The leafwise Laplacian and its spectrum: the singular case

Iakovos Androulidakis

Department of Mathematics,
University of Athens

Bialoweiza, June 2012
Summary

1. Introduction
 - Foliations and Laplacians
 - Statement of 3 theorems

2. How to prove these theorems
 - The C^*-algebra of a foliation
 - Pseudodifferential calculus
 - Proofs

3. The singular case
 - Almost regular foliations
 - Stefan-Sussmann foliations

4. Generalizations: Singular foliations
1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:
1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of \mathcal{M} by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.
1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form $f(u, t) = (g(u, t), h(t))$.

1.1 Laplacians

Each leaf is a complete Riemannian manifold:

\[\text{Laplacian } \Delta_L \text{ acting on } L^2(L) \]

The family of leafwise Laplacians:

\[\text{Laplacian } \Delta_M \text{ acting on } L^2(M) \]
Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

Δ_M and Δ_L are essentially self-adjoint.
Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

\(\Delta_M \) and \(\Delta_L \) are essentially self-adjoint.

Also true (and more interesting)

- for \(\Delta_M + f, \Delta_L + f \) where \(f \) is a smooth function on \(M \).
- more generally for every leafwise elliptic (pseudo-)differential operator.
Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

\(\Delta_M \) and \(\Delta_L \) are essentially self-adjoint.

Also true (and more interesting)

- for \(\Delta_M + f, \Delta_L + f \) where \(f \) is a smooth function on \(M \).
- more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

- \(\Delta_M \) not elliptic (as an operator on \(M \)).
- \(L \) not compact.
Spectrum of the Laplacian

Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, Δ_M and Δ_L have the same spectrum.
Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, Δ_M and Δ_L have the same spectrum.

Theorem 3 (Connes)

In many cases, one can predict the possible gaps in the spectrum.

The same is true for all leafwise elliptic operators.
2.1 The \mathbb{C}^*-algebra

Main tool: The foliation \mathbb{C}^*-algebra $\mathbb{C}^*(M, F)$.

Its construction: Completion of a convolution algebra
2.1 The C^*-algebra

Main tool: The foliation C^*-algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels $k(x, y)$: $k_1 \ast k_2 = \int k_1(x, z)k_2(z, y)dz$

- Case of a single leaf:
 Take any $(x, y) \in M \times M \leadsto C^*(M, F) = \mathcal{K}(L^2(M))$
2.1 The C*-algebra

Main tool: The foliation C*-algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels $k(x, y)$: $k_1 \ast k_2 = \int k_1(x, z)k_2(z, y)\,dz$

- **Case of a single leaf:**

 Take any $(x, y) \in M \times M \sim C^*(M, F) = \mathcal{K}(L^2(M))$

- **a product, a fibre bundle $p : M \to B$:**

 Take $(x, y) \in M \times M$ s.t. $p(x) = p(y) \sim C^*(M, F) = C(B) \otimes \mathcal{K}$
2.1 The C*-algebra

Main tool: The foliation C*-algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels $k(x, y)$: $k_1 \ast k_2 = \int k_1(x, z)k_2(z, y)dz$

- Case of a single leaf:

 Take any $(x, y) \in M \times M \leadsto C^*(M, F) = \mathcal{K}(L^2(M))$

- a product, a fibre bundle $p : M \to B$:

 Take $(x, y) \in M \times M$ s.t. $p(x) = p(y) \leadsto C^*(M, F) = C(B) \otimes \mathcal{K}$

- General case: $(x, y) \in M \times M$ s.t. x, y in same leaf L;

 - γ path on L connecting x, y; h_γ path holonomy depends only on homotopy class of γ

 - $H(F) = \{(x, \text{germ}(h_\gamma), y)\}$ Holonomy groupoid.

