The leafwise Laplacian and its spectrum: the singular case

lakovos Androulidakis

Department of Mathematics, University of Athens

Bialoweiza, June 2012

Summary

- Introduction
 - Foliations and Laplacians
 - Statement of 3 theorems
- 2 How to prove these theorems
 - The C*-algebra of a foliation
 - Pseudodifferential calculus
 - Proofs
- The singular case
 - Almost regular foliations
 - Stefan-Sussmann foliations
- Generalizations: Singular foliations

1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

1.1 Definition: Foliation

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t), h(t)).

1.1 Laplacians

Each leaf is a complete Riemannian manifold:

Laplacian
$$\Delta_L$$
 acting on $L^2(L)$

The family of leafwise Laplacians:

Laplacian Δ_M acting on $L^2(M)$

Statement of 3 theorems

 $\Delta_{\rm M}$ and $\Delta_{\rm L}$ are essentially self-adjoint.

5 / 25

Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

 Δ_{M} and Δ_{L} are essentially self-adjoint.

Also true (and more interesting)

- for $\Delta_M + f$, $\Delta_I + f$ where f is a smooth function on M.
- more generally for every leafwise elliptic (pseudo-)differential operator.

Statement of 3 theorems

Theorem 1 (Connes, Kordyukov)

 Δ_M and Δ_L are essentially self-adjoint.

Also true (and more interesting)

- for $\Delta_M + f$, $\Delta_I + f$ where f is a smooth function on M.
- more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

- Δ_M not elliptic (as an operator on M).
- L not compact.

Spectrum of the Laplacian

Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, Δ_M and Δ_L have the same spectrum.

6 / 25

Spectrum of the Laplacian

Theorem 2 (Kordyukov)

If L is dense + amenability assumptions, Δ_M and Δ_L have the same spectrum.

Theorem 3 (Connes)

In many cases, one can predict the possible gaps in the spectrum.

The same is true for all leafwise elliptic operators.

Main tool: The foliation C^* -algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Main tool: The foliation C^* -algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels
$$k(x, y)$$
: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$

Case of a single leaf:

Take any
$$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$

Main tool: The foliation C^* -algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels
$$k(x, y)$$
: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$

Case of a single leaf:

Take any
$$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$

• a product, a fibre bundle $p: M \to B$:

Take
$$(x, y) \in M \times M$$
 s.t. $p(x) = p(y) \rightsquigarrow C^*(M, F) = C(B) \otimes \mathcal{K}$

Main tool: The foliation C^* -algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels
$$k(x, y)$$
: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$

Case of a single leaf:

Take any
$$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$

• a product, a fibre bundle $p: M \to B$:

Take
$$(x,y) \in M \times M$$
 s.t. $p(x) = p(y) \rightsquigarrow C^*(M,F) = C(B) \otimes \mathcal{K}$

- General case: $(x, y) \in M \times M$ s.t. x, y in same leaf L;
 - γ path on L connecting x, y; h_γ path holonomy depends only on homotopy class of γ
 - $H(F) = \{(x, germ(h_{\gamma}), y)\}$ Holonomy groupoid.
 - topology, manifold structure \Rightarrow H(F) is a Lie groupoid (not always Hausdorff).

Main tool: The foliation C^* -algebra $C^*(M, F)$.

Its construction: Completion of a convolution algebra

Kernels
$$k(x, y)$$
: $k_1 * k_2 = \int k_1(x, z) k_2(z, y) dz$

Case of a single leaf:

Take any
$$(x, y) \in M \times M \rightsquigarrow C^*(M, F) = \mathcal{K}(L^2(M))$$

• a product, a fibre bundle $p: M \to B$:

Take
$$(x,y) \in M \times M$$
 s.t. $p(x) = p(y) \rightsquigarrow C^*(M,F) = C(B) \otimes \mathcal{K}$

- General case: $(x, y) \in M \times M$ s.t. x, y in same leaf L;
 - γ path on L connecting x, y; h_γ path holonomy depends only on homotopy class of γ
 - $H(F) = \{(x, germ(h_y), y)\}$ Holonomy groupoid.
 - topology, manifold structure \Rightarrow H(F) is a Lie groupoid (not always Hausdorff).

