The leafwise Laplacian and its spectrum: the singular case lakovos Androulidakis Department of Mathematics, University of Athens Bialoweiza, June 2012 # Summary - Introduction - Foliations and Laplacians - Statement of 3 theorems - 2 How to prove these theorems - The C*-algebra of a foliation - Pseudodifferential calculus - Proofs - The singular case - Almost regular foliations - Stefan-Sussmann foliations - Generalizations: Singular foliations ### 1.1 Definition: Foliation Partition to connected submanifolds. Local picture: #### 1.1 Definition: Foliation Partition to connected submanifolds. Local picture: In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$. T is the transverse direction and U is the longitudinal or leafwise direction. #### 1.1 Definition: Foliation Partition to connected submanifolds. Local picture: In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$. T is the transverse direction and U is the longitudinal or leafwise direction. The change of charts is of the form f(u, t) = (g(u, t), h(t)). ### 1.1 Laplacians Each leaf is a complete Riemannian manifold: Laplacian $$\Delta_L$$ acting on $L^2(L)$ The family of leafwise Laplacians: Laplacian Δ_M acting on $L^2(M)$ ### Statement of 3 theorems $\Delta_{\rm M}$ and $\Delta_{\rm L}$ are essentially self-adjoint. 5 / 25 #### Statement of 3 theorems ### Theorem 1 (Connes, Kordyukov) Δ_{M} and Δ_{L} are essentially self-adjoint. Also true (and more interesting) - for $\Delta_M + f$, $\Delta_I + f$ where f is a smooth function on M. - more generally for every leafwise elliptic (pseudo-)differential operator. ### Statement of 3 theorems ### Theorem 1 (Connes, Kordyukov) Δ_M and Δ_L are essentially self-adjoint. #### Also true (and more interesting) - for $\Delta_M + f$, $\Delta_I + f$ where f is a smooth function on M. - more generally for every leafwise elliptic (pseudo-)differential operator. #### Not trivial because: - Δ_M not elliptic (as an operator on M). - L not compact. # Spectrum of the Laplacian #### Theorem 2 (Kordyukov) If L is dense + amenability assumptions, Δ_M and Δ_L have the same spectrum. 6 / 25 # Spectrum of the Laplacian #### Theorem 2 (Kordyukov) If L is dense + amenability assumptions, Δ_M and Δ_L have the same spectrum. ### Theorem 3 (Connes) In many cases, one can predict the possible gaps in the spectrum. The same is true for all leafwise elliptic operators. **Main tool:** The foliation C^* -algebra $C^*(M, F)$. Its construction: Completion of a convolution algebra **Main tool:** The foliation C^* -algebra $C^*(M, F)$. Its construction: Completion of a convolution algebra Kernels $$k(x, y)$$: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$ Case of a single leaf: Take any $$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$ **Main tool:** The foliation C^* -algebra $C^*(M, F)$. Its construction: Completion of a convolution algebra Kernels $$k(x, y)$$: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$ Case of a single leaf: Take any $$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$ • a product, a fibre bundle $p: M \to B$: Take $$(x, y) \in M \times M$$ s.t. $p(x) = p(y) \rightsquigarrow C^*(M, F) = C(B) \otimes \mathcal{K}$ **Main tool:** The foliation C^* -algebra $C^*(M, F)$. Its construction: Completion of a convolution algebra Kernels $$k(x, y)$$: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$ Case of a single leaf: Take any $$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$ • a product, a fibre bundle $p: M \to B$: Take $$(x,y) \in M \times M$$ s.t. $p(x) = p(y) \rightsquigarrow C^*(M,F) = C(B) \otimes \mathcal{K}$ - General case: $(x, y) \in M \times M$ s.t. x, y in same leaf L; - γ path on L connecting x, y; h_γ path holonomy depends only on homotopy class of γ - $H(F) = \{(x, germ(h_{\gamma}), y)\}$ Holonomy groupoid. - topology, manifold structure \Rightarrow H(F) is a Lie groupoid (not always Hausdorff). **Main tool:** The foliation C^* -algebra $C^*(M, F)$. Its construction: Completion of a convolution algebra Kernels $$k(x, y)$$: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$ Case of a single leaf: Take any $$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$ • a product, a fibre bundle $p: M \to B$: Take $$(x,y) \in M \times M$$ s.t. $p(x) = p(y) \rightsquigarrow C^*(M,F) = C(B) \otimes \mathcal{K}$ - General case: $(x, y) \in M \times M$ s.t. x, y in same leaf L; - γ path on L connecting x, y; h_γ path holonomy depends only on homotopy class of γ - $H(F) = \{(x, germ(h_y), y)\}$ Holonomy groupoid. - topology, manifold structure \Rightarrow H(F) is a Lie groupoid (not always Hausdorff). $C^*(M, F) = \text{continuous functions on "space of leaves } M/F$ ". ### 2.2 Pseudodifferential operators (Connes) The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^{\infty}(G)$. The algebra generated is the algebra of differential operators. # 2.2 Pseudodifferential operators (Connes) The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^{\infty}(G)$. The algebra generated is the algebra of differential operators. Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C_c^\infty(G)$) as: $$(Pf)(x,y) = \int exp(i\langle \varphi(x,z),\xi \rangle) \alpha(x,\xi) \chi(x,z) f(z,y) d\xi dz$$ Where # 2.2 Pseudodifferential operators (Connes) The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C^{\infty}_{\infty}(G)$. The algebra generated is the algebra of differential operators. Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C_c^{\infty}(G)$ as: $$(\mathsf{Pf})(x,y) = \int \exp(\mathrm{i}\langle \varphi(x,z),\xi \rangle) \alpha(x,\xi) \chi(x,z) f(z,y) d\xi dz$$ #### Where - φ is the phase: through a local diffeomorphism defined on an open subset $\Omega \simeq U \times U \times T \subset G$ (where $\Omega = U \times T$ is a foliation chart). $\phi(x,z) = x - z \in F_x$: - χ is the cut-off function: χ smooth, $\chi(x,x)=1$ on (a compact subset of) Ω , $\chi(x,z) = 0$ for $(x,z) \notin \Omega$; - $\alpha \in C^{\infty}(F^*)$ is a polynomial on ξ . It is called the symbol of P. # More general symbols We can make sense of an expression like that for much more general symbols, in particular poly-homogeneous ones: $$\alpha(u, \xi) \sim \sum_{k \in \mathbb{N}} \alpha_{m-k}(u, \xi)$$ where α_j homogeneous of degree j (outside a neighborhood of $M \subset F^*$). - m is called the order of α and the associated operator; - $\alpha_{\rm m}$ is the principal symbol. # More general symbols We can make sense of an expression like that for much more general symbols, in particular poly-homogeneous ones: $$\alpha(u, \xi) \sim \sum_{k \in \mathbb{N}} \alpha_{m-k}(u, \xi)$$ where α_j homogeneous of degree j (outside a neighborhood of $M \subset F^*$). - m is called the order of α and the associated operator; - α_m is the principal symbol. #### Proposition (Connes) - Negative order pseudodifferential operators $\in C^*(M, F)$ - Zero order pseudodifferential operators: multipliers of $C^*(M, F)$. ### Longitudinal pseudodifferential calculus Together with multiplicativity of the principal symbol this gives an exact sequence of C^* -algebras: $$0 \rightarrow C^*(M, F) \rightarrow \Psi^*(M, F) \rightarrow C(SF^*) \rightarrow 0$$ ### Longitudinal pseudodifferential calculus Together with multiplicativity of the principal symbol this gives an exact sequence of C^* -algebras: $$0 \to C^*(M,F) \to \Psi^*(M,F) \to C(SF^*) \to 0$$ Theorem (Connes, Kordyukov, Vassout) Elliptic operators of positive order are regular unbounded multipliers (in the sense of Baaj-Woronowicz: $graph(D) \oplus graph(D)^{\perp}$ is dense). ### 2.3 Proof of theorems 1 and 2 $L^2(M)$ and $L^2(L)$: representations of the foliation C^* -algebras. #### Proposition (Baaj, Woronowicz) Every representation extends to regular multipliers. image of the adjoint = adjoint of the image Whence theorem 1. ### 2.3 Proof of theorems 1 and 2 $L^2(M)$ and $L^2(L)$: representations of the foliation C^* -algebras. #### Proposition (Baaj, Woronowicz) Every representation extends to regular multipliers. image of the adjoint = adjoint of the image Whence theorem 1. #### **Proposition** Every injective morphism of C^* -algebras is isometric and isospectral. ### 2.3 Proof of theorems 1 and 2 $L^2(M)$ and $L^2(L)$: representations of the foliation C^* -algebras. #### Proposition (Baaj, Woronowicz) Every representation extends to regular multipliers. image of the adjoint = adjoint of the image Whence theorem 1. #### Proposition Every injective morphism of C^* -algebras is isometric and isospectral. #### Proposition (Fack-Skandalis) If the foliation is minimal (i.e. all leaves are dense) then the foliation C^* -algebra is simple. Theorem 2 follows. ### Horocyclic foliation: no gaps in the spectrum Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal). The spectrum of the Laplacian is an interval $[m, +\infty)$ #### Horocyclic foliation: no gaps in the spectrum Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal). The spectrum of the Laplacian is an interval $[m, +\infty)$ #### Proof • gaps in the spectrum \longrightarrow projections in $C^*(M, F)$. ### Horocyclic foliation: no gaps in the spectrum Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal). The spectrum of the Laplacian is an interval $[m, +\infty)$ #### Proof - gaps in the spectrum \longrightarrow projections in $C^*(M, F)$. - \exists invariant measure by $ax + b \Longrightarrow trace$ on $C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis). #### Horocyclic foliation: no gaps in the spectrum Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal). The spectrum of the Laplacian is an interval $[m, +\infty)$ #### Proof - gaps in the spectrum \longrightarrow projections in $C^*(M, F)$. - \exists invariant measure by $\alpha x + b \Longrightarrow \text{trace on } C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis). - The " αx " subgroup \longrightarrow action of \mathbb{R}_+^* which scales the trace. ### Horocyclic foliation: no gaps in the spectrum Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal). The spectrum of the Laplacian is an interval $[m, +\infty)$ #### Proof - gaps in the spectrum \longrightarrow projections in $C^*(M, F)$. - \exists invariant measure by $ax + b \Longrightarrow \text{trace on } C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis). - The "ax" subgroup \longrightarrow action of \mathbb{R}_+^* which scales the trace. - Image of K_0 countable subgroup of \mathbb{R} , invariant under \mathbb{R}_+^* action. #### **Application:** • $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$ #### **Application:** - $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$ - \bullet $\iota(\mathbb{R})\colon$ generic leaf for action of matrices $\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)$, $t\in\mathbb{R}$ - foliation is minimal, C*-algebra has no non-trivial projections ### Application: - $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$ - \bullet $\iota(\mathbb{R})\colon$ generic leaf for action of matrices $\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)$, $t\in\mathbb{R}$ - foliation is minimal, C*-algebra has no non-trivial projections - ullet whence: connected spectrum of operators on $L^2(\mathbb{R})$ of the form $$-\frac{d^2}{dx^2} + V$$ where $V = f \circ i$, for f: continuous (positive) function. #### Application: - $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$ - $\bullet~\iota(\mathbb{R})\colon$ generic leaf for action of matrices $\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)$, $t\in\mathbb{R}$ - foliation is minimal, C*-algebra has no non-trivial projections - ullet whence: connected spectrum of operators on $L^2(\mathbb{R})$ of the form $$-\frac{d^2}{dx^2} + V$$ where $V = f \circ i$, for f: continuous (positive) function. **Similarly**, Kronecker flow: Image of the trace $\mathbb{Z} + \theta \mathbb{Z}$ Can be a Cantor type set ### Frobenius... #### Remark Δ only depends on the bundle $F\subset TM$ of vector fields tangent to the leaf. Of course! Frobenius theorem... ### Frobenius... #### Remark Δ only depends on the bundle $F\subset TM$ of vector fields tangent to the leaf. Of course! Frobenius theorem... Vectors tangent to the leaves: Subbundle F of the tangent bundle. It is an integrable subbundle: If X and Y are vector fields tangent to F then Lie bracket [X,Y] is tangent to F. ### Frobenius... #### Remark Δ only depends on the bundle F \subset TM of vector fields tangent to the leaf. Of course! Frobenius theorem... Vectors tangent to the leaves: Subbundle F of the tangent bundle. It is an integrable subbundle: If X and Y are vector fields tangent to F then Lie bracket [X,Y] is tangent to F. Conversely ### Frobenius Theorem Every integrable subbundle of the tangent bundle corresponds to a foliation. # 3.1 Almost injective algebroids #### Serre-Swan Theorem Bundles = Finitely generated projective $C^{\infty}(M)$ -modules. $$E \longleftrightarrow C^{\infty}(M; E)$$ # 3.1 Almost injective algebroids #### Serre-Swan Theorem Bundles = Finitely generated projective $C^{\infty}(M)$ -modules. $$\mathsf{E} \longleftrightarrow C^\infty(\mathsf{M};\mathsf{E})$$ ### Debord's setting \mathcal{A} : finitely generated projective sub-module of $C^{\infty}(M;TM)$, stable under brackets. ## 3.1 Almost injective algebroids #### Serre-Swan Theorem Bundles = Finitely generated projective $C^{\infty}(M)$ -modules. $$\mathsf{E} \longleftrightarrow C^\infty(\mathsf{M};\mathsf{E})$$ ### Debord's setting \mathcal{A} : finitely generated projective sub-module of $C^{\infty}(M;TM)$, stable under brackets. ### Equivalently: Lie algebroid with anchor $A_x \to T_x M$, injective in a dense set. Image F_x . Dimension lower semi-continuous. Theorem (Debord, Pradines, Bigonnet) Every almost injective algebroid is integrable. ## Theorem (Debord, Pradines, Bigonnet) Every almost injective algebroid is integrable. In other words, it is the Lie algebroid of a Lie groupoid, whence - C*-algebra (Renault) - pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu) - Elliptic operators: regular multipliers (Vassout) ## Theorem (Debord, Pradines, Bigonnet) Every almost injective algebroid is integrable. In other words, it is the Lie algebroid of a Lie groupoid, whence - C*-algebra (Renault) - pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu) - Elliptic operators: regular multipliers (Vassout) ### Furthermore, well-defined Laplacian - Theorems 1 and 2: Exactly same proof - Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of $SL(2, \mathbb{R})$ ## Theorem (Debord, Pradines, Bigonnet) Every almost injective algebroid is integrable. In other words, it is the Lie algebroid of a Lie groupoid, whence - C*-algebra (Renault) - pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu) - Elliptic operators: regular multipliers (Vassout) ### Furthermore, well-defined Laplacian - Theorems 1 and 2: Exactly same proof - Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of $SL(2, \mathbb{R})$ Baum-Connes predicts the K-theory and is known to hold in many cases... ## 3.2 Stefan-Sussmann foliations A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^{\infty}(M;TM)$, stable under brackets. No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann). ## 3.2 Stefan-Sussmann foliations A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^{\infty}(M;TM)$, stable under brackets. No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann). Actually: Different foliations may yield same partition to leaves ① \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$. \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n. ## 3.2 Stefan-Sussmann foliations ## Definition (Stefan, Sussmann, A-Skandalis) A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^{\infty}(M;TM)$, stable under brackets. No longer projective. The fiber $\mathfrak{F}/I_x\mathfrak{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann). Actually: Different foliations may yield same partition to leaves ### Examples - \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$. • generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n. - ② \mathbb{R}^2 foliated by 2 leaves: $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$. No obvious best choice. \mathcal{F} given by the action of a Lie group $GL(2,\mathbb{R}),SL(2,\mathbb{R}),\mathbb{C}^*$ In this general setting, one may still construct: • a holonomy groupoid. Extremely singular... In this general setting, one may still construct: - a holonomy groupoid. Extremely singular... - The foliation C*-algebra (and its representation theory) In this general setting, one may still construct: - a holonomy groupoid. Extremely singular... - The foliation C*-algebra (and its representation theory) - The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space. In this general setting, one may still construct: - a holonomy groupoid. Extremely singular... - The foliation C*-algebra (and its representation theory) - The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space. - The pseudodifferential calculus:(acrobatic...) - Exact sequence of zero-order operators - Elliptic operators of positive order are regular unbounded multipliers In this general setting, one may still construct: - a holonomy groupoid. Extremely singular... - The foliation C*-algebra (and its representation theory) - The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space. - The pseudodifferential calculus:(acrobatic...) - Exact sequence of zero-order operators - 2 Elliptic operators of positive order are regular unbounded multipliers #### And also - Analytic index (element of $KK(C_0(\mathcal{F}^*); C^*(M, \mathcal{F}))$) - tangent groupoid + defines same KK element. \mathcal{F} sections of F involutive subbundle of TM. $\gamma:[0,1] \to M$ path on a leaf, S_{χ},S_{y} transversals at $\chi=\gamma(0),y=\gamma(1)$ \mathcal{F} sections of F involutive subbundle of TM. $\gamma:[0,1]\to M$ path on a leaf, S_x , S_y transversals at $x=\gamma(0)$, $y=\gamma(1)$ For any t, extend $\frac{d}{ds}\mid_{s=t}\gamma(s)$ to a time-dependent v.f $\mathsf{Z}_t\in\mathfrak{F}$ Define $\Gamma: S_x \times [0,1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q,1) \subseteq S_y$). \mathcal{F} sections of F involutive subbundle of TM. $$\gamma:[0,1]\to M$$ path on a leaf, S_x , S_y transversals at $x=\gamma(0)$, $y=\gamma(1)$ For any t, extend $\frac{d}{ds}\mid_{s=t}\gamma(s)$ to a time-dependent v.f $Z_t\in\mathfrak{F}$ Define $\Gamma: S_x \times [0,1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q,1) \subseteq S_y$). Define holonomy of γ the germ at x of $$hol_{\gamma}: S_{\chi} \to S_{\eta} \quad q \mapsto \Gamma(q, 1)$$ \mathcal{F} sections of F involutive subbundle of TM. $$\gamma:[0,1]\to M$$ path on a leaf, S_x , S_y transversals at $x=\gamma(0)$, $y=\gamma(1)$ For any t, extend $\frac{d}{ds}\mid_{s=t}\gamma(s)$ to a time-dependent v.f $Z_t\in\mathfrak{F}$ Define $\Gamma: S_x \times [0,1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q,1) \subseteq S_y$). Define holonomy of γ the germ at x of $$hol_{\gamma}:S_{x}\to S_{y}\quad q\mapsto \Gamma(q,1)$$ Does not depend on choice of Z_t. Get maps - {homotopy classes of paths γ } \mapsto GermAut_F(S_x ; S_y) (holonomy) - {homotopy classes of paths γ } \mapsto Iso $(T_xS_x; T_yS_y)$ (linear holonomy) Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0. Transversal = neighborhood of 0 in \mathbb{R} . Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0. Transversal = neighborhood of 0 in \mathbb{R} . Constant path $\gamma(t) = 0$ admits many extensions, e.g. - ② flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$ Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0. Transversal = neighborhood of 0 in \mathbb{R} . Constant path $\gamma(t) = 0$ admits many extensions, e.g. - flow of zero vector field: $\Gamma: S_0 \times [0,1] \to S_0$, $(x,t) \mapsto x$; - ② flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$ ## Observation 1 (A-Zambon) Different choices of Γ differ by the flow of $X \in \mathfrak{F}(x) = \{X \in \mathfrak{F} : X(x) = 0\}.$ Hence $\Gamma(\cdot,1)$ gives a class in $\frac{\operatorname{GermAut}_{\mathfrak{F}}(S_x,S_x)}{\exp(\mathfrak{F}(x))}$ Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0. Transversal = neighborhood of 0 in \mathbb{R} . Constant path $\gamma(t) = 0$ admits many extensions, e.g. - 1 flow of zero vector field: $\Gamma: S_0 \times [0,1] \to S_0$, $(x,t) \mapsto x$; - 2 flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$ ## Observation 1 (A-Zambon) Different choices of Γ differ by the flow of $X \in \mathcal{F}(x) = \{X \in \mathcal{F} : X(x) = 0\}$. $GermAut_{\mathcal{F}}(S_x,S_x)$ Hence $\Gamma(\cdot, 1)$ gives a class in $exp(\mathcal{F}(x))$ Not linearizable! To make it linearizable, must consider $\frac{GermAut_{\mathcal{F}}(S_x, S_x)}{exp(I_x\mathcal{F})}$. Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$ Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$ - Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} . - Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x,0) where $t:U \to M$ is defined: $$t(\lambda_1,\ldots,\lambda_n,y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$ Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$ - Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} . - Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t: U \to M$ is defined: $$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$ • Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by $$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$ Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} . Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$ - Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} . - Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t: U \to M$ is defined: $$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$ • Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by $$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$ Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} . A bisection b of s, t carries a holonomy $h \in Aut_{\mathcal{F}}(M)$. Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$ - Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} . - Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t: U \to M$ is defined: $$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$ • Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by $$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$ Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} . A bisection b of s, t carries a holonomy $h \in Aut_{\mathcal{F}}(M)$. Whence $\sharp: U \to H(\mathcal{F})$ is a smooth cover of an open subset of $H(\mathcal{F})$. Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$ - Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} . - Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x,0) where $t:U \to M$ is defined: $$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$ • Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by $$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$ Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} . A bisection b of s, t carries a holonomy $h \in Aut_{\mathcal{F}}(M)$. Whence $\sharp: U \to H(\mathcal{F})$ is a smooth cover of an open subset of $H(\mathcal{F})$. ### A-Skandalis Using bi-submersions can construct $C^*(\mathfrak{F})$ and longitudinal pseudodifferential calculus! ### Theorem 1 (A-Skandalis) Let M be a smooth compact manifold. Let $X_1, \ldots, X_N \in C^\infty(M; TM)$ be smooth vector fields such that $[X_i, X_j] = \sum_{k=1}^N f_{ij}^k X_k$. Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$). #### Proof This operator is indeed a regular unbounded multiplier of our C*-algebra. ## Theorem (Skandalis) Assume that the (dense open) set $\Omega\subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of $\mathcal F$ to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable. Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$). ## Theorem (Skandalis) Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable. Then Δ_{M} and Δ_{L} have the same spectrum (leaf $L \subset \Omega$). #### Proof The C*-algebra $C^*(\Omega,\mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M,\mathcal{F})$. The natural representations of $C^*(M,\mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega,\mathcal{F})$. They are weakly equivalent. ## Theorem (Skandalis) Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable. Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$). #### Proof The C*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$. The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent. The singular extension of the foliation to the closure M of Ω is used to prove Δ_M is regular. Furthermore, Δ_M depends on the way $\mathfrak F$ is extended. Need to know the "shape" of $K_0(C^*(M,\mathfrak{F}))$. Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$. Note that for singular foliations: • in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid. Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$. Note that for singular foliations: - in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid. - ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C^* -algebra. Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$. Note that for singular foliations: - in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid. - ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C^* -algebra. ### Questions - Is this always the case? - Give then a formula for the K-theory: Baum Connes conjecture... Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$. Note that for singular foliations: - in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid. - ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C^* -algebra. ### Questions - Is this always the case? - Give then a formula for the K-theory: Baum Connes conjecture... #### Answers.. • A - M. Zambon: Longitudinal smoothness controlled by "essential isotropy groups" attached to each leaf. When discrete, groupoid longitudinally smooth. Need to know the "shape" of $K_0(C^*(M, \mathcal{F}))$. Note that for singular foliations: - 1 in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid. - leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C*-algebra. - Is this always the case? - Give then a formula for the K-theory: Baum Connes conjecture... - A M. Zambon: Longitudinal smoothness controlled by "essential isotropy groups" attached to each leaf. When discrete, groupoid longitudinally smooth. - Conjecture: Baum-Connes true for F iff true for each leaf. ## **Papers** - [1] I. A. and G. Skandalis. The holonomy groupoid of a singular foliation. *J. Reine Angew. Math.*, 2009. - [2] I. A. and G. Skandalis. Pseudodifferential Calculus on a singular foliation. *J. Noncomm. Geom.*, 2011. - [3] I. A. and G. Skandalis. The analytic index of elliptic pseudodifferential operators on singular foliations. *J. K-theory*, 2011. - [4] I. A. and M. Zambon. Smoothness of holonomy covers for singular foliations and essential isotropy. *Submitted*, 2011. - [5] I.A. and M. Zambon. Holonomy transformations for singular foliations. *Submitted*, 2012.