 - topology, manifold structure $\Rightarrow H(F)$ is a Lie groupoid (not always Hausdorff).
2.1 The \mathbb{C}^*-algebra

Main tool: The foliation \mathbb{C}^*-algebra $\mathbb{C}^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels $k(x, y)$: $k_1 \ast k_2 = \int k_1(x, z)k_2(z, y)dz$

- **Case of a single leaf:**

 Take any $(x, y) \in M \times M \leadsto \mathbb{C}^*(M, F) = K(L^2(M))$

- **a product, a fibre bundle** $p : M \to B$:

 Take $(x, y) \in M \times M \text{ s.t. } p(x) = p(y) \leadsto \mathbb{C}^*(M, F) = C(B) \otimes K$

- **General case:** $(x, y) \in M \times M \text{ s.t. } x, y \text{ in same leaf } L$;

 - γ path on L connecting x, y; h_γ path holonomy depends only on homotopy class of γ
 - $H(F) = \{(x, \text{germ}(h_\gamma), y)\}$ Holonomy groupoid.
 - topology, manifold structure $\Rightarrow H(F)$ is a Lie groupoid (not always Hausdorff).

$\mathbb{C}^*(M, F) = \text{continuous functions on "space of leaves } M/F"$.
2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^\infty(G)$. The algebra generated is the algebra of differential operators.

Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C_c^\infty(G)$) as:

$$ (Pf)(x, y) = \int \exp(i\langle \phi(x, z), \xi \rangle) \alpha(x, \xi) \chi(x, z) f(z, y) d\xi dz $$

Where ϕ is the phase: through a local diffeomorphism defined on an open subset $\tilde{\Omega} \cong U \times U \times T \subset G$ (where $\Omega = U \times T$ is a foliation chart).

$\phi(x, z) = x - z \in F_x$; χ is the cut-off function: $\chi \text{ smooth, } \chi(x, x) = 1 \text{ on (a compact subset of) } \Omega, \chi(x, z) = 0 \text{ for } (x, z) \notin \tilde{\Omega}$;

$\alpha \in C_c^\infty(F_x^*)$ is a polynomial on ξ. It is called the symbol of P.

I. Androulidakis (Athens)
2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^\infty(G)$. The algebra generated is the algebra of differential operators.

Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C_c^\infty(G)$) as:

$$ (Pf)(x, y) = \int \exp(i\langle \phi(x, z), \xi \rangle) \alpha(x, \xi)\chi(x, z)f(z, y) d\xi dz $$

Where

$$ \phi(x, z) = x - z \in F_x; \quad \chi(x, z) = 1 \text{ on (a compact subset of)} \Omega, \chi(x, z) = 0 \text{ for } (x, z) \not\in \tilde{\Omega}; \quad \alpha \in C_c^\infty(F^*) \text{ is a polynomial on } \xi. $$
2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C^\infty_c(G)$. The algebra generated is the algebra of differential operators.

Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C^\infty_c(G)$) as:

$$(Pf)(x,y) = \int \exp(i\langle \phi(x,z), \xi \rangle) \alpha(x,\xi)\chi(x,z)f(z,y)\,d\xi\,dz$$

Where

- ϕ is the phase: through a local diffeomorphism defined on an open subset $\tilde{\Omega} \simeq U \times U \times T \subset G$ (where $\Omega = U \times T$ is a foliation chart). $\phi(x,z) = x - z \in F_x$;

- χ is the cut-off function: χ smooth, $\chi(x,x) = 1$ on (a compact subset of) Ω, $\chi(x,z) = 0$ for $(x,z) \notin \tilde{\Omega}$;

- $\alpha \in C^\infty(F^*)$ is a polynomial on ξ. It is called the symbol of P.

I. Androulidakis (Athens)
More general symbols

We can make sense of an expression like that for much more general symbols, in particular \textbf{poly-homogeneous} ones:

$$\alpha(u, \xi) \sim \sum_{k \in \mathbb{N}} \alpha_{m-k}(u, \xi)$$

where α_j homogeneous of degree j (outside a neighborhood of $M \subset \mathbb{F}^*$).