 $C^*(M, F) = \text{continuous functions on "space of leaves } M/F$ ".

2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^{\infty}(G)$. The algebra generated is the algebra of differential operators.

2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C_c^{\infty}(G)$. The algebra generated is the algebra of differential operators.

Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C_c^\infty(G)$) as:

$$(Pf)(x,y) = \int exp(i\langle \varphi(x,z),\xi \rangle) \alpha(x,\xi) \chi(x,z) f(z,y) d\xi dz$$

Where

2.2 Pseudodifferential operators (Connes)

The Lie algebra of vector fields tangent to the foliation acts by unbounded multipliers on $C^{\infty}_{\infty}(G)$. The algebra generated is the algebra of differential operators.

Using Fourier transform one can write a differential operator P (acting by left multiplication on $f \in C_c^{\infty}(G)$ as:

$$(\mathsf{Pf})(x,y) = \int \exp(\mathrm{i}\langle \varphi(x,z),\xi \rangle) \alpha(x,\xi) \chi(x,z) f(z,y) d\xi dz$$

Where

- φ is the phase: through a local diffeomorphism defined on an open subset $\Omega \simeq U \times U \times T \subset G$ (where $\Omega = U \times T$ is a foliation chart). $\phi(x,z) = x - z \in F_x$:
- χ is the cut-off function: χ smooth, $\chi(x,x)=1$ on (a compact subset of) Ω , $\chi(x,z) = 0$ for $(x,z) \notin \Omega$;
- $\alpha \in C^{\infty}(F^*)$ is a polynomial on ξ . It is called the symbol of P.

More general symbols

We can make sense of an expression like that for much more general symbols, in particular poly-homogeneous ones:

$$\alpha(u, \xi) \sim \sum_{k \in \mathbb{N}} \alpha_{m-k}(u, \xi)$$

where α_j homogeneous of degree j (outside a neighborhood of $M \subset F^*$).

- m is called the order of α and the associated operator;
- $\alpha_{\rm m}$ is the principal symbol.

More general symbols

We can make sense of an expression like that for much more general symbols, in particular poly-homogeneous ones:

$$\alpha(u, \xi) \sim \sum_{k \in \mathbb{N}} \alpha_{m-k}(u, \xi)$$

where α_j homogeneous of degree j (outside a neighborhood of $M \subset F^*$).

- m is called the order of α and the associated operator;
- α_m is the principal symbol.

Proposition (Connes)

- Negative order pseudodifferential operators $\in C^*(M, F)$
- Zero order pseudodifferential operators: multipliers of $C^*(M, F)$.

Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact sequence of C^* -algebras:

$$0 \rightarrow C^*(M, F) \rightarrow \Psi^*(M, F) \rightarrow C(SF^*) \rightarrow 0$$

Longitudinal pseudodifferential calculus

Together with multiplicativity of the principal symbol this gives an exact sequence of C^* -algebras:

$$0 \to C^*(M,F) \to \Psi^*(M,F) \to C(SF^*) \to 0$$

Theorem (Connes, Kordyukov, Vassout)

Elliptic operators of positive order are regular unbounded multipliers (in the sense of Baaj-Woronowicz: $graph(D) \oplus graph(D)^{\perp}$ is dense).

2.3 Proof of theorems 1 and 2

 $L^2(M)$ and $L^2(L)$: representations of the foliation C^* -algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

image of the adjoint = adjoint of the image

Whence theorem 1.

2.3 Proof of theorems 1 and 2

 $L^2(M)$ and $L^2(L)$: representations of the foliation C^* -algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

image of the adjoint = adjoint of the image

Whence theorem 1.

Proposition

Every injective morphism of C^* -algebras is isometric and isospectral.

