Then s,t: U — M submersions and U foliated by
s7HF) =t 1(F) = C™(U; ker ds) + C*(U; ker dt)
Leaves: s~ 1(L) Nt (L) where L leaf of 7.

A bisection b of s, t carries a holonomy h € Auts(M).
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Generalizations: Singular foliations

Bi-submersions
Take x € M, put Fx = F/I,F. Then dim(Fy) =n < oo

o Take Xi,...,Xn € F generating &F.
@ Find U C R™ x M neighborhood of (x,0) where t : U — M is defined:

n
tA1, . A y) = expy (D AiXi)
i=1

@ Put s =pra. Then s,t: U — M submersions and U foliated by
s7HF) =t 1(F) = C™(U; ker ds) + C*(U; ker dt)
Leaves: s~ 1(L) Nt (L) where L leaf of 7.

A bisection b of s, t carries a holonomy h € Auts(M).
Whence #: U — H(F) is a smooth cover of an open subset of H(F).
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Generalizations: Singular foliations

Bi-submersions
Take x € M, put Fx = F/I,F. Then dim(Fy) =n < oo

o Take Xq,..., Xn € F generating &F.
@ Find U C R™ x M neighborhood of (x,0) where t : U — M is defined:

@ Put s =pra. Then s,t: U — M submersions and U foliated by
sTHTF) =t HTF) = CP(U; ker ds) + C®(U; ker dt)
Leaves: s~ 1(L) Nt (L) where L leaf of 7.

A bisection b of s, t carries a holonomy h € Auts(M).
Whence #: U — H(F) is a smooth cover of an open subset of H(F).

Using bi-submersions can construct C*(F) and longitudinal pseudodifferen-

tial calculus!
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Generalizations: Singular foliations

Generalization of Theorem 1

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let X1,...,Xn € C®(M;TM) be
smooth vector fields such that [Xi, Xj] = Y ', Xk

Then A =Y X!X; is essentially self-adjoint (both in L2(M) and L2(L)).

This operator is indeed a regular unbounded multiplier of our C*-algebra. I
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Generalizations: Singular foliations

Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set QO C M where leaves have maximal
dimension is Lebesgue measure 1. Assume that the restriction of F to Q
is minimal and that the holonomy groupoid of this restriction is Hausdorff
and amenable.

Then Apm and Ap have the same spectrum (leaf L C Q).
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Generalizations: Singular foliations

Generalization of Theorem 2

Assume that the (dense open) set QO C M where leaves have maximal
dimension is Lebesgue measure 1. Assume that the restriction of F to Q
is minimal and that the holonomy groupoid of this restriction is Hausdorff
and amenable.

Then Apm and Ap have the same spectrum (leaf L C Q).

The C*-algebra C*(Q, ¥) is simple (Fack-Skandalis) and sits as a two-sided
ideal in C*(M,J). The natural representations of C*(M, ¥) to L%(L) and
L2(M) are extensions to multipliers of faithful representations of C*(Q, F).
They are weakly equivalent.
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Generalizations: Singular foliations

Generalization of Theorem 2

Assume that the (dense open) set QO C M where leaves have maximal
dimension is Lebesgue measure 1. Assume that the restriction of F to Q
is minimal and that the holonomy groupoid of this restriction is Hausdorff
and amenable.

Then Apm and Ap have the same spectrum (leaf L C Q).

The C*-algebra C*(Q, F) is simple (Fack-Skandalis) and sits as a two-sided
ideal in C*(M,J). The natural representations of C*(M, ¥) to L%(L) and
L2(M) are extensions to multipliers of faithful representations of C*(Q, F).
They are weakly equivalent.

The singular extension of the foliation to the closure M of Q is used to
prove A is regular. Furthermore, Apq depends on the way JF is extended.
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Generalizations: Singular foliations

What about theorem 37
Need to know the "shape” of Ko(C*(M, F)).
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Generalizations: Singular foliations

What about theorem 37
Need to know the "shape” of Ko(C*(M, F)).
Note that for singular foliations:

@ in many cases the holonomy groupoid is longitudinally smooth and
restricts to a nice groupoid.
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Note that for singular foliations:

@ in many cases the holonomy groupoid is longitudinally smooth and
restricts to a nice groupoid.

@ leaves of a given dimension:
locally closed subsets — decomposition series for the C*-algebra.
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Generalizations: Singular foliations

What about theorem 37
Need to know the "shape” of Ko(C*(M, F)).
Note that for singular foliations:

@ in many cases the holonomy groupoid is longitudinally smooth and
restricts to a nice groupoid.

@ leaves of a given dimension:
locally closed subsets — decomposition series for the C*-algebra.

@ Is this always the case?
@ Give then a formula for the K-theory: Baum Connes conjecture...
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Generalizations: Singular foliations

What about theorem 37
Need to know the "shape” of Ko(C*(M, F)).
Note that for singular foliations:

@ in many cases the holonomy groupoid is longitudinally smooth and
restricts to a nice groupoid.

@ leaves of a given dimension:
locally closed subsets — decomposition series for the C*-algebra.

@ Is this always the case?

@ Give then a formula for the K-theory: Baum Connes conjecture...

@ A - M. Zambon: Longitudinal smoothness controlled by " essential
isotropy groups” attached to each leaf. When discrete, groupoid
longitudinally smooth.

V
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Generalizations: Singular foliations

What about theorem 37
Need to know the "shape” of Ko(C*(M, F)).
Note that for singular foliations:

@ in many cases the holonomy groupoid is longitudinally smooth and
restricts to a nice groupoid.

@ leaves of a given dimension:
locally closed subsets — decomposition series for the C*-algebra.

@ Is this always the case?

@ Give then a formula for the K-theory: Baum Connes conjecture...

@ A - M. Zambon: Longitudinal smoothness controlled by " essential
isotropy groups” attached to each leaf. When discrete, groupoid
longitudinally smooth.

@ Conjecture: Baum-Connes true for F iff true for each leaf.

V
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Generalizations: Singular foliations
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