- m is called the \textbf{order} of α and the associated operator;
- α_m is the \textbf{principal symbol}.
More general symbols

We can make sense of an expression like that for much more general symbols, in particular poly-homogeneous ones:

$$\alpha(u, \xi) \sim \sum_{k \in \mathbb{N}} \alpha_{m-k}(u, \xi)$$

where α_j homogeneous of degree j (outside a neighborhood of $M \subset F^*$).

- m is called the order of α and the associated operator;
- α_m is the principal symbol.

Proposition (Connes)

- Negative order pseudodifferential operators $\in C^*(M, F)$
- Zero order pseudodifferential operators: **multipliers** of $C^*(M, F)$.
Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact sequence of C^*-algebras:

$$0 \to C^*(\mathcal{M}, F) \to \Psi^*(\mathcal{M}, F) \to C(SF^*) \to 0$$
Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact sequence of C^*-algebras:

$$0 \to C^*(M, F) \to \Psi^*(M, F) \to C(SF^*) \to 0$$

Theorem (Connes, Kordyukov, Vassout)

Elliptic operators of positive order are **regular** unbounded multipliers (in the sense of Baaj-Woronowicz: $\text{graph}(D) \oplus \text{graph}(D)^\perp$ is dense).
2.3 Proof of theorems 1 and 2

$L^2(M)$ and $L^2(L)$: representations of the foliation C^*-algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

\[
\text{image of the adjoint} = \text{adjoint of the image}
\]

Whence theorem 1.
2.3 Proof of theorems 1 and 2

$L^2(M)$ and $L^2(L)$: representations of the foliation C*-algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

\[
\text{image of the adjoint} = \text{adjoint of the image}
\]

Whence theorem 1.

Proposition

Every injective morphism of C*-algebras is isometric and isospectral.
2.3 Proof of theorems 1 and 2

$L^2(M)$ and $L^2(L)$: representations of the foliation C^*-algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

```
image of the adjoint = adjoint of the image
```

Whence theorem 1.

Proposition

Every injective morphism of C^*-algebras is isometric and isospectral.

Proposition (Fack-Skandalis)

If the foliation is minimal (i.e. all leaves are dense) then the foliation C^*-algebra is simple.

Theorem 2 follows.
Examples for Theorem 3 (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the "$ax + b$" group act on a compact manifold M.

e.g. $M = \text{SL}(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group.

Leaves = orbits of the "$x + b$" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$.
Examples for Theorem 3 (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the ”$ax + b$” group act on a compact manifold M.

e.g. $M = \text{SL}(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group.

Leaves = orbits of the ”$x + b$” group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof

- gaps in the spectrum \longrightarrow projections in $C^*(M, F)$.
Examples for Theorem 3 (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the \(ax + b \) group act on a compact manifold \(M \).
e.g. \(M = SL(2, \mathbb{R})/\Gamma \) where \(\Gamma \) discrete co-compact group.
Leaves = orbits of the \(x + b \) group (assume it is minimal).

The spectrum of the Laplacian is an interval \([m, +\infty)\)

Proof

- gaps in the spectrum \(\rightarrow\) projections in \(C^* (M, F) \).
- \(\exists \) invariant measure by \(ax + b \) \(\rightarrow\) trace on \(C^* (M, F) \) faithful since \(C^* (M, F) \) simple (Fack-Skandalis).
Examples for Theorem 3 (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the "ax + b" group act on a compact manifold M.
e.g. $M = \text{SL}(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group.
Leaves = orbits of the "x + b" group (assume it is minimal).
The spectrum of the Laplacian is an interval $[m, +\infty)$.