2.3 Proof of theorems 1 and 2

 $L^2(M)$ and $L^2(L)$: representations of the foliation C^* -algebras.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

image of the adjoint = adjoint of the image

Whence theorem 1.

Proposition

Every injective morphism of C^* -algebras is isometric and isospectral.

Proposition (Fack-Skandalis)

If the foliation is minimal (i.e. all leaves are dense) then the foliation C^* -algebra is simple.

Theorem 2 follows.

Horocyclic foliation: no gaps in the spectrum

Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Horocyclic foliation: no gaps in the spectrum

Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof

• gaps in the spectrum \longrightarrow projections in $C^*(M, F)$.

Horocyclic foliation: no gaps in the spectrum

Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof

- gaps in the spectrum \longrightarrow projections in $C^*(M, F)$.
- \exists invariant measure by $ax + b \Longrightarrow trace$ on $C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis).

Horocyclic foliation: no gaps in the spectrum

Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof

- gaps in the spectrum \longrightarrow projections in $C^*(M, F)$.
- \exists invariant measure by $\alpha x + b \Longrightarrow \text{trace on } C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis).
- The " αx " subgroup \longrightarrow action of \mathbb{R}_+^* which scales the trace.

Horocyclic foliation: no gaps in the spectrum

Let the " $\alpha x + b$ " group act on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof

- gaps in the spectrum \longrightarrow projections in $C^*(M, F)$.
- \exists invariant measure by $ax + b \Longrightarrow \text{trace on } C^*(M, F)$ faithful since $C^*(M, F)$ simple (Fack-Skandalis).
- The "ax" subgroup \longrightarrow action of \mathbb{R}_+^* which scales the trace.
- Image of K_0 countable subgroup of \mathbb{R} , invariant under \mathbb{R}_+^* action.

Application:

• $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$

Application:

- $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$
- \bullet $\iota(\mathbb{R})\colon$ generic leaf for action of matrices $\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)$, $t\in\mathbb{R}$
- foliation is minimal, C*-algebra has no non-trivial projections

Application:

- $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$
- \bullet $\iota(\mathbb{R})\colon$ generic leaf for action of matrices $\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)$, $t\in\mathbb{R}$
- foliation is minimal, C*-algebra has no non-trivial projections
- ullet whence: connected spectrum of operators on $L^2(\mathbb{R})$ of the form

$$-\frac{d^2}{dx^2} + V$$

where $V = f \circ i$, for f: continuous (positive) function.

Application:

- $M = SL(2, \mathbb{R})/\Gamma$ as before; injection $\iota : \mathbb{R} \to M$
- $\bullet~\iota(\mathbb{R})\colon$ generic leaf for action of matrices $\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)$, $t\in\mathbb{R}$
- foliation is minimal, C*-algebra has no non-trivial projections
- ullet whence: connected spectrum of operators on $L^2(\mathbb{R})$ of the form

$$-\frac{d^2}{dx^2} + V$$

where $V = f \circ i$, for f: continuous (positive) function.

Similarly, Kronecker flow: Image of the trace $\mathbb{Z} + \theta \mathbb{Z}$

Can be a Cantor type set

Frobenius...

Remark

 Δ only depends on the bundle $F\subset TM$ of vector fields tangent to the leaf.

Of course! Frobenius theorem...

Frobenius...

Remark

 Δ only depends on the bundle $F\subset TM$ of vector fields tangent to the leaf.

Of course! Frobenius theorem...

Vectors tangent to the leaves: Subbundle F of the tangent bundle.

It is an integrable subbundle: If X and Y are vector fields tangent to F then Lie bracket [X,Y] is tangent to F.

Frobenius...

Remark

 Δ only depends on the bundle F \subset TM of vector fields tangent to the leaf.

Of course! Frobenius theorem...

Vectors tangent to the leaves: Subbundle F of the tangent bundle.

It is an integrable subbundle: If X and Y are vector fields tangent to F then Lie bracket [X,Y] is tangent to F.

Conversely

Frobenius Theorem

Every integrable subbundle of the tangent bundle corresponds to a foliation.

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective $C^{\infty}(M)$ -modules.

$$E \longleftrightarrow C^{\infty}(M; E)$$

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective $C^{\infty}(M)$ -modules.

$$\mathsf{E} \longleftrightarrow C^\infty(\mathsf{M};\mathsf{E})$$

Debord's setting

 \mathcal{A} : finitely generated projective sub-module of $C^{\infty}(M;TM)$, stable under brackets.

3.1 Almost injective algebroids

Serre-Swan Theorem

Bundles = Finitely generated projective $C^{\infty}(M)$ -modules.

$$\mathsf{E} \longleftrightarrow C^\infty(\mathsf{M};\mathsf{E})$$

Debord's setting

 \mathcal{A} : finitely generated projective sub-module of $C^{\infty}(M;TM)$, stable under brackets.

Equivalently:

Lie algebroid with anchor $A_x \to T_x M$, injective in a dense set.

Image F_x . Dimension lower semi-continuous.

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

- C*-algebra (Renault)
- pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu)
- Elliptic operators: regular multipliers (Vassout)

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

- C*-algebra (Renault)
- pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu)
- Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian

- Theorems 1 and 2: Exactly same proof
- Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of $SL(2, \mathbb{R})$

Theorem (Debord, Pradines, Bigonnet)

Every almost injective algebroid is integrable.

In other words, it is the Lie algebroid of a Lie groupoid, whence

- C*-algebra (Renault)
- pseudodifferential calculus (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu)
- Elliptic operators: regular multipliers (Vassout)

Furthermore, well-defined Laplacian

- Theorems 1 and 2: Exactly same proof
- Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of $SL(2, \mathbb{R})$

Baum-Connes predicts the K-theory and is known to hold in many cases...

3.2 Stefan-Sussmann foliations

A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^{\infty}(M;TM)$, stable under brackets.

No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

3.2 Stefan-Sussmann foliations

A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^{\infty}(M;TM)$, stable under brackets.

No longer projective. The fiber $\mathcal{F}/I_x\mathcal{F}$: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves

① \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$.

 \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n.

3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module \mathcal{F} of $C^{\infty}(M;TM)$, stable under brackets.

No longer projective. The fiber $\mathfrak{F}/I_x\mathfrak{F}$: upper semi-continuous dimension.

One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves

Examples

- \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$. • generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n.
- ② \mathbb{R}^2 foliated by 2 leaves: $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$. No obvious best choice. \mathcal{F} given by the action of a Lie group

 $GL(2,\mathbb{R}),SL(2,\mathbb{R}),\mathbb{C}^*$

In this general setting, one may still construct:

• a holonomy groupoid. Extremely singular...

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C*-algebra (and its representation theory)

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C*-algebra (and its representation theory)
- The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space.

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C*-algebra (and its representation theory)
- The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space.
- The pseudodifferential calculus:(acrobatic...)
 - Exact sequence of zero-order operators
 - Elliptic operators of positive order are regular unbounded multipliers

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C*-algebra (and its representation theory)
- The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space.
- The pseudodifferential calculus:(acrobatic...)
 - Exact sequence of zero-order operators
 - 2 Elliptic operators of positive order are regular unbounded multipliers

And also

- Analytic index (element of $KK(C_0(\mathcal{F}^*); C^*(M, \mathcal{F}))$)
- tangent groupoid + defines same KK element.

 \mathcal{F} sections of F involutive subbundle of TM.

 $\gamma:[0,1] \to M$ path on a leaf, S_{χ},S_{y} transversals at $\chi=\gamma(0),y=\gamma(1)$

 \mathcal{F} sections of F involutive subbundle of TM.