Proof

- gaps in the spectrum \rightarrow projections in $C^*(M, F)$.
- \exists invariant measure by $ax + b \implies$ trace on $C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis).
- The "ax" subgroup \rightarrow action of \mathbb{R}^* which scales the trace.
Examples for Theorem 3 (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the "ax + b" group act on a compact manifold M.
e.g. \(M = \text{SL}(2, \mathbb{R})/\Gamma \) where \(\Gamma \) discrete co-compact group.
Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval \([m, +\infty)\)

Proof

- gaps in the spectrum \(\rightarrow \) projections in \(C^*(M, F) \).
- \(\exists \) invariant measure by \(ax + b \) \(\Rightarrow \) trace on \(C^*(M, F) \) faithful since \(C^*(M, F) \) simple (Fack-Skandalis).
- The "ax" subgroup \(\rightarrow \) action of \(\mathbb{R}^*_+ \) which scales the trace.
- Image of \(K_0 \) countable subgroup of \(\mathbb{R} \), invariant under \(\mathbb{R}^*_+ \) action.
Examples for Theorem 3

Application:

- $M = \text{SL}(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$
Examples for Theorem 3

Application:

1. $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \rightarrow M$

2. $\iota(\mathbb{R})$: generic leaf for action of matrices $\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}, t \in \mathbb{R}$

3. foliation is minimal, C^*-algebra has no non-trivial projections
Examples for Theorem 3

Application:

- $M = \text{SL}(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$
- $\iota(\mathbb{R})$: generic leaf for action of matrices $\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}, t \in \mathbb{R}$
- foliation is minimal, C^*-algebra has no non-trivial projections
- whence: connected spectrum of operators on $L^2(\mathbb{R})$ of the form

\[-\frac{d^2}{dx^2} + V\]

where $V = f \circ i$, for f: continuous (positive) function.
Examples for Theorem 3

Application:

- $M = \text{SL}(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$
- $\iota(\mathbb{R})$: generic leaf for action of matrices $\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$, $t \in \mathbb{R}$
- foliation is minimal, C^*-algebra has no non-trivial projections
- whence: connected spectrum of operators on $L^2(\mathbb{R})$ of the form

$$-\frac{d^2}{dx^2} + V$$

where $V = f \circ \iota$, for f: continuous (positive) function.

Similarly, Kronecker flow: Image of the trace $\mathbb{Z} + \theta \mathbb{Z}$

Can be a Cantor type set
Frobenius…

Remark

Δ only depends on the bundle $F \subset TM$ of vector fields tangent to the leaf.

Of course! Frobenius theorem…
Frobenius...

Remark

\(\Delta \) only depends on the bundle \(F \subset TM \) of vector fields tangent to the leaf.

Of course! **Frobenius theorem**...

Vectors tangent to the leaves: Subbundle \(F \) of the tangent bundle.

It is an **integrable subbundle**: If \(X \) and \(Y \) are vector fields tangent to \(F \) then Lie bracket \([X, Y] \) is tangent to \(F \).
Frobenius...

Remark
\[\Delta \text{ only depends on the bundle } F \subset TM \text{ of vector fields tangent to the leaf.} \]

Of course! Frobenius theorem...

Vectors tangent to the leaves: Subbundle \(F \) of the tangent bundle.
It is an integrable subbundle: If \(X \) and \(Y \) are vector fields tangent to \(F \) then Lie bracket \([X, Y]\) is tangent to \(F \).

Conversely

Frobenius Theorem
Every integrable subbundle of the tangent bundle corresponds to a foliation.
3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective $C^\infty(M)$-modules.

\[
\begin{array}{c}
E & \leftrightarrow & C^\infty(M; E) \\
\end{array}
\]

Debord's setting

A: finitely generated projective sub-module of $C^\infty(M)$, stable under brackets.

Equivalently: Lie algebroid with anchor $A_x \rightarrow T_x M$, injective in a dense set.

Image F_x. Dimension lower semi-continuous.
3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective $\mathcal{C}^\infty(M)$-modules.

\[
E \leftrightarrow \mathcal{C}^\infty(M; E)
\]

Debord’s setting

\mathcal{A}: finitely generated projective sub-module of $\mathcal{C}^\infty(M; TM)$, stable under brackets.
3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective $\mathcal{C}^\infty(M)$-modules.

\[E \leftrightarrow \mathcal{C}^\infty(M; E) \]

Debord’s setting

\mathcal{A}: finitely generated projective sub-module of $\mathcal{C}^\infty(M; TM)$, stable under brackets.

Equivalently:

Lie algebroid with anchor $A_x \rightarrow T_x M$, injective in a dense set.
Image F_x. Dimension lower semi-continuous.
Almost injective algebroids II

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.
Almost injective algebroids II

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

- C^*-algebra (**Renault**)
- pseudodifferential calculus (**Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu**)
- Elliptic operators: regular multipliers (**Vassout**)

Furthermore, well-defined Laplacian

Theorems 1 and 2: Exactly same proof

Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of $SL_2(\mathbb{R})$

Baum-Connes predicts the K-theory and is known to hold in many cases...
Almost injective algebroids II

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

- $\text{C}^*\text{-algebra}$ (Renault)
- Pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu)
- Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian

- Theorems 1 and 2: Exactly same proof
- Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of $\text{SL}(2, \mathbb{R})$
Almost injective algebroids II

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

- C*-algebra (Renault)
- pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu)
- Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian

- Theorems 1 and 2: Exactly same proof
- Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of SL(2, \(\mathbb{R}\))

Baum-Connes predicts the K-theory and is known to hold in many cases...
3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^\infty(M; TM)$, stable under brackets.

No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

Examples

1. \mathbb{R} foliated by 3 leaves: $(-\infty, 0)$, $\{0\}$, $(0, +\infty)$. \mathcal{F} generated by $x^n \partial/\partial x$. Different foliation for every n.

2. \mathbb{R}^2 foliated by 2 leaves: $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$. No obvious best choice. \mathcal{F} given by the action of a Lie group $\text{GL}(2, \mathbb{R}), \text{SL}(2, \mathbb{R}), C^*$. Androulidakis (Athens)
3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^\infty(M; TM)$, stable under brackets.

No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves.

Examples

1. \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$. \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n.
3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^\infty(M; TM)$, stable under brackets.

No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves.

Examples

1. \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$. \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n.

2. \mathbb{R}^2 foliated by 2 leaves: $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$. No obvious best choice. \mathcal{F} given by the action of a Lie group $GL(2, \mathbb{R}), SL(2, \mathbb{R}), \mathbb{C}^*$.
Constructions of A-Skandalis

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
Constructions of A-Skandalis

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation \(C^* \)-algebra (and its representation theory)
Constructions of A-Skandalis

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C^*-algebra (and its representation theory)
- The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^*: nice locally compact space.
Constructions of A-Skandalis

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C*-algebra (and its representation theory)
- The cotangent ”bundle”: Not a bundle since dimension of fibres not constant. But \mathcal{F}^*: nice locally compact space.
- The pseudodifferential calculus:(acrobatic...)
 1. Exact sequence of zero-order operators
 2. Elliptic operators of positive order are regular unbounded multipliers
Constructions of A-Skandalis

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation \mathbb{C}^*-algebra (and its representation theory)
- The cotangent ”bundle”: Not a bundle since dimension of fibres not constant. But \mathcal{F}^*: nice locally compact space.
- The pseudodifferential calculus:(acrobatic...)
 1. Exact sequence of zero-order operators
 2. Elliptic operators of positive order are regular unbounded multipliers

And also

- Analytic index (element of $\text{KK}(\mathbb{C}_0(\mathcal{F}^*); \mathbb{C}^*(M, \mathcal{F}))$)
- tangent groupoid $+$ defines same KK element.
Holonomy transformations I: Regular case

\mathcal{F} sections of \mathcal{F} involutive subbundle of TM.

$\gamma : [0, 1] \to M$ path on a leaf, S_x, S_y transversals at $x = \gamma(0), y = \gamma(1)$
Holonomy transformations I: Regular case

\mathcal{F} sections of \mathcal{F} involutive subbundle of TM.

$\gamma: [0, 1] \to M$ path on a leaf, S_x, S_y transversals at $x = \gamma(0), y = \gamma(1)$

For any t, extend $\frac{d}{ds} |_{s=t} \gamma(s)$ to a time-dependent v.f $Z_t \in \mathcal{F}$

Define $\Gamma: S_x \times [0, 1] \to M$ following the flow of Z_t on points of S_x.
(Assume $\Gamma(q, 1) \subseteq S_y$).
Holonomy transformations I: Regular case

\mathcal{F} sections of \mathcal{F} involutive subbundle of TM.

$\gamma : [0, 1] \to M$ path on a leaf, S_x, S_y transversals at $x = \gamma(0), y = \gamma(1)$

For any t, extend $\frac{d}{ds} |_{s=t} \gamma(s)$ to a time-dependent v.f $Z_t \in \mathcal{F}$

Define $\Gamma : S_x \times [0, 1] \to M$ following the flow of Z_t on points of S_x. (Assume $\Gamma(q, 1) \subseteq S_y$).

Define holonomy of γ the germ at x of

$$\text{hol}_\gamma : S_x \to S_y \quad q \mapsto \Gamma(q, 1)$$
Holonomy transformations I: Regular case

\(\mathcal{F} \) sections of \(F \) involutive subbundle of \(\mathcal{T}M \).

\(\gamma : [0, 1] \to M \) path on a leaf, \(S_x, S_y \) transversals at \(x = \gamma(0), y = \gamma(1) \)

For any \(t \), extend \(\frac{d}{ds} \big|_{s=t} \gamma(s) \) to a time-dependent v.f \(Z_t \in \mathcal{F} \)

Define \(\Gamma : S_x \times [0, 1] \to M \) following the flow of \(Z_t \) on points of \(S_x \).
(Assume \(\Gamma(q, 1) \subseteq S_y \).)

Define \textit{holonomy of} \(\gamma \) the germ at \(x \) of

\[\text{hol}_\gamma : S_x \to S_y \quad q \mapsto \Gamma(q, 1) \]

Does not depend on choice of \(Z_t \). Get maps

- \{homotopy classes of paths \(\gamma \} \mapsto \text{GermAut}_\mathcal{F}(S_x; S_y) \) (holonomy)
- \{homotopy classes of paths \(\gamma \} \mapsto \text{Iso}(T_xS_x; T_yS_y) \) (linear holonomy)
Holonomy transformations II: Singular case

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and $x = y = 0$.

Transversal = neighborhood of 0 in \mathbb{R}.

Observation 1 (A-Zambon)
Different choices of Γ differ by the flow of $X \in \mathcal{F}(x) = \{X \in \mathcal{F}: X(x) = 0\}$.

Hence $\Gamma(\cdot, 1)$ gives a class in $\text{GermAut}_x \mathcal{F}(\mathbb{R}_x, \mathbb{R}_x) \exp(\mathcal{F}(x))$.

Observation 2 (A-Zambon)
Not linearizable! To make it linearizable, must consider $\text{GermAut}_x \mathcal{F}(\mathbb{R}_x, \mathbb{R}_x) \exp(\mathcal{I}_x \mathcal{F})$.

I. Androulidakis (Athens)
Holonomy transformations II: Singular case

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and $x = y = 0$.

Transversal = neighborhood of 0 in \mathbb{R}.

Constant path $\gamma(t) = 0$ admits many extensions, e.g.

1. flow of zero vector field: $\Gamma : S_0 \times [0, 1] \to S_0$, $(x, t) \mapsto x$;
2. flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$
Holonomy transformations II: Singular case

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and $x = y = 0$.

Transversal = neighborhood of 0 in \mathbb{R}.

Constant path $\gamma(t) = 0$ admits many extensions, e.g.

1. flow of zero vector field: $\Gamma : S_0 \times [0, 1] \to S_0$, $(x, t) \mapsto x$;

2. flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$

Observation 1 (A-Zambon)

Different choices of Γ differ by the flow of $X \in \mathcal{F}(x) = \{X \in \mathcal{F} : X(x) = 0\}$.

Hence $\Gamma(\cdot, 1)$ gives a class in $\frac{\text{GermAut}_{\mathcal{F}}(S_x, S_x)}{\exp(\mathcal{F}(x))}$
Holonomy transformations II: Singular case

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and $x = y = 0$.

Transversal = neighborhood of 0 in \mathbb{R}.

Constant path $\gamma(t) = 0$ admits many extensions, e.g.

1. flow of zero vector field: $\Gamma : S_0 \times [0, 1] \to S_0$, $(x, t) \mapsto x$;
2. flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^{t}x$

Observation 1 (A-Zambon)
Different choices of Γ differ by the flow of $X \in \mathcal{F}(x) = \{X \in \mathcal{F} : X(x) = 0\}$.
Hence $\Gamma(\cdot, 1)$ gives a class in $\frac{\text{GermAut}_\mathcal{F}(S_x, S_x)}{\exp(\mathcal{F}(x))}$.

Observation 2 (A-Zambon)
Not linearizable! To make it linearizable, must consider $\frac{\text{GermAut}_\mathcal{F}(S_x, S_x)}{\exp(I_x \mathcal{F})}$.
Bi-submersions

Take \(x \in M \), put \(\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F} \). Then \(\dim(\mathcal{F}_x) = n < \infty \)
Bi-submersions

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$. Then $\dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F}.
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of $(x, 0)$ where $t : U \rightarrow M$ is defined:

$$t(\lambda_1, \ldots, \lambda_n, y) = \exp_y \left(\sum_{i=1}^{n} \lambda_i X_i \right)$$
Bi-submersions

Take \(x \in \mathcal{M} \), put \(\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F} \). Then \(\dim(\mathcal{F}_x) = n < \infty \)

- Take \(X_1, \ldots, X_n \in \mathcal{F} \) generating \(\mathcal{F} \).
- Find \(U \subset \mathbb{R}^n \times \mathcal{M} \) neighborhood of \((x, 0) \) where \(t : U \rightarrow \mathcal{M} \) is defined:

\[
 t(\lambda_1, \ldots, \lambda_n, y) = \exp_y \left(\sum_{i=1}^{n} \lambda_i X_i \right)
\]

- Put \(s = \text{pr}_2 \). Then \(s, t : U \rightarrow \mathcal{M} \) submersions and \(U \) foliated by

\[
 s^{-1}(\mathcal{F}) = t^{-1}(\mathcal{F}) = C^\infty(U; \ker ds) + C^\infty(U; \ker dt)
\]

Leaves: \(s^{-1}(L) \cap t^{-1}(L) \) where \(L \) leaf of \(\mathcal{F} \).
Bi-submersions

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$. Then $\dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F}.
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of $(x, 0)$ where $t : U \to M$ is defined:
 \[t(\lambda_1, \ldots, \lambda_n, y) = \exp_y \left(\sum_{i=1}^{n} \lambda_i X_i \right) \]

- Put $s = \text{pr}_2$. Then $s, t : U \to M$ submersions and U foliated by
 \[s^{-1}(\mathcal{F}) = t^{-1}(\mathcal{F}) = C^\infty(U; \ker ds) + C^\infty(U; \ker dt) \]
 Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F}.

A bisection b of s, t carries a holonomy $h \in \text{Aut}_\mathcal{F}(M)$.

A-Skandalis

Using bi-submersions can construct $C^\ast(\mathcal{F})$ and longitudinal pseudodifferential calculus!
Bi-submersions

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$. Then $\dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F}.
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of $(x, 0)$ where $t: U \to M$ is defined:
 $$t(\lambda_1, \ldots, \lambda_n, y) = \exp_y \left(\sum_{i=1}^{n} \lambda_i X_i \right)$$

- Put $s = \text{pr}_2$. Then $s, t: U \to M$ submersions and U foliated by
 $$s^{-1}(\mathcal{F}) = t^{-1}(\mathcal{F}) = C^\infty(U; \ker ds) + C^\infty(U; \ker dt)$$
 Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F}.

A bisection b of s, t carries a holonomy $h \in \text{Aut}_\mathcal{F}(M)$.

Whence $\# : U \to H(\mathcal{F})$ is a smooth cover of an open subset of $H(\mathcal{F})$.

Using bi-submersions can construct $C^* (\mathcal{F})$ and longitudinal pseudodifferential calculus!
Bi-submersions

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $\dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F}.
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of $(x, 0)$ where $t : U \to M$ is defined:

$$t(\lambda_1, \ldots, \lambda_n, y) = \exp_y \left(\sum_{i=1}^{n} \lambda_i X_i \right)$$

- Put $s = \text{pr}_2$. Then $s, t : U \to M$ submersions and U foliated by

$$s^{-1}(\mathcal{F}) = t^{-1}(\mathcal{F}) = C^\infty(U; \ker ds) + C^\infty(U; \ker dt)$$

Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F}.

A bisection b of s, t carries a holonomy $h \in \text{Aut}_\mathcal{F}(M)$.

Whence $\# : U \to \text{H}(\mathcal{F})$ is a smooth cover of an open subset of $\text{H}(\mathcal{F})$.

A-Skandalis

Using bi-submersions can construct $C^*(\mathcal{F})$ and longitudinal pseudodifferential calculus!
Generalization of Theorem 1

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let $X_1, \ldots, X_N \in C^\infty(M; TM)$ be smooth vector fields such that $[X_i, X_j] = \sum_{k=1}^{N} f_{ij}^k X_k$.

Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$).

Proof

This operator is indeed a regular unbounded multiplier of our C^*-algebra.
Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable.

Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$).

Proof

The C^*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$. The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent.

The singular extension of the foliation to the closure M of Ω is used to prove Δ_M is regular. Furthermore, Δ_M depends on the way \mathcal{F} is extended.
Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable.

Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$).

Proof

The C^*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$. The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent.
Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable.

Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$).

Proof

The C^*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$. The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent.

The singular extension of the foliation to the closure M of Ω is used to prove Δ_M is regular. Furthermore, Δ_M depends on the way \mathcal{F} is extended.
What about theorem 3?
Need to know the "shape" of $K_0(C^*(M, F))$.
What about theorem 3?

Need to know the "shape" of $K_0(C^*(M, \mathcal{F}))$.

Note that for singular foliations:

1. In many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
What about theorem 3?

Need to know the "shape" of $K_0(C^*(M,F))$.

Note that for singular foliations:

1. in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.

2. leaves of a given dimension:
 - locally closed subsets \rightarrow decomposition series for the C^*-algebra.
What about theorem 3?

Need to know the ”shape” of $K_0(C^*(M, F))$.

Note that for singular foliations:

1. in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.

2. leaves of a given dimension:
 - locally closed subsets \rightarrow decomposition series for the C^*-algebra.

Questions

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...
What about theorem 3?

Need to know the ”shape” of $K_0(C^*(M, \mathcal{F}))$.

Note that for singular foliations:

1. in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.

2. leaves of a given dimension: locally closed subsets \rightarrow decomposition series for the C^*-algebra.

Questions

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...

Answers...

1. A - M. Zambon: Longitudinal smoothness controlled by ”essential isotropy groups” attached to each leaf. When discrete, groupoid longitudinally smooth.
What about theorem 3?

Need to know the ”shape” of $K_0(C^*(M, F))$.

Note that for singular foliations:

1. in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
2. leaves of a given dimension: locally closed subsets \rightarrow decomposition series for the C^*-algebra.

Questions

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...

Answers...

1. A - M. Zambon: Longitudinal smoothness controlled by ”essential isotropy groups” attached to each leaf. When discrete, groupoid longitudinally smooth.
2. Conjecture: Baum-Connes true for F iff true for each leaf.
Papers