 $\gamma:[0,1]\to M$ path on a leaf, S_x , S_y transversals at $x=\gamma(0)$, $y=\gamma(1)$

For any t, extend $\frac{d}{ds}\mid_{s=t}\gamma(s)$ to a time-dependent v.f $\mathsf{Z}_t\in\mathfrak{F}$

Define $\Gamma: S_x \times [0,1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q,1) \subseteq S_y$).

 \mathcal{F} sections of F involutive subbundle of TM.

$$\gamma:[0,1]\to M$$
 path on a leaf, S_x , S_y transversals at $x=\gamma(0)$, $y=\gamma(1)$

For any t, extend $\frac{d}{ds}\mid_{s=t}\gamma(s)$ to a time-dependent v.f $Z_t\in\mathfrak{F}$

Define $\Gamma: S_x \times [0,1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q,1) \subseteq S_y$).

Define holonomy of γ the germ at x of

$$hol_{\gamma}: S_{\chi} \to S_{\eta} \quad q \mapsto \Gamma(q, 1)$$

 \mathcal{F} sections of F involutive subbundle of TM.

$$\gamma:[0,1]\to M$$
 path on a leaf, S_x , S_y transversals at $x=\gamma(0)$, $y=\gamma(1)$

For any t, extend $\frac{d}{ds}\mid_{s=t}\gamma(s)$ to a time-dependent v.f $Z_t\in\mathfrak{F}$

Define $\Gamma: S_x \times [0,1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q,1) \subseteq S_y$).

Define holonomy of γ the germ at x of

$$hol_{\gamma}:S_{x}\to S_{y}\quad q\mapsto \Gamma(q,1)$$

Does not depend on choice of Z_t. Get maps

- {homotopy classes of paths γ } \mapsto GermAut_F(S_x ; S_y) (holonomy)
- {homotopy classes of paths γ } \mapsto Iso $(T_xS_x; T_yS_y)$ (linear holonomy)

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0.

Transversal = neighborhood of 0 in \mathbb{R} .

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0.

Transversal = neighborhood of 0 in \mathbb{R} .

Constant path $\gamma(t) = 0$ admits many extensions, e.g.

- ② flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0.

Transversal = neighborhood of 0 in \mathbb{R} .

Constant path $\gamma(t) = 0$ admits many extensions, e.g.

- flow of zero vector field: $\Gamma: S_0 \times [0,1] \to S_0$, $(x,t) \mapsto x$;
- ② flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$

Observation 1 (A-Zambon)

Different choices of Γ differ by the flow of $X \in \mathfrak{F}(x) = \{X \in \mathfrak{F} : X(x) = 0\}.$

Hence $\Gamma(\cdot,1)$ gives a class in $\frac{\operatorname{GermAut}_{\mathfrak{F}}(S_x,S_x)}{\exp(\mathfrak{F}(x))}$

Take $M = \mathbb{R}$, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and x = y = 0.

Transversal = neighborhood of 0 in \mathbb{R} .

Constant path $\gamma(t) = 0$ admits many extensions, e.g.

- 1 flow of zero vector field: $\Gamma: S_0 \times [0,1] \to S_0$, $(x,t) \mapsto x$;
- 2 flow of $x \frac{\partial}{\partial x}$: $\Gamma(x, t) = e^t x$

Observation 1 (A-Zambon)

Different choices of Γ differ by the flow of $X \in \mathcal{F}(x) = \{X \in \mathcal{F} : X(x) = 0\}$.

 $GermAut_{\mathcal{F}}(S_x,S_x)$ Hence $\Gamma(\cdot, 1)$ gives a class in $exp(\mathcal{F}(x))$

Not linearizable! To make it linearizable, must consider $\frac{GermAut_{\mathcal{F}}(S_x, S_x)}{exp(I_x\mathcal{F})}$.

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} .
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x,0) where $t:U \to M$ is defined:

$$t(\lambda_1,\ldots,\lambda_n,y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} .
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t: U \to M$ is defined:

$$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$

• Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by

$$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$

Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} .

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} .
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t: U \to M$ is defined:

$$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$

• Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by

$$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$

Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} .

A bisection b of s, t carries a holonomy $h \in Aut_{\mathcal{F}}(M)$.

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} .
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t: U \to M$ is defined:

$$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$

• Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by

$$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$

Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} .

A bisection b of s, t carries a holonomy $h \in Aut_{\mathcal{F}}(M)$.

Whence $\sharp: U \to H(\mathcal{F})$ is a smooth cover of an open subset of $H(\mathcal{F})$.

Take $x \in M$, put $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Then $dim(\mathcal{F}_x) = n < \infty$

- Take $X_1, \ldots, X_n \in \mathcal{F}$ generating \mathcal{F} .
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x,0) where $t:U \to M$ is defined:

$$t(\lambda_1, \dots, \lambda_n, y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$

• Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by

$$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$

Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} .

A bisection b of s, t carries a holonomy $h \in Aut_{\mathcal{F}}(M)$.

Whence $\sharp: U \to H(\mathcal{F})$ is a smooth cover of an open subset of $H(\mathcal{F})$.

A-Skandalis

Using bi-submersions can construct $C^*(\mathfrak{F})$ and longitudinal pseudodifferential calculus!

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let $X_1, \ldots, X_N \in C^\infty(M; TM)$ be smooth vector fields such that $[X_i, X_j] = \sum_{k=1}^N f_{ij}^k X_k$.

Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$).

Proof

This operator is indeed a regular unbounded multiplier of our C*-algebra.

Theorem (Skandalis)

Assume that the (dense open) set $\Omega\subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of $\mathcal F$ to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable.

Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$).

Theorem (Skandalis)

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable.

Then Δ_{M} and Δ_{L} have the same spectrum (leaf $L \subset \Omega$).

Proof

The C*-algebra $C^*(\Omega,\mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M,\mathcal{F})$. The natural representations of $C^*(M,\mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega,\mathcal{F})$. They are weakly equivalent.

Theorem (Skandalis)

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume that the restriction of \mathcal{F} to Ω is minimal and that the holonomy groupoid of this restriction is Hausdorff and amenable.

Then Δ_M and Δ_L have the same spectrum (leaf $L \subset \Omega$).

Proof

The C*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$. The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent.

The singular extension of the foliation to the closure M of Ω is used to prove Δ_M is regular. Furthermore, Δ_M depends on the way $\mathfrak F$ is extended.

Need to know the "shape" of $K_0(C^*(M,\mathfrak{F}))$.

Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$.

Note that for singular foliations:

• in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.

Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$.

Note that for singular foliations:

- in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
- ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C^* -algebra.

Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$.

Note that for singular foliations:

- in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
- ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C^* -algebra.

Questions

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...

Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$.

Note that for singular foliations:

- in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
- ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C^* -algebra.

Questions

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...

Answers..

• A - M. Zambon: Longitudinal smoothness controlled by "essential isotropy groups" attached to each leaf. When discrete, groupoid longitudinally smooth.

Need to know the "shape" of $K_0(C^*(M, \mathcal{F}))$.

Note that for singular foliations:

- 1 in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
- leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C*-algebra.

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...

- A M. Zambon: Longitudinal smoothness controlled by "essential isotropy groups" attached to each leaf. When discrete, groupoid longitudinally smooth.
- Conjecture: Baum-Connes true for F iff true for each leaf.

Papers

- [1] I. A. and G. Skandalis. The holonomy groupoid of a singular foliation. *J. Reine Angew. Math.*, 2009.
- [2] I. A. and G. Skandalis. Pseudodifferential Calculus on a singular foliation. *J. Noncomm. Geom.*, 2011.
- [3] I. A. and G. Skandalis. The analytic index of elliptic pseudodifferential operators on singular foliations. *J. K-theory*, 2011.
- [4] I. A. and M. Zambon. Smoothness of holonomy covers for singular foliations and essential isotropy. *Submitted*, 2011.
- [5] I.A. and M. Zambon. Holonomy transformations for singular foliations. *Submitted*, 2